MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 118

Reducibility of the Equivalence Problem for Mulci-tape

“Automata to the Equivalence Problem for Independent

Location Tteration Schemas
by

Joseph E. Qualitz

This work was supported in part by the National Science
Foundation under research grant GJ-34671 and fn part by
funds from International Business Machines,

March 1975

It has been demonstrated in the literature [2] that the equivalence
problem for multi-tape finite automata ss defined in [4] reduces to that
for monadic, independent location program schemas - schemas which permit
operator and test symbols representing functions and predicates of only
one variablé, and which have the property that the argument variable of an
dsgigrment statement is always the same as the assignment varieble of the
statement. Ashcroft and Manna have shown (1] that for any such achema
there exists an equivalent "whilish" schema (i.e, one composed of assignment
statements, conditional statements, and {teration statements) and an
algorithm is given for conatructing this equivalent schema. In general,
however, application of this algorithm necesgsarily results in a whilish
schema which is not independent location, and it is therefore reagonable
to ask whether or not the equivalence problem for independent location
schemas in general can be reduced to that for independent location whilish

schemas.

In this memo, we provide an affirmative answer to the question abave
and, in the process, demonstrate that the equivaience problem for multi-
tape finite automata reduces to that for multi-tape sutemata with a single

control state.

- 72 -

E. Multi-tape Finite Automata

In this section, we show that the equivalence prablem for the
class of multi-tape finite autemata [#] reduces to that for the class of
multi-tape automata which have & single control state and which Mpve 0O
more than a single thpe head during any step in a computation. The
definition of multi-tape automaton given below differs slightly from that
in [4] since, for reasons that will becoms apparent, we wish to treat tha
initial state of an automaton in a special manner. In particular, we
3llow no transitions back into the initial state of a machine and allow
no movement of the tape heads during a transition out of the fnitial

state,
Formally, an n-tape finite automaton is a five-tuple

M= (%, Q qp, £, h)

where: K 1s a finite set of tape symbols, including the special endmarker 5.
Q is a finite set of control strates.

qI € Q is the initial state of the automaton.

£ (QLJ{qI}) *x K% - Q is the state transition funetion,
h: (Q U[qI}) x K= 1[1,2,...,n}' is the head advancement fune¢tion,

and satisfies the properties that h{qy, @) = P and that i ¢ h(g, W) whenever

the ith component of @ is $, for all w € KD,

A configuration of M is & pair (g, 3) where q is a2 state (either control
or initial) and 0 is an n-tuple of strings in xt, (For such an (3, we denote
by TAIL{Q } the string in K whose ith syobol is the last symhol of the ith

component of [}, 1£i<n,)

- A computation by M is a possibly infinite sequence of distinct configurations
n » + - -

(ql, Ql),(qz, 02), o ,(qk,ﬂk},(qk_ﬂ, k+1)’ ev. in which q; is the initial

state qI and in which, for all i> 1:

(1) 9 = f(qi_l, TAIL(Qi 1))

(2) Qi = {1 1'S where § is an n-tuple of strings inK U {¢ }, such thar

for all j, 1<j< n, the jth component of 8 is ¢ 1ff j £ h(qi_l:TAIL(Qi-l))'

An n-tuple Q of strings in K* is accepted by M if there 1s a finite
computation by M ending with the configuration (q,8Q -$n), for some g in Q U
[qI }» The language recognized by M, written L(M), is the get{ ﬂ‘ QQis an n-
tuple of strings in K* accepted by M 3w is an n-tape finite automaton,

then M and M' are equivalent iff L(M) = LY.

Lemma 1:

Let M = (K, qQ, 17, £, h) be an arbitrary n-tape automaton, for some n. Then
we mdy construct from M an equivalent n~tape automaton M' in which no mere than

a siﬁgle tape head moves during any step in a computation by the machine.

Eroof: Let q be a state in Q U{ qI} and ® a string in K such that
‘ h{q, w) ={ jl,..., jm} for some m > .1. (If no such state and string
exists, then we choose as M' the machine M itself,) We add to Q new
states q',q",,..,q% ! and extend f and h to these new statres so that
f(qi, w) = qi*l anq h(qi, pYy= Jin ., for all # € k™ and al1l i,
ls i< m-1. For each i € -Kn, we define f(qm'l, L) to be the state

f{q, %) and we define h(qm'l,) to be jm}' - Finally, we redefine

f(q, w) to be state q' and h(q, @) to be {11}, The procedure
is repeated for any additional arguments for which the valye of
h is a get of cardinality greater thanp one, and the rasultant
automaton is the machine M'. The reader may verify that L{M')

is precisely the same as L{M).
hu |

Definition: An n-tape automaton M is in normal form if Precisely one tape

head is advanced at each biit the last step in a computation by the sutomatan.

Lorollary 1.1:

For each multi-tape automaton M = (¥, Q, ar, £, h) we can find an equivalent

automaton in normal form,

Eroof: We may assume without loss of generality that no more than one tape
head is advanced during 2ny satep in a computation by M. Then when-
ever we have f(gq, w} = q' for some g in Q and @ in K" (where n i3 the
number of tapes of M) for which h{q, w) = P and h(q',w) # ¢, we redefine
£(q, W) to be £(g', @), This procedure is applied recursively until itg
application 1s no longer possible. The reeultant schema 15 in normal
form. x|

If M is an n-tape automaton in normal form, its head advancement function

can be viewed quite naturally as a (partial) function imto {1, ... , 0}, we

~adopt this view for the remainder of this paper.

Definition: Let w = silsig ces siksikﬂ -«+ be a string over some &lphabet

K not containing the special symbol #. Then an expangion of ®w is any etring

of the form: .
41 32 Ik
= e 5 . # . - 6 . # * ees " e 8 # L « 8 - #
bomsy 1 @) EPURPILY "1 Tk N aik+1 k+1 ¢

It

*
in which for each i, 51 € K and j_i is an integer > 0. An expangion of a
tuple of strings (w , w w)

1? Wgr =ve 2 ©)) over K ie any tuple of strings Y =

oy, z[;z, vea 4 lin} in which for each 1, 1 s { < q, *i 1s an expansion of

bli. Finally, if X ia a set of tuples of strings over K, then the expansion

of X is the set EXP(X) ={¥ | ¥ 15 an expansion of some (1 € x},

We note that if w is a string over an alphabet X not containing #, the
expansion of ¥ formed by inserting # between each pair of symbols in @ cannot

be obtained as an expangion of any string distinet from W, We thus hava:

Lemma 2:

Let M and M* be n-tape finite automata whose tape alphabets do not contain #.

Then M and M' are equivalent if and only if EXP(L(M)) = EXP(L{M'}),

Proof: Left to the reader,

Definition: Let M be an n-tape automaton with tape alphabet K, control
states denoted by a set of symbols Q, and the property that ng more than
3 single tape head ia moved during any step in a computation by M, Let
Q= (wl’ Wos aes Wn) be 8 tuple of strings accepted by M. Th.en the

trace of with respect to M ig the nti-tuple of strings & =

(x,B,vy,v, '-"1, Wz, cee s '-'-‘n) over K U QU {1.Z,....0} su_c;h that @ € g* jg4

the sequence of symbols scanned during the computation by which M accepts

0,8 G{T,f,...,ﬁ] * represents the sequence of tape heads moved during the computa.

tion, and Y € Q¥ is the Sequence of states entered during the computation. We

.denote by TRACE(M)} the set [A] Ais the trace of some {) accepted by M),

Lemma 3:

Let M be an n-tape automaton (K, Q, qz» £, h) in normal form., Then we may
construct ‘from M an n+4 tape automaton M' such that M' has a single control

state, M!' -is in normal form, and L{M') = EXP{TRACE(M)).

Proof: A formal definition of M’ appeara in the Appendix. We describe
the behavior of M' informally below:
Let § be the set of symbols {'c'i'il 9 is a gtate in Q},
and let N be the set of symbols{ 1,%,...,7}. The alphabet of
M' is the set X' ‘KUQUEU {#}.
We may represent a configuration of M' by an nt4-tuple of

strings over the alphabet K', and we say chat a configuration

(1 1s a base configuration of M' if TATL(QY) 48 of the form
§'X:q,°q,+ W, where x is 7 for sowe £ in N such that £ = hiq, »)
in M, and s is the 4 ch symbol in w & K™, Beginning at such a base
configuration, the behavior of M' ig ag follows:
i} M' moves head AL+ 4 past any number of other symbols until
symbol # is scanned on the 14—4th.£§pe.
11) M' then moves head 4 past any number of other symbols until
symbol # 18 scanned on the 4th tape,
iii1) M' then moves head 2 Past any number of other symbols until
symbol # 18 scanned on the second tape,
iv) M' advances head 4 past any number of copies of the aymbol
#, stopping when it reaches a symbol ﬁj such that '&; - f(qi, Wy in
M. If the first aymbol after the string of #'s is any symbol other
than G}, M' hangs up, {,e. it scans repeatedly the same n-tuple of
symbols without advancing any tape head.
v) M' advances head 1 wmtil # is reached on the first tape,
aqd then head 3 until # is reached on that tape.
vi) M' advances head 4+ 4 past any number of #'s until a
symbol s' € K' is scanned on that tape, (M' hangs up if the first
symbol after the #'s 18 not a aymbol in K.)
vii) M' advances head 1 past any number of #'s until & symbol s"
. '€ K 1s scanned on the firse tape, such that s" is the symbol under gcan
on the kith tape if h(qj, W'} 1s k, or is the endmarker $ if h(qj. w')
ie undefined in M, where W' ig the string formed by concatenating the

symbols under scan on the last n tapes of M'. If any symbol other than

-8 -

the appropriate s" is scanned immediately after the atring. of #'s-,.-
M' hangs up, |

viii) 1If h(qj, w') ig defined, where w' 1is as in (vil), then M’
advances head 2 past any number of #'a until a symbol 4' € N is
Bcanned such that g'= h(qj, w'), If any symbol other than the
appropriate ;‘ 15 scenned immediately after the string of #'s,
M'. hangs up,

1z) Finally, M' advances tape head 3 past any number of #'s

until symbol ﬁj is scanned on the third tape. M' hangs up if any

symbol other than 'q'j appears immediately after the #'s,

To ensure that a computation by M' begins at a proper bage
configuration, we define the atate transition function of M' in
such & way that M' enters its control state from its initiel state
1ff the tail of an initia] configuration is of the form S'I‘qi'qi' w,
where 8 1s the 2 th symbol in w, % ig h(qi, W) in M, and q; is

f(qI, w) in M,

To ensure that a computation by M' terminates ~guccessfully :in
Appropriate cases, we add the following rules to the above:;

x) IfM' 15 ip a configuration 0 such that TAIL(Q) is of the
form $'#'qi'qi'$n’ M' advances head 2 past any number of -#'g until
the symbol $ is Scanned; M' then advances head 3 past any number of
symbols until # {g 8canned, and then head 4 P2Bt any number of symbolg
until # is scanned,

xi) If M' ip in a configuration Q such that TATL(Q) is of the

form $$-1*H-‘c$n, M' advances head 4 past any number of #'s to scan $

-9 -

- lmmedilately following the #'s, and then advances head 3 in a similar
manner., If a symbol other than $ appedres immediately after the atring

of #'8 in eithar case, M' hangs up.

The reader may verify that M! accepts the expansion of TRACE(M)
and that the conditions governing moves in each of the above cases
are unique (and thus that the behavior of M' as defined is consistent

with the requirement that M' have a eingle control state).

o

We are now in a position to prove the main result of this section:

— e — .

Theorem 1:
Let EMA denote the equivdlence problem for multi-tape finite automata, and
EMAS the equivalence problem for muiti-tape automata with a single contrel

state. Then EMA reduces te EMAS.

Proof: Let M and M' dencte arbitrary n-tape automata with the sage tape
~alphabet, for some n = 1. Let M, and Hs‘ be the single-state
acceptors for EXP{TRACE(M)) and EXP(TRACE(M}), Tespectively,
conatructed as in Lemma 3, and let E and K' be the tape alphabets
of M, and Hs'.
Let M, be the n+8-tape automaton constructed from Hs a8 follows:

The tape alphabet of M, 18 K UX'. When started on a set of tapes,
ME will behave, with respect to its first n+4 tapes, exactly like
Ms' When and if a configuration is reached in which endmarkers are
acanned on each of its first n+d tapes, HE will advance in sequence
the tape heads on each of its last four tapes, regardless of the

gymbols scanned, until endmarkers are scanned on thege tapes also.

- 10 -

Clearly, L(Me) = [(w]_’ Wos eur m‘[‘l"l'a) | (wln Was von , m!'l‘Hl) € L(Ms)],

and He need have no more than a single control state.
In & similar manner, we may construct from Hsl 4 single-state
- ' 'y = t .
n+8-tape automaton Me such that L(HE) {(wl, LI wn+8)l

©pase Yore o0 2 Upyge 67 1 0 Yapy) € LOEL T

We have that L(ME) = L(Me'J iff the set of "last n tapes” accepted
by Mg 8nd M_' is the same, i.e. {ff EXP(M) = EXP(M'). By Lemma 2, then,

L(Me) = L(Me') 1ff L(M) = L(M'), and hence EMA reduces to EMAS.

-11 -
IT, Iteration Schemas

A (monadic) iteration schema {a a seven-tuple

S= @ L, 1, F 2, 4, »

where:
L is a finite set of location symbols.
Ly L is a finite set of input location symbols.
Lg L is a finite set of gutput location symbola.
3":‘.9 a finite set of function letters.
C-P is a finite set of predicate letters.
48 ;s a finite set of iteration schemas, the subschemas of §.

P . is the program aof 8, a finite sequence of statements of the following

types:

i) Assignment statement of the form
Li = f(Lj)
or of the form
Li = Lj

where L, and Lj are location symbols and f is a function letter,

ii) Copditional statement of the form
' s
IF p(L,) THEN S_ ELSE c
where p is a predicate letter, Li 1z a location symbol, and S, and

Sf dre subachemas.

iii) Iteration statement of the form
WHILE p(Lj) DO si

or of the farm

- 12--

- UNTIL p(Lj) Do Si
where p is a predicate letter, Lj 1s & location symbol, and Si. is a

subschema,

If 5" = (L', LI s Lo, 3’ (P 6 P') is a subschema of 8, then
we require that L'cCL, (-'}J' Cé?, 6)' < @, and A' ‘:.5 - Also, an itemtion
schema is not allgwed to be recursive, i.e, it may not be 4 subachema of itself,

nor may it have a subschema which 1g a subschema of itself.

Interpretations, Computations, and Equivalence

Let S be an iteration schema with input location symbols Ly =
{Lil, . , Lik]’ predicate letters in a set of symbolg 6-7,- and function letters

In a set of symbols 3'-.’ Then a (free) interpretation for S consists of:

i) The domain D of al} strings in m'K, where K iz a set of

symbols [Ail’ csa , tlik}, such that K yis.empty.

ii) For each j, 1% jg ks the assoclation of the string Ai with the

location denoted by L-j, and the association of ¢ with all other locations.

iii) The association, For each symbol f in 3, of the total function

!pf: D = D defined by :pf(w) = frw,

iv) An 2ssoclation, for each symbol p inlp, of a tptal predicate
Hp: D~ {true, false].
Each interpretation for a schema defines a computation by that schema in

2 straighrforwvard way: ye simply execute the statements in the program of the

- 13 -

schema in the order in which they are encounterad, associating appropriate
domain individuals with locations as required by assignment statements, and
executing the programs of sﬁbschemas in accordance with the values of
predicates applied during the execution of conditional or iterarion statements.
When an assignment instruction of the form Li.— Lj is executed, the element
of the domain currently assoeiated with Lj is associated with L;; when an
assignment statemgnt of the form Li:- f(Lj) is executed, the value wf(td) is
agsociatad with Ly, where W is the element of the domain asso;iated with Lj
at the time of execution. When a conditional statement of the form
IF p(Li) THEN St ELSE S; 1s executed, the predicate Hp ié evaluated at the
element of the domain curtently agssociated with Li’ and the progrem of St or
of S is executed, according as the outcome of the evaluation is true or
false; when the execution of the appropriate program is completed, execution
of the main program resumes with tha statement Immediately following the
conditional, Finally, when an iteration statement of the form WHILE(UNTIL)
p(L;) DO 8; is executed, the predicate Hp is evaluated_at.the current value
of Li and the program of 8; is executed if the cuceome of the evaluation is
Lrue (false); upon completion of the program's execution, execution of the.
main program resumes with the iteration statement. This cycle is repeated
until an evaluation of Hp has outcome false (true), at which point execution
proceeds to the statement following the iteration stetement. The computation
by the schema is complet= when and if all statements in the program have
been executed,

The Yalue of a computation by a schema 5 defined by an interpretation
I for 5 {written VAL(S 1)) is the sequence of values associated with
the output locations of S when the computation defined by I is complete, and

is undefined if the computation fails to terminate.

- 14 -

« ' Let S and §' be iteration schemas with the same set of input loeatien
symbols and the same set of output location symbols, Then S and 8' are

equivalent iff for each interpretation I for S and S', VﬁL(S’ I} = VAL(S', I).

Independent and Restricted Location Schemas

An iteration schema S ig an independent location schema if each
assignment statement in the program of 5 is of the form Ly = £(L;) for
some location symbol L; and some function letter f, A achema S is a

restricted location schema if each of its subschemas is an independent

location schema (though .S itself need not be).

A Note on Notation

For notatiomal convenience, we shall permit an arbitrary boolean expression

to appear in conditional statements of an {teration schema, where the aet of
boolean expressions for a schema with predicate lettemsaj and location
symbols L is defined recursively as follows:
i) For each letter p in and location aymbol Li in L, p(L;) is a
buclean expression,
i) If b is a boolean exﬁféEE{Eh,_EEéﬁ'E;'b);""hbt'h”, is a boolean expression.
iii) If b and b' are boolean expregglons, then (bA D'}, "b and b'", and

(6vb'), "b or b'", are boolean expressions.

We note that IF (b) THEN St ELSE Sg is equivalent to IF b THEN Sf ELSE St'
and that IF (bAb') THEN S, ELSE S¢ is equivalent to IF b THEN St' ELSE §¢ where
St' has progrem IF b' THEN S, ELSE S¢g. We are assured, therefore, that permitting

boolean expresasions in conditionals is, indeed, merely a notationmal convenience

- 15 -

and does not alter at all the claag of programs representable by iteration

schemas.

Also for notational convenience, we will in general define gchemasg in
terms of their programs and the programs of their subschemas only, the funetion
and predicate letters and location symbols of the echema being defined
implicitlylas those appearing in the programs., In many instances, in fact,
we Wwill not bother to.distinguish between a achema and its program, referring

ta either as "schema,

Equivalence Problems.

The equivalence problem for iteration schemas is easily shown to be

unsolvable, as is the equivalence problem for restricted location achemas

[3].77Tﬁé é;;ivaleﬁce pfobleﬁugﬁr indepéndent lod;EIbﬂ"itefﬁEioﬁ schemas

(which we shall refer to as EIL) is, however

» open. In the next section, we

ehow that a.positive solution to this problem implies a positive aclution to

the equivalence problem for multi-tape finite automata,

- 15 -

ITI. A Second Reducibility

In this sectilon we demonstrate that EMAS reduces to EIL, a result which
does not follow directly from any of the results in the literature. In
particular, while Luckham, Park, and Paterson [2] have demonstrated chat any
multi~tape finite automaton may be eimulated by an independent location
program schema, and Ashcroft and Msnna [1] have demonstrated rhat any such
schema is equivalent tc some iteration schema, the equivalent ireraticn
schema will not, in gemeral, be independent location, (In fact, it is easy
te show that there e#ist very simple single location program schemas which
are not equivalent to any independent location iteration schema,)

Lat M = ({Bl,sz,...,sk,$}, {q1, a7, £, h) be an arbitrary n-tape
single state automaton in normal form, for some n > 0. We show how to
construct an independent location iteration schema 8y which converges for
an interpretation if and only if that interpretation definea, in a reagonable

manner, a set of tapes accepted by M

Let w w

> Wy vas oW n be an enumeration of the strings of length

1 (k+1)

n aver the alphabet of M, and let W 2 emes , W be an enumeration of thoge
i1 im

strings for which f(qI, mij) =q, 1 =31 5 m,

%M will have location symbols Lls-":Ln+1: predicate symbols P1sevesPus
Pg» and py, end a single function letter f, §y will have, among othere, the
subschemas Se whose program contains no statements, and S; whoee program is
WHILE pH(Ll) DO S,

UNTIL py(L,) DO S,

- 17 =

and thus diverges for any interpretation,

For notaticnal convenience, we provide simple representation for certain
frequently used boolean expressions:
i} For each i, 1 < { < k, and each j, 1 < ; < n, ye represent by Pi(Lj)

the expression pi(Lj) A ﬁ(pl(Lj)v pz(Lj)V...v Pi-l(Lj)V p (Lj) Ve ka(Lj)

141
ii) Similarly, for each §5 1 £] £ n, we represent by P$(LJ)'the
expression P${LjJ Al —'I(pl(LjJszch) Vo V pk(Lj)).
i1i) For each j, 1 < j < n, we represent by MLJ) the expreasion
PLVPLV...VPL‘VPL.
1(j) 2(j) k(J) $(j)
iv) We represent by REASONABLE the expresslon REAS(L) A .., A &E‘_-_&_S,(Ln)-
v) Finally, for each j, 153 = (kﬂ.)n, we repregent by ij the
expression ?le(LIJAPjZ(Lz) A ves A Pjn(Ln), where sjl-ajz‘ - 'sjn = wj'

We now define the remaining subechemas. of 8y*

1) For each 1, 1 <1 < (k+1)", the subschéma 5, is

Lh(q’ o) 1= f(Lh(q’ “’i))

IF _EE_A_S_(Lh(q, mi)) THEN 5o ELSE 54

if h{q, mi) ig defined, and ia S‘:1 otherwisge,

n -
1i) For each i, 1 < { « (k+1) , the subschema Si is

IF P, THEN S;, ELSE 5,

i+l

- 18 -

The subschema § is the schema §,.
iii) e subschema (k+1)" d

iv} The subschema Sg 1s

1F RM(LH+1) THEN §; ELSE 54

Loty #= £(Lyy)

The schema SM is then defined ag follows:

IF REASONABLE THEN S, ELSE S4
IF (Pmi1 v P”iz" vea V Pwim) THEN S, ELSE Sy

WIILE py(L ,.) DO

IF(Pe(Ly) A Bg(Ly) A .ue A Py(L,)) THEN S, ELSE S

Let T be a.free interpretation for Sy and for each integer i1, 153§ 5nq,
I
let Ij be the least integer > 0 such thatIIIP (f j- A) is true. The interpreta-
' $

tion I 1s a reasonable interprecation if REASONABLE is & tautology when .. .

restricted to the domain {£+ 8 |1 €1 <pn, 0sg<1 Y, and'g (€% A4)
a i n 1 Py ntl
is true for all m <% (Ii-l} and is false form = T (Ii—l).
i=1 i=]
Each reasonable interpretation I for 5y defines an n-tuple 11 of strings over
the alphabet of M 1in a straightforward manner - the ith symbol in the jth

string, 1 < <n, 1 s1<1,, is s, 1f and only if o (gi-1. aj) is true,
')

The reader may verify that Sy 18 guaranteed to diverge for sll unreasonable

interpretations, and converges for tha reagonable interpretation I if and

only if I 1a accepted by M, We thus have:

- 19 -

Theorem 2:

EMAS reduces to EIL,

Proof: Let M and M' be arbitrary n-tape gingle-state, normal form automata.
We may extend, if hecessary, their tape alphabets to ensure that the alpha-
bets are the same in each cage. Let SM and SM' be the independent
location iteration schemds conetructad from M and M', respectively,
as above, From the last remark wé have that M amd M' are

equivalent if and only if Sy 1s equivalent to Sy'

Corollary 2.1:
EiA redicdd to EIL.

Praof: Theoreme 1 and 2.

- 20 -

IV. Discussion.

- It should be noted that the construétion outlined in the previous
section is possible only because the automata to be simulated have a single
control state. In particular, if one attempts to apply the method of
Theorem 2 to a multi-state machine,addditbonal.predicates, corresponding to
the states of the machine, would be requirad. Given a pair of such machines,
the simulating schemas would, in general, be able to diverge independently
for interpretations which were "unreasonable" With respect to the .predicates
corresponding to states, rather than those corresponding to
tape symbols. Thus, ufless the original machines were esgentially identical,
the aimulating schemas would not be equivalent. It does not seem, therefore,

EhatiCGorollary 2.trcan.beipbtaindd independent of Theorem 1.

- It is easy to show that freafindependent location program schemag f
are capable of simulating normal form multi-tape automata, and that multi-tape
automata in general are capable of simulating non-free independent location
Program schemas. From Corollary l.i, therefore, we have (ae noted in 27
that the equivalence problem for independent location program schemas reduces
to that for free independent lpcation program schemas, It is open whether
or not a similar reducibility result can be shown for independent location
iteration schemas. 1In particular, can.singlec-dtatecautomata be gimulated by
normal form multi-state-automata which are "block structured” in the sense
of [1]? If o, it would then ba possible to show that the equivalence

problem for independent location iteration schemas reduces to that for free

independent location iteration schemasg,

T A schema is free if no predicate ie ever appliad twice to the same value
during the computation defined by any free interpretation for the schema.

- 21 -

It should be noted, in any capge, that the schema SM described in
Section III. faila to be free for reasons other than the inclusi&n of the
gchema Sd in the set of subgchemas for Sy - in particular, it should'be
kept in mind that the eymbols of the form Pmi do not represent distince

predicates for each 1, but merely distinet booléan expressions over a

common set:dof. predicates: wo' ..

- It can be shown that if boolean expressions are permitted in iteration
statements as well ag conditional atatements, an independent location iteration
schema can be found which is equivalent to schema SM and is conditional1££gg,
i.e. free of conditional statements in its program and the Programs: of its
subschemas, It is not known whether such a schema can be found if general
boolean expressions are not permitted in iteration statements, but the
question is of some interest sinee equivalence problems for such schemas are
likely to be somevhat ezsier to solve than thosge for independent locetion
schemas in general. (In particular, equivalence can be shown decidable for

such schemas which are free.)

3.

4,

REFERENCES

Asheroftr, E,, and Manna, 2.

The Translation of 'GoTo' Programs to 'While' Programs.

Information Processing 71, North-Holland Publishing Co., 1972,
Luckham, D., Park, D., and Paterson, M,S.
On Formalised Computer Programs.’

J. of Computer and Systems Sciences, Vol.4., No.3, 1370,

Leung, C,, and Qualits, J.E,

Undecidability of Equivalence for Restricted Location Schemae.

Computation Structures Group Note 21, MIT, Feb, 1975.

Rabin, M., and Scott, D,

Finite Automata and Their Decision Problems.

2 1959,

IEM Journal of Research and Development, ~ 3

