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geitch’s Theovem
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Thic note presents a gemeval model for am asynchronous element, snd in
terms of it presents a tewriting of the proof of & theoram by 2. A. Veitel
{unpublished paper 1964), to the effeci that it is imposeible to pass signals
down sn asynchronous lipe withont feedback. Refevences are Lo my veport,
"Badly timed elememts and well timzd nets." (Report g?65"02, Hoore Bchool
of Electrical Engineering, Unlvarsity of Pemnsylvanis, Jume 1964 %

BRoughly spesking, en asynchronous element, as conceived heve, is
described by a state graph in which transitions take an amcuat of time
that is subject to a time dispexsion. BDut another lmportant conceptual
aspect concerns how long an imput signal must be present to csuse & transition.

An asynchrenous element has a finite number of states, Sl, . . .8

q
a number of element foputs sach capable of 2 finite number of valuesa, and a

number of element outputs each capable of a finite number of values. The
elerment at any time uay be in one of the states or in trunsition from one
gtate to another. Tae value of cach element cutput depends only on the state;
during the tims that the element is in trawsition from one state to another
ap elemant ouipui ta<ces the value associated with the fizat state.

A eranpgitica will take place If certain elewment ianputs &assume cartalin
values for a sufficiently long time during vhich the element is in a certaein
ctate and not slready in tvansition. More precisely, for each Si and 53&

i £ jythere is 2 cowlition Gij cn vhe inputa suci that if the element fsg in
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Si and the lnput condition cij cbtains simultaceocusly for a ceriain length of
time x irise time} them the elemeunt will make a tramsition from si to Sju
There is no way of predicting what the rise Cime x will be except that it
will be between the limits X{1-£} and X{1+&2. For } 3 j“, Gij and Cijm
are muatually exclusive. cij may be lmpossible, in which case the element
can never meke 2 direct tremaition from 31 Lo qu Gr it may be universal,

i which cage the transiticm occurs whenever the elsment is im Si'_ 197 Cij

cbtains while the element is im Si’ it siaply vemsins in Si gud does not

q
make any tramnsitien at all. {_/ cij must he univereal.
i =1

For i # j, the amount of time between the beginning of the time when
both the element is in 5, snd the condition cij ahtains and kthe time when
the element begineg to be in atate SJ 18 y {resction time}; vy is unpredictable
except that {l- &} 7"; ys {1+€3 T . The constants € , A, must satisfy
the condition ¢1-€3} T {1+&5A; for otherwlse a recaction might be completad
before the end of the rise time.

An ssynchronous element as formulated is oblivieus to ita input condition
while it £{s in transition from one state to ancther. This feature is not
necessary, but insures that the element be precisely and realistically formulated.
f there i3 an input congition that has one eifect when the element is im Si
and a contrary effect whan the elewent is in Sj then it speems just ag well co
aggume that that input condition has o effect while the element is in tvansition
fyom Si to Sju Oun the other handg there ave clvcumstances undar which it does
aot seem to be undesirable to allow the element to he foflusnced by its input

condition while in rranmsition. The RBF “and”™ and "oz' gates are a departuvye firom

the above formwlab.on simce they do allow 2n input condition te iafivence the
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element in transiktion. For example, the and" gate may begin a tranzitien to
Qo in the midat of o transition from P to Qd' it ig clear that thias featuve
of the RBF "and® and "or" gates is hsrmless.
It is tc be noted tha%han agynchronous element in its generality has any

aumber of statas, useful examples will have 2 small number of gstates, sav
less than :ﬁeu. More complicated funciions sheuld be achieved by comstructing
neid by cascading elements. The asynchronous elements of the Report weve all
reasonably small, But the interesting thing about Yeitch®s theorem is that
it helds for a chain of asyauchromous 2lementis, however complex t-"Q eé’Mf’Nfév

As a concluding observation, let us nobte that computing elemenis have besn
divided into fived and growing, into discrete and continuous, into synchrorous
and asynchronous, and into deterministic and probebilistie. It is worthwhile
to note that an asynchronous element as formulated above iz asynchromous, but
it is also f§yred, discrete and deterministic. It is fixed becasuse it doee not
sTow én time. It 13 discrete becausa there is & finite discrete set of ioput and
output values =and states. And it is deterministic hecauge an input condition of
gufficient duration will have a determined effect, even though the timing is
not precisely prgdictable, It would appear that the element as formulated above
is gemscal encugh to embrace all possible asynchronous, fixed, discrete, daterminisiic
elemencs, and therafore ie suitable for the most general of guestions, such as
that anawared by Veitch’s theorem. But it is worth noting Lhat corresponding
quesitlons about other types of elements might prove Co be egually interesting.
For example, 1s there & contlnous asyunchironous delay element,an infinite chaln

of which without feedback can pass signals at a constant Tepetition rate?
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Given the pr2eise notion of an aeynchrouous element, Veitch's theorem cana

be stated and proved. An infinite uniform chain of elements without feedback

isg an infinite sequence of elements El’ E2’ .« « -, al1 alike and such that, Zor
aach i, the elemeak outputs of g, are connected divectly only to ths element imputs

of E Such a chain passes sucesssfully an infinite sequeuce of signals i7 when

i4l”
the sequence is, in some coded form oz other. placed at the laway {the elemeni
input of the firet element) iL is possible to deduce the entire szquence from the
history of apy elewment (i.e. the succession of states) and the knowledge of how

the sequence was coded at the inway.

Veitch’s Theorem. An infinite uniform chain of asyunchronous elements without
faadback cannot in the worst case pags successfully an infinite aseguence of signals
that are placed a% the inway in any coded form at a uniform repatitilon rate,

it sezms plausible that this cheorem would still be true it the last phrase
"at a uniform repetition rate” were deleted. If so0, it ls certasinly nol obvievs,
The difficulty coues in cases whera the timing of the signals at the inway is
such that longer and longer intarvals ensue between auccessive signalss for example,
where the rth signal occurs at the inway at time 2%

It turns oui that the word “uniform” can bz deleted, and the theorem is still
true. For 2 slight modification im Larms 1 is all that is needed to generalize
the proof. The surpriging thing here Ls chat the theevem is true evem for chose
chains vhose elements sye capable of an unbounded amount of storage, as long
as each ciement iz capable af only & finite amount of storage. Needless tomy,
the theorem would be false if individual elements were z2ilowed to have vnbounded
storage.

Bofore procecding with the rigorous proof lst us consider the matter intuwitively.
Veiteh's theorem is a generalization of thg nrouf that the infinite chain of nmaurzl

delays does not pass more than & certsin number uf signals succossiuly. it will be
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recalled thar that proof procedes by cateblisghing that azn axbitrarily long burst

of signals can sppear at a sufficiently advameed paint in the chain =t a ragetition
rate that {s toc fast for a slowly reacting clement. Cae difficulty in generalizing
is that = genersl asynchronous element is capable of ztoving up to a certain numter,
k, of pignals whereag the neural delay could siore at most one. {in s certain
senge, the neural delay_does not atove at all, since it releaseg its signal
immediately after absorbing it.) Another difficulry is that in an infinite nhain
of some Lype of asynchronous element it might be possible by sowe feed-forwavd
principle to prepave the way for a signel by sending ahezd a warning signsl:

"ger rid of ana nf the signals that you hove becauze there is another aignal en

lits way." Pinally, the proof is made wmore G4fficalt by the generelity of the
formulation of the asynchronous element.

e proof is by reductio ad absurdum. It is ascumed thar thare is a repetition
rate at ¢he inwey such that for any set of tiving veactions &ll of the infinite
fequence nf signsls will be passed seccesefully. Then it is shown that whatever
repetiltion rate signals may appear at any point, it ig posaible for algnsls to
appear ai another point at a significantly faster rate. The assumptions ara
ihus showm to imply that when sn fnfinite chain of clements processes an infinite
set of signals there s a sot of timing reactions such that there will be no
bound on the vepavition rate of 3lgnaiz at pointe within the chein, which contradicts
the.assumptiau that the signals are passed successfully.

The storage vestriction criterion, which isg the principle that an clemeat
canaok hold information about more thsn & constant % signals at any time,
implies thet if a long burst of signals appears ab a goint in the chain at a
cerktain rakte then at anotchey point they must asppaar, wvhatever the timing reactions
af the clemants between, ab a rate which 1s approximately the same. This must

b2 true, 1{ the elemente are to process the signzle successfully, even when the
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clements react as slowly as possipbla,  But this jwplies that, whea the tioing

veactions of the elesments qr@$s fzzt as poasible, the rate will be gignificantly
i

faster at the secend point. Am impovtant part of this rvain of thoughi is thak,

sincs theve is no Isedback, elements raact independently «f other alemenis tnac

are ahoad in the chsin. Alsa, onse glgnals are cafely past a certain pelnt, what

happens to them ie independent of the sctions of elemcuts before that point.

Bowever, the above iB & gross oversiwplificution of the preof. The difficelizas
that arise in making this tvain of thoupht wvigorcus are encugh to necesolbate the
lengthy xnd detailad procedure that follawe.

iat Tir,u) be the ealiecst time that the value of the rth slgnal Izero ov onal
can be derived fxom the histery of Ene Thus En arrivas at s cerkain siste at
tlme T{r. n} and frem the history of the sequence of states that Bn agguUmAS
up to and iﬁaluding Tir, ) , the value of the rth gigpal can be infetrred. The
following assertions { (1) thxough (63 ) are eesily proved or otherwiae justifiable.

(13 T{r#l, n)2(r, n). Although it is possible that the (r+i) th

slguas
goee through before tha rth gignal, it is clear that there is no
advantage in it. There is, thevefore, no 1985 of genrality
fo assuming (1).
{2y CEE, i) Ty, w) -&5 . Whers K}’ ig the minimal propagation time
of a signal frox element to element. Coriainly, S 2 fl- € 3‘-:7};*0-
The values Ti{i, §) depend on the lnput-signal reception &t ithe
inway and the various tlming Fescticmg at the elements Iwhick
pre vise times and transition times’. Sines there i no {eedback,
UL Fii, 3% does not cdepend on any timing vecctfion of En fpr wory

ot k = lagz q. where q is tha nuubsr of statzs of =ach siemeat  Then at asy

rime the elemeni mav contein informaticn about st moed k gigouls. AF time Tirdk. nl,

. - - . , th ..
charaefore, and for cver *rtezjﬁh can have ne Lnfarmation akout the ¥ sipgnal which

st havw: arrived si Er+1: Thus
FRL



By T, wi .},é k, o)
et fiir, wig, ad = -_]; Ti{rts, oY - T{r,n}7. HRote that if T{r.n) wmd
s th _.th
Tirim, n) are identified, respectively, with the arrival of the v wnd {pdm)

signals at En thea RI{r, 78, n) is the average wepetition interval &l %’n E
batween the ™ and {H—s)th signals.

Veitch's theovem follows easily from the thearem belew. ILet A be the sel
of all B such that, for every s, there are a poseible set of Liming reactlons
en £ and and n such that RI(x, r¥s, n; éﬁ}.

Theorem. Under the assumption that the infinite chain passes all signals
successfully, if 8 € A theo B{l- & & A.

lerma }. For a glven §, w, 8, there is an 3“___-‘:2_ g such that for any n and r,
if RI{c, ts'4mk, n)s__:_- B8 then, for auny possible set e¢f timing reactions,

Ri{r, v+#s’, oim) £ B{l+ €)-. {Note that s° does nob depend on w ot ).

Proof: By [4), Tires®, n-!m}‘é;_‘riﬁ’:»s“%mk, r®, for vhatever 8° we choose.
Furthermore, Tir, m}__-‘;:_ Tz, n} + mg, by {23. Hence, T{rs+=s', mm} - Tir, nka}
‘-_lf___'fiﬁs“%nk, n - Tr, nd - w4 . If we assume that T{r+s'4mk, o) - T{r, nh =
(s"+mk} B ve then get T(r+s', otm) = T{r, mia} < lo'tak} P -wel = 8’8 + (k8 - m (3.

Kence RIx,rds’, ndmp< 8 < mkp - ad . By taking s' sufflciently large, the
SN .

quanity @k - m S can be made as small as we please; thus we can make

g .

RI{r, v4s", nem)3(14+ &), which must be true regavdless of timing. The choice

of 8" depends on m and § ag well as the constents k and 5 , buat mot en n or ¥.
Intuitively, lemns 1 atates that, regardless of reaction timing, the repetition

interval of signals at En-l-m cannot be too much more than the spacing of signals

at En; otherwise the elements would have to store an azrbitrarily large number of




signals. In particuiar, this means that even under the eet of slowest reactica

timings of the elemwents E_ . ,. » « +> g the repetition interval of sigmals

e

at F must be no more than (il+&3 times the repetition interval at Ene-

Loon colillolsd

lemra 3 goes on to show, roughly speaking, that vonder the fasbeat set of
reaction Cimings the repetition intezval at Em-m must bhe no more than ~& -

Lemma 2, Under the same hypothesis of Lemma 1, end given the g’ satisfying
it, for some i, 0 €1 < 8" ~ 8, Ri{rsl, Thids, n-!-m'jé BlI+EY.

Lemma | seys that the average vepetition interval of the 3 signals is

7?;?'“ VA 4&4

< B{l+ ©&). Lemma 2 ssys that, for some subset of s consecuiive signais of

the set of s', the repetition interval iaé- BE1+E-Y. The proof is e].ementary;g,wmh
Lemma 3. Suppose thsat, for a certain fixed set of timing reactions of all

elements before time t, and whatever the timing reactions of the elements after

time ¢, T{r+s, wiw) ~ m(gct__g T{r, o'm}; and cuppose that Ri{v, s, i, = [01

undet the assumption that all timing resctioms of B .3 En»ém sfter time t

nei’

are fast, and = 2 under the assumpiion that they are all slow. Then

Ll = - ¢ . (Reactions that begin before t and end after t are
£ 1+ &

chenged according te the proportion of time after t. Thus if a reaction begins at

g~x gnd ends at tiy{l- €) ie the firac altevnative it will begin &t t-x and end
at thyii+ &} in the second.}

Proof; Since T{r+s, oim) - m S(_t} what happeans at En after t csnnot have
any influence on T{r+s, mim), since @ g {s the shortest poasible propagation time

from En to E . Thus the reactions of El’“ . e ,En after time t are immaterial

to Tir+s-i, nim) for any & >0. Only the vaactions of Eoeys * " E o need be

considered after time t. Furthermore, given the fiwed set of timimg weactions
@ +
and given the viming reactions of Em‘-‘nl‘ a o asBE Ly EiY, @) and Wloig, pi,

are determined.
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Wow BRIy, s, wim) = _  {Tivbrs, atal - Tir, whumi; and Tir<+s. pen?
3

> Tr,mwm) Bt, by i1} and hypothesis of Lemma 3. Hence, in ordéy to prove
lemma 3, if is sufficient to show that the ratio of aach of the quaifities
Tirds, o) - t, and Yi{r, mwm} - ¢ under ‘the assumption of fast timing

G £
reactions of Er-%-l’ P '\to what it is under the assumption of slow

s
timing reactions is 1- €. But hoth of these ratios must be i ‘% s
1w 1Leg

gince the effect of fast timing is simply te speed every reasetion by l-g |

]

I+
A reaction will take place under the assuwptiom of fast veactions if and

only if it takes place under the assumpltion of slow reactioms, because the
reaction thresholds are alzo subject %o the smame gpeedup. The effect of the
speedup of the slements £ .., - - .- EMm after time © 1s simply tec compress

the time scale of everything that happens by 1-& |

1% e
We now compleze the proof of the theorem. Assume that § & A- tn order
to prove B{l~G) & A, it must be proved that, for an arbitrary cholte of s,
there ate a poseible ser of timing reactions, ar z, and an n such that
Rli{r, r+s. n) & pf{i-&YH. By hypothesis, there are r’, n" and timing reactions

such that RI{r®, r'4s", n') < B, for every a'.

vors #RL L A B

Givea B and g, let m ba degftermined as follows. Assuming that RI{r+i., r~+i=f~3,§_
ntm) < B{l +&) in aay possible set of timing reactions, m is taken to be
cufficiently large so that T{riiss, wim) - mSQT{rr-t‘d, n+m} 1o any possible set E -

of timing reactions. That theze is such a value of m, namely one satisfylag ™

.

(€Y

m"’_}; {T{ztibs, nim) - T{r+i, wimd), follows from the fact that T{rdide, oim}
~T(réi, oin) = sRL{THl, Teits, nim)< spil+ €. The value of m depends on 5, g8, B

and & . Having so sclected m, it will be posebile below to apply lemma 3.
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Having determined m, we can now apply Lewma 2. Thus there isg an 2" such thae
{for any n and ¥} if RI{r, rés"luak, n§§ 8 then for some i, Os_ii g“‘-s’RZ:if;r{-ij
Tids, wh%gﬁ{h&é&), for eny possible set cof timing reections. But, by nypothesis
there are n and ¥ and a popsible timing of the elewsnts E}.’ . - ay En such that
RIfx, c+s’-fmk, n) £B. For Chis set of timing reactions of El’ . o ‘,Eﬁ and for
timing reactions of En+1’ + ,,En+m that axe as elow a2 possible, it
fallowsthat RI¢v+i, réids, ndn) £ L+ &). Since m has already been taken
large enough so that Tirdlds, nia)-~ ulé:;iﬁr%i, otm) & value betwean these can
be choren for the ¢ of Lemma 3 {(substituting v#i fqr T3;. From Lemaa 3 we infer

that for the set of reesction timings that ecre che gsame a5 before except that the

reactions of En*l’ a - 25 B after t are as fast as possible, RIirsl, viils, nimd

oY

o =< B{1-<&). Thie concludes the preof of ithe theorem.



