MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Computation Structures Group Memo 123

A New Approach to Petri Netas

by

Frederick Furtek

(This material originally appeared in the author's doc-

toral thesis proposal, submitted January 29, 1975, and
entitled "The Logic of Systema".)

This work was supported in part by the National Science
Foundation under research grant DCR 74-21822.

April 1975

5.

Table of Contents

System Models

Actors and Parts

State Machines

Interconnection of State Machines
Petri Nets

A Petri-Net Example

The Ordering of Ocarnrences

The Simdation Rule

Safety, Determinacy, and Liveness

Page

10

12

14

19

1. System Models

The term system is taken to mean an assemblage of interacting elements.
But that is not enough. Because the behavier of a system is always, to some
extent, 'systematic', or 'organized', there must exist rules that govern,
at least partially, the interactions amang elements. In many cases, these
rules are only implicitly understood, but when made explicit, they fom a

rrbdelfofthesystem. Same of the more common types of models are:

(a) a set of differential equations (where the interacting
elements are 'infinitesimal')
(b) a oollection of sequential eircuits

(¢) a set of difference equations relating system levels
and rates of flow (the models of 'System Dynamics')

(d) a description in plain English

Eachoftl'esehasadauaintomichitisparticularlyéuited. The
type of model we'll be working with is especially appropriate for those
systems in which information trangmission and transfomaticn are the chief

interests.

+'bbdel‘ is used in two slightly different senses. It can refer to a

detailed set of rules applicable to a particular system, or to a general

set of rules applicable to a whole range of systems. A set of Qifferential
equations relating the electric and magnetic field intensity in a specific
region of space is an example of the former sense, while Maxwell's equations are
an example of the latter. Where the distinction isg important, context will
make clear the usage intended.

2. Actors and Parts+

A very natural way of modelling a system is to view the system elements
as actars playing parts.

The term 'part' is here used in the sense of a role, or pattern of
activity, that someone or something follows. Delivery boy, secretary,
aviator, policeman, 'Hamlet', are exanples of roles played by humans, while
clock, power source, transmission line are examples of roles usually played
by mechanical devices.

An actor is anybody or anything that is seen to play a part - 'participant'
is another term that would serve equally as well. Under appropriate circum-—
stances, a parsan, @ chair, a flip-flep, a displacement, or a voltaqe level
might each be considered an actor.

Nowr, azrcngallthepropertiesanactoruaybeﬂnxghttnhave, only
certain ones will be pertinent in a given system context. It is the @ﬂ-
an actor plays that abstracts just those properties that are decmed relevant
to system cperation. For this reason, 'part' will be an important concept
in what follows.

In our theory, there is just one requirement a pattern of activity
must satisfy for it to define a part: it must be totally sequential. That
is, a part must require an actor to do at mogt 'only ane thing at a time'.

This is because each part of a system will be identified with a 'state machine’.
State machines are ideally suited for describing sequential behavior, but, for
our purposes, they are oarpletely wunsuited for describing nonsequential behavior.

1L'I!he ideas in this section are due to Anatol Holt.

ﬁIt may happen that an actor plays several parts simultanecusly or switches
between parts. Although questions relating to actor identity are important,
they are, unfortimately, outside the scope of this work.

3. State Machines
A state machine 77 is a quadruple <S,E,F,s,> where,

S is a finite set of states
Eisafinitesetofevents

F < BxExS is the flow relation
59€S is the initial state

Furthermore, each event appears in exactly one triple of F. Stated in

logical notation,
VecE: |M(Sxielxs)| =1

If <s1,8,5:> €F, then s, is saidtobea;%afeandsz
a postoondition of e. 'I‘hep:ecedingrequirmtmsthatwiﬂﬁnasingle

state machine each event has a unique precondition and a inique postcondition.

In the graphical representation of a state machine, each state is
depictedasacircleandeacheventasanarcdirectedfmntheevent's
precondition to its postcondition. The initial state is dasignated by placing
a 'token' on the appropriate state.

Example:
M = <Isisasus), {e,e2,e4 00,05}
{<s1,e1,82%, <s1,02,85>, <as,e4,84>,

<Su,e4,82>, <s3,e5,8,>}, 51>

(a) formal representation (b) graphical representation

Figure 1. A State Machine

A process in a state machine ig any finite path ariginating at the
initial state. Thus, s,e;s;ess, and S1e152@58; are two of the infinitely
many processes in our example. In a process, each instance of a state
is called a holding of that state, and each instance of an event an
occurrence of that ewvent. Alnldingissaidtobeinitjated.byﬂae
immediately preceding occurrence, if any, and terminated by the immediately
following occurrence, if any.

Fram these definitions we see that:

(1) The initial state 'holds’ initially.

{2) An event may 'ocour' when its precondition holds.

(3) The occurrence of an event terminates a helding of the
event's precondition and initistes a holding of its
poesteondition.

(4) A holding is terminated by no more than cne occurrence.

(5) Except as provided for in (1), holdings are initiated
and termminated enly by occurrences,

These five rules capletely characterize the way in which a state machine
defines a pattern of behavior. Notice that when several events have a
comron precondition, a holding of that precondition may be terminated by
an ccaurrence of any one of those events. This is how the notion of
altermnativeness is represented,

4. Interoconnection of State Machines

IfIhandya:aletter,thenthetwoofusareinvolvedinmeaxﬂ
the same event (althowgh it will be viewed in two different ways: by me
asagivingandbyyouasatak:i.lg}. 'Ihismotivatestlbfollming.

Interaction between parts is accommodated through the 'synchronization!
of events belonging to different state machines, which anounts to nothing
n'orethanallowingstatem&inestohaveevmtsincmum. To express
ttﬁsaddedrelationship,anewtypeofsmlctureis introduced: a network
of interconnected state machines.

Inthegraphicalmpresentaticmofanemm,eventsaredrawnas
rectangies so that the sharing of events can be explicitly shown. Thus,
ingtead of having the.sane event appear as sSeveral arcs, as in Figure 2(a),

it appears as a single rectangle, as in Figure 2(b).

(a) (b)
Figure 2. Representing Shared Events
The 'simulation rule' for networks {defined formally in Section 8)
is completely natural. It simply incorporates the rules of the individual
State machines without adding any extra constraints. In other words, the new
rule is just the conjunction of the rules for the camponent state-machines:

(1) Each initial state 'holds' initially.
(2} An event may 'occur' when all of its precanditions hold.

(3) The occurrence of an event terminates a holding of each
precondition and initiates a holding of each postcondition.

(4) A holding is terminated by no more than one occurrence.

(5) Except as provided for in (1), holdings are initiated and
termminated only by occurrences.

Fram these rules, we see that stateg are 'disjunctive’ while events are 'conjunctive’,
As it turms out, 'networks' are a subclass of a more general structure,
the elaments of which are known as Petri nets. The members of the subclass

are, naturally enough, known as state-machine-decanposable (SMD) Petri nets.
The similation rule just described holds not only for SMD nets but for

general nets as well.

5. Petri Nets
The story of Petri nets begins with the work of Carl Adam Petri who
published the seminal paper Kowwnikation mit Autcmaten in 1962. The

model introduced there was later refined by Anatol Holt[9,10}, and

the amended structures were given the name 'Petri nets'. With

Holt's work there has been a steadily increasing interest in nets, the key
attraction being an ability to represent both concurrency and nondeterminacy.
D nets have long been recognized as an important subclass of Petri nets,
but because of the difficulties involved, there have not yet been any
significant results for this subclass. The results that have been cbtained

are for mach more severely restricted classes of nets: state machines [12],

-7-
marked graphs 11,4,7,11,13], free-choice nets [3,8], simple pets [3,14], ang
detemminate’ nets [17]. It is with this background that we approsch the
study of SMD nets.

We present now the formal definition of a Petri net and definitions
of those subclasses that are characterized in temms of structure. {The
subclasses characterized in terms of behavior will be defined after the
simulation rule has been given.)

A Petri net is a quadruple <5,E,F,I>, where,

S is a finite set of states

E is a finite set of events

F & (S*E} U (ExS) is the flow relation
I <8 is the set of initial states

NetsarerepresmtedgmpkﬁcallyasinSectim4,thearcsmrrespmdjng

to the ordered pairs in F. We write x-y to mean <x,y>eF. For xeSUE,

X

]

{yly-xl

x* = {y|x-y}
Wereferto'xasthebackdotofx,andtox'asthefcredotofx. If % is
a state, the elements of “x are called the input events of x, and the members

of x° the output events of x. If x is an event, the elaments of ‘x are

called the input states, or preconditions, of x, and the members of x* the

output states, or postcanditions, of x. For X &€ SUE,

X =1yl 9&x: yex}

X o= {y|l Ixx: x-y}
The preceding teminology carries over.

-f.

Determinate nets are also known as persistent nets and conflict-free nets,

-8-

State mchines,+ marked graphs, free-choice nets, and simple nets are
all defined on Table 1. For marked graphs there is an abbreviated repre-
sentation comparable to that given for state machines in Section 3. Each
event is drawn as a point, and each state as an arc directed from the

state’s (unique) input event to its (unique) output event. Example:

= TN
*——

Fiqure 3. Abbreviated Representation for Marked Graphs

A state-machine decamposable Petri net is a net in which,

ID<P(S} such that:

(1) UD = §
and
(2) S =E
and
(3} (¥6eD} (¥ s1,82668) (81752 = (51 Nz "= A “s,N ‘s, =0))
and
(4) (Y 8eD) (8 = &°)
and
(5) (¥8eD) (J6n 1| = 1)

Each subset 6 defines a state machine as follows:

Mg = <S5:EgeFg,I> = <§,8°, FN (SxEUExE), S NI>
Conditions (1) and (2) require that every state and every event belong to a
state machine. Conditions (3) and (4) insure that each state machine statisfies
the 'one-in-one-out' property for events. Candition (5) says that each state
machine has exactly one initial state. Notice that D doesn't necessarily

+ c
The definition of a state machine given here is slightly different fram

the c¢ne given earlier.

Definition of Subclass

t
N
]

Tocal Conficuration

yes

state machines - every event

hag exactly cone precordition
and one postcondition:

VecE: | ‘e |=|e’| =1

marked graphs - every state

has exactly one input event
and one output event:

Vees: |'s|=1s7 =1

free=choice nets - if the

foredots of two states are
not mutually exclusive, then
they are equal:

781,8268: 5'NS, #d = §s,°

simple nets ~ if the foredots
of two states are not muty-
ally exclusive, then one

foredot contains the other:
VSl,EgES:

SI'QSZ.?@ = 8 .C52-V52‘:S1.

50 55 (58 oo | Sl | o o
SEHI PR

Table 1. Structural Subclasses of Petri Nets

-10-

partition S, thus allowing state machines to share states as well as
events. This is done only to keep the néfs as simple as possible.
Shared states can always be duplicated, thereby permitting different
state machines to have mutually-exclusive state sets. (A Btate-

machine partitionable net results.) The technique is illustrated

in Pigure 4.
Figure 5 shows the inclusion relations among most of the sublclasses.

6. A Petri-Net Example

The net in Fiqure 6 denonstrates the ability of Petri nets to model
camputational devices. The net, which is SMD, is a model of a ‘half ac:lciler'.Jr

Input A Input B
———— ——,

IOI lll lO! Ill
=31 ey
ez 8,
o @
=) Sa2
-
3] Y
83 Sy 5 S5
€s ¢ =3 B ey
Sy 5 Sq Sie
11 S12 J
21p =
213 ey
tol ll! lol |1l
e e S —
Sum Carry

Figure 6. A '"Half Adder'

+Pbre complex examples can be found in [6].

=
Bee

-11-

B
= 2

Figure 4. Duplicating a State

Figure 5.

SMD Safe

Inclusion Relations among Subclasses

-12=

The two 'free—choice' structures consisting of arcs <si,e1> and
<s1,e2”> and of arcs <s:,e3> and <s2,ey> are the means by which 'information'
enters the system fram the envirormment. It is 'indeterminate' whether e;
or e; will terminate a holding of si, and, likewise, it is 'indeterminate’
whether e; or e, will terminate a2 holding of s.. 'Information® supplied
by the enviromment resolves this indeterminacy, For example, an occurrence
of e, means that a '0°' has been received on Input A, and an occurrence of
e, means that 'l' has been received on Input B.

Occurrences of e; and ey lead to holdings of s; and s;. This allows
es to occur, thereby vroducing holdings of 3¢ and sg. We now reach two
situations in which 'information' is lost by the system - and presumably
acquired by the enmviromment. After e, occurs and initiates a holding of s,
the system no longer 'remembers' - i.e., it 'forgets' - whether @19 OF €11
occurred. The 'information' transferred to the envirorment is the 'sum’
of the last two inputs - in this case, 'l'. An occurrence of e;» followed
by a holding of s1; represents a 'carry' of '0°.

With an occurrence of es, states s; and s; once again hold, and the system

is ready to receive ancther pair of inputs.

7. The Ordering of Occurrences

The simulation rule is the means by which a Petri net defines a pattern,
or patterns, of behavior. It is analogous to the definition of a 'process’
for state machines. But whereas a state machine requives any two event
occurrences (in a process) to be ordered, that is not the case for nets.

And therein lies a problem.

~13-

Itisrryfeelingthatatheoxybasedeetrinetswillbetrulypro-
ductive only if the simulation rule meets a crucial requirament ;
ForanyPetrinet,twoeventoccunma:enottohe

ordered, either explicitly or implicitly, unless so
required by the structure of the net.

As simple and natural as this requirement is, there has not been, to
my knowledge, a definition of the simulation rule that satisfies it,

What has been custamary is to express the rule in terms of transformations
between 'markings'. This, however, leads directly to the notion of a
'firing sequence’, which is a total ardering of all occurrences. (Commutativity
ofocmmweg-gfollméoerollmsg—ismtthesmasbein;
unordered. }

Qccurrence graphs (o—graphs) [9] are a step in the right direction since
they are a way of expressing precisely the partial order that exists among
holdings and occurrences. The trouble is that no one has shown how to
suitably generate the O-graphs of a net. The obvious approach (the one
given in [91) is an inductive definition in which there is one initial
O-graph, determined by the initial marking, and in which a new O-graph is
ccnstructed fxunanoldonebyaddingmemevmtocwrrmce. Implicit
in this definition is the fact that each O-—graph is generated sequentially,
and thus the existence of an O-graph presupposes the existence of a
firing sequence.

Inthen&tsectimwegiveadefi:ﬁ.tionofthesinulatimmlethat
I believe satisfies completely the criterion stated above. The representations
of behavior are called 'traces', and they are equivalent to a special type
of occurrence graph. What makes my approach novel is the manner in which

traces are generated. Instead of using just one previocusly-assembled trace

to construct a new one, multiple traces will, in general, be used.

8. The Similation Rule
The simulation rule is embodied in the definition of a "trace! . (This

parallels the definition of a 'process' for state machines.) Before
sbmjmhwthetraoesofanetarefomallygenerated, we describe their
structure ardd introduce some terminology.

Each trace of a Petri net <S,E,F,I> is a binary relation viewed as a
directed graph.” The vertices, called instances, are of the fomm <x,n>,
where x, ﬂmeinatarmegm, is e.itherastateoranevmt, and n, the
instance number, is a natural mmmber. By a 'state' we mean simply a member
of S, but by an 'event' we mean a menber of E', where E' is E with the

special symbol w added. That is, E' = E U{uw). An instance <x,n> is a
M—mmmgﬁ-ﬁm,a\dmm—ﬂnm
ocowrrence of x - if xeR'. The special event w appears only in arcs of the
form <<w,1>, <s,1>>, where scI. 'Ihisisbnbeinterpzetadassayirg that
what precedes the first holding of s, if anything, is unknown.

mFim?ismherfﬂaetrawsfortMnetinFigumG. It exhibite
six properties common to all traces:

.{..
'I‘hesourceofourtemimlogyrelatingbngrap}wisBerge, Graphs and

Hypergraphs.

~-15=

T, <w,l>
/'\
<81,1> ¢ I(sz,.]_>
<gp,l>e I<e;,,_1>
<gz,1l>s »

\/ .
‘,/,’.\\ii:rl>
<58:l) <S3.,1>

<ep1.l>

<Ei2 rl>

\/ e
<99'l>

<g,,2> ./ \. <gz,1>

<@y, 1>

<S4 ,1> I

holdings of T = {<s, ll};<82fl>r<53!1>l<sﬁll>l<ssll>l'<59fl>f<sllll) <812,1>,

e 9 t—
[X —

<51141>

<S;,2>,<Sz,l>,<54rl>}
occurrences of T = {<w,1> ~ey,1> <ey 1> <eg, 1> “€11,1> ;<e12,1> ,<eq,1> <e,, 1>}

boundary of T = {<s,,1> <s,,15>}

forus of T = <a,1>

Figure 7. A Trace of the Net in Fiqure &

(1) The trace is bipartite with holdings and ocourrences
forming the partition.

(2) <w,1> isthemlyoccurrmceofmandisarmtof
the trace,

(3) The out-degree of a holding is at most 1. (The holdings
vdmseazt-degreesareomrpu:isethe 'boundary' of the
trace,)

(4) There are no circuits. (But there may be cycles.)

(5} All instances of a given type lie on an elementary path,
the instance mmpers appearing consecutively beginning

(6} There exists a unique occurrence, (the "focus') that is
reachable fram all other occurrences,

Property(l)meansthateachamufatraoeiseitheroft]nfom
<occurrence, holding> or of the form <holding, occurrence> . In the
firstcase,wesaythatthemrrmweinitiatestheholding,andin
the second, ﬂmtittenninatesthemlding. Because of Property (2},
an initiating occurrence is spacified for each holding.' A terminsting
occurrence, howewer, is not necessarily specified, but when it is, it must
be unique because of Property(3).

We now define a special relationship among traces. It will be used in
the simulation rule and will contrih:tetopu:oducingPrUpertyB). Traces
Tl'Tz"“'Tn are said to be campatible if and only if their union contains
nomrethanmetemﬁnatingocx:urrezneforeach}nldmg. In other words,
ifholdinghistenninatedbyoccurrencexincmetraceandbyocmmrmce
yinanc,ther,than'xandyarethesane.

*Iheqlestimofmheﬂxera}mldjngcanbei:dtiatedbymrethanmeoccur

renceisdisaissedinthenemtsectim.

-17-

In formal terms,

Tl,Tz,---,Tn are carmpatible =

Thes*N: <h,x>eTiUToU ... T, A “h,y*eTiU T2 V... T = XY

In Figure 8, T1 and T2 are campatible, ag are Ty and T;, However, T, and
Ty are not campatible. If T is the union of a compatible set of traces,
then the boundary of T is the set of those holdings for which no temminating

ocowrrence is given - those holdings whose out-degree is 0.
<w, 1> <w, 1> <w, 1>

l/ NN N

] ® <55,1>

<5211><Sl fl> l'(sz'l}(S] 'l> !
<ep,l> ® I<e3,1> l'<en.l>
<53,1> ¢ ™ T, .{55,1> T, $ <gg,1>

Figqure 8. Three Traces of the Net in Figure 6
Consider now the result of taking the transitive closure of a trace and
adding a self-loop for each vertex. The new relation is tran;itive, reflexive,
and - because of Property (4) - antisymwetric. In shart, it is a partial
order, Wewritexiytoindicatethatxisrelatedtoy]:yﬂmispartial
order and x < ¥y to indicate that x < y but x # y. We adopt the following

terminology:
X=y - X and y are coincident
X<y = ;izﬁigﬁexy xgare
;Ef%fl_o_w—s"xy 0

XLy AY£x - xandy are concurrent

=-]18-

A consegquence of Property (5) isthatamrmmstanc&softhesamtypeare
ordered. Furthermore, for instances <x,m> and <¥/n> appearing in a trace,
<X,m* < <x,n> if and dnly if m < n.
Havingdefinedthemtimoforderi:g,wecanmvdescribeﬂuespecial
significance of a trace. Property (6} says, in effect, that each trace has
a unique occurrence that follows all other ococurrences. In other words,
a trace describes just that acitivity that precedes an ocourrence of some event.
Or put a little differently, a trace contains an ocorrence and all the
‘activity' that leads wp to it. Mmimemmmismledﬂnﬂﬂ
of the trace,
We are now ready for the simulation rule.

Definition: Given a Petri net T = <§,E,F,I>, we define the traces of 7 as

follows:

(1) {<w,1>} x {(1%{1}) is a trace.
(Ix{1} is the set of initial holdings.)

(2) If: (a) Tisthemionofacmpatiblesetofeﬂstjmtraces.

{b) eisaneventwmseprecxmditicnsallhaveholdirgsin
the boundary of T, andAisthatsetoflnldj.rgs,

{c) eachoecurmnoeinThasadescendantinA,

then T U ax{u{e, T} U {u(e,T) Ixu{e’, T is a trace,

where u(q,T) = <q, |{y|% n,x: ¥ = <q,n> A <x,y>eT +1>
(u{e,T) is the kt+1l'st occurrence of e, where k is the

mmber of cccurrences of e in T. ule”,T) is the set of
new holdings initiated by ple,T).)

{3 The only traces of 1 are those given by (1) and (2).

19.

Figure 9 illustrates how several of the traces for the net in Figure 6 are
generated,

We now look at the simulation rule in the light of the five rules given
inSection4andtherequirmmtofthepreoedingsectim. We first consider
the similation rule without Condition 2(c), and then consider the effect of
adding that condition.

With Condition 2(c} left out, the simulation rule exactly implements
the five rules of Section 4. Nothing is added and nothing taken away. The
resulting structures, called similations, are equivalent to oocurrence graphs.

The addition of Condition 2(c) has the effect of requiring each trace to
have a 'focus'. It also means that if two occurrences are ordered (as
defined above), thenthetwcoc:curzencesarecreatedmtlmtorder, and if
churramsaremncurrent,ﬂ\enﬂ)eactsofcreatirgthEMaxelcgically
independent and thus unordered, In other words, the requirement of the
preceding section is satisfied. Condition 2(c} does mot impose any fundamental
limitations since any simulation, with or without a 'focus’, can be generated,
in accordance with our requirement, by taking the union of a campatible set

of traces.

9. Safety, Determinacy, and Liveness

Inﬂlissectim,wedefinesmeofﬂ'eamceptsusedindﬁracterizhlgﬂle
behavior of nets. '

A net is said to be safe if and only if no simulation of the net contains
a holding initiated by more than one occurrence. The net in Figure 10{a) is an
example of an unsafe net. Notice that the first holding of 83 can be initiated

-20-

<w,1>
/‘\
<g;,1> ¢ s <g,,1>
<m,]i> <w, 1>
<g81,1> ® <g.5,1> <8y ,1> ./\\1 <82,1>
<gp,1>* T <ey,1>
!

<§g,1>¢ \ / <sg,1>

<w‘1>
<51,l>I I <sz,1>

<e1,l>% I <gy 1>

<53 rl>.\ /. {36:1>

8, <ag,l>

<Sg,1> ./ \. <gs,}>

<m,.1> <w‘l>
<sl,1>1 1 <g,,1> <g,,1>"

I
<e1,1>1 i<e.,,l> <e1,1>1 I <@, , 1>

<53,1>'\ /' <gg,1> <ss,1>'\ ® <gg;1>
/"\‘is,b -‘{
<Sgq,1» . b <Sg,1> <Sa;1>'/ \.

~21-

byboththefirstoccurrenceofelandthefirstmcurrenceofez. This

is reflected in the trace of Figure 10(b). For the most part, our work will

deal only with safe nets. This is not a sericus limitation since all SMD

nets are safe. q";l)
8y S2 <g,,1> \o <82,1>
ey €2 <ep,l> -\ ! <ez,1>
/
S 1 <ss,1>
es } <@g, l>
s } <84 ,1>
{a) an unSafe net (b) an 'unsafe' trace

Figure 10. an Example of Nonsafety

Determinate nets are what their name implies: nets whose behavior dnes
not involve arbitrary choices. More precisely, a net is determinate if
and only if all traces associated with the net are compatible. The net in
Figuresisanexan'pleofanindetemﬁ.natenet, while the net in Figqure 11
is an example of a deteminate net.

Liveness has to do with the ability of states to hold and events to

occur. We distirkuish between five degrees of liveness for a state or event, x:Jr

.f_
Except for the definition of L;, these definitions are equivalent to the cnes
given by Commoner (31, p. B.

22—

.35

Figure 11. A Determinate Net

Le - no trace containg <x, 1>,
Li - there exists a trace containing <x,1>,
Lz - for evary natural mmber n, there exiats a trace

containing <x,n>.

Ly - thareexistsasi.rmlatistmhthatforevEry
simulation 7' mntaini_ngTandforeveryneN,
there exists a trace campatible with T' and

antaining <x,n>.

L, - foreverysinmlatimandforeverynaﬂ, there
exists a trace campatible with the simulation
and containing <X,n>.

It follows that Ly ® Ly =1,

= 1. Forlf_if_:-l,hesaythatastateor

event is strictlx _L_i iff it is Li kot not Li-h A net is said o be I’i iff

all states and events are I‘i'

The net in Figure 12 illustrates the different

L;
L,
Lg
L,
Lo
L .
L
L,
L L,
1
L,

iy 5.
Degrees of Livenes
i 12.
Flgure [he

7.

10.

11.

12.

13.

Baker, H. G., Bquivalence Problems of Petri Nets, S.M. Thesis,
Department of Flectrical Engineering, Massachusetts Institute
of Technology, June 1573.

Berge, C., Graphs and Bypergraphs, North-Holland Publishing Co., 1973.

Camoner, F. G., Deadlocks in Petri Nets, Report CA~7206~2311,
Applied Data Research, Inc., Wakefield, Mass., June 1972.

Camoner, F., A. W. Holt, S. Even, and A. Pnueli, "Marked Directed
Graphs", Journal of Camputer and System Sciences, Vol. 5, October 1971,
PP, 511-523,

Furtek, F. C., Modular Implementation of Petri Nets, S.M. Thesis,
Department of Electrical Engineering, Massachusebts Institute
6f Technology, September 1971,

Furtek, F. C., Asynchrenous Push-Down Stacks, Computation Structures
Group Memo 86, Project MAC, Massachusetts Institute of Technology,
August 1973.

Genrich, H. J., Einfache Nicht-sequentielle Prozesse (Simple Nonsaquential
Processes). Bericht Nr. 37, Gesellschaft fir Mathematik und Datenverar-
beitung, Bam. 1971. :

Hack, M. H. T., Analysis of Production Schemata H Petri Nets, Technical
Report MAC-TR-~94, Project MAC, Massachusetts Institute of Technology,

February 1972,

Holt, A. W., et. al., Final Report of the Information System Theory
Project, Technical Report No. RADC-TR-68-305, Rane ALr Development
Center, Griffiss Air Force Base, New York, September 1968.

Holt, A, W. and F. G. Camnemer, Events and Conditions, Part 1, Applied
Data Research, Inc., New York, 1970. {Chapter I, 11, and IV appear in
Record of the Project MAC Conference on Concurrent Systems and Parallel
Camputation, ACM, New York, 1970, pp. 3-31.)

Holt, A. W., Events and Conditions, Part 2.

Holt, A, W., Events and Conditions, Part 3. (Reprinted in Record of the
Project MAC Conference on Concurrent Systems and Parallel Camputation,
Pp. 33-52.)

Jump, J. R., and P. 8. Thiagarajan, "On the Equivalence of Asynchronous
Control Structures," SIAM Journal of Camputation, Vol. 2, No. 2,
June 1973, pp. 67-87.

14.

15.

16'

17,

Patil, S. S., Limitations and Capabilities of Difkstra's Semaphore

Primitives for Coordination among Processes, Camputaticn Structures
Group Memo 57, Project MAC, Massachusetts Institute of Technology,

February 1971,

Petri, C. A., Cammmication with Autamata, Supplament 1 to Technical
Report BADC-TR-65-377, WI. I, Fome Air Develogment Center, Griffiss
Air Force Base, New York, 1966. (Originally published in German:
Rormunikation mit Autamaten, Schriften des Rheinisch-Westfilischen
Institutes flir Instrumentelle Mathematik an der Universitit Bomn,
Hft. 2, Bonn, 1962.]

Petri, C. A., Series of talks given at Applied Data Research, Inc.,
Wakefield, Mass., August 1973.

Ramchandani, C., Analysis of Asynchronous Concurrent Systems by Petri
Nets, Technical Report MAC-TR-120, Project MAC, Massachusetts
Institute of Technology, February 1974.

