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Abstract: Several proposals for computer data processing and memory systems that exploit the inherent parallel- 
ism in programs expressed in data flow form have been advanced recently. These systems have packet communication 
architecture -- each system consists of many units that interact only through the transmission of information 
packets through channels that link pairs of units. 

A simulation facility for evaluating the prograranability and potential performance of these proposed data pro- 
cessing and memory systems has been designed. The facility uses microprocessor modules to emulate the behavior 
of system units or groups of units. By conducting a simulation in accurate scale time a precise extrapolation 
of performance of a proposed system may be obtained. 

The user of the facility will specify the system to be simulated in an architecture description language. A host 
computer translates the system description modules into microprocessor programs and controls the loading and moni- 
tors the operation of the microprocessors. Application of the facility is illustrated by considerat:ion of a sim- 
ple data flow processor. 

Introduction 

Recently, a number of proposals for computer data pro- 
cessing and memory systems organized to exploit the 
parallelism inherent in programs expressed in data flow 
form have been developed. These include a series of 
machines of increasing capability described by Dennis 
and Misunas [2, 3], two machines capable of supporting 
high level language including procedures as data [5, 6, 
8, 9, I0] and memory systems organized for highly paral- 
lel operation [I]. 

Each of these systems consists of many units connected 
by channels, and is organized so the units operate asyn- 
9hronously and interact only through transmission of in- 
formation packets over the channels. Each unit of these 
systems is designed so it never has to wait for a re- 
sponse to a packet it has transmitted to another unit~ 
if other packets are waiting for its attention; this 
design principle permits a high level of concurrent 
processing. The units themselves may be constructed 
of simpler units and channels that cooperate in the 
same manner, yielding a hierarchical structure in which 
interactions occur only at well-defined interfaces. 
Systems structured to operate according to this disci- 
pline are called packet communication systems and are 
said to have packet communication architecture. 

The application of packet communication architecture to 
computer system design is now sufficiently advanced that 
careful evaluation of the performance potential of pro- 
posed systems is required. Since analytic techniques 
of sufficient power are not known, evaluations must be 
carried out by simulation. The simulation of a conven- 
tional computer architecture is readily carried out by 
programming a conventional Von Neuman-type computer, 
and the result of such simulation may be easily inter- 
preted to predict performance of a proposed machine. 
However, simulation of a highly asynchronous system is 
not so easily accomplished using a conventional sequen- 
tial computer -- much effort (in programming and in 
simulation runs) would be spent in the implementation 
of psuedo parallel processes and the coordination of 
their interactions. 

The work reported here was supported by the National 
Science Foundation under grant DCR75-04060. 
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With the advent of low-cost LSI processors there is an 
attractive alternative to programmed simulation on a 
conventional computer: a system having packet communi- 
cation architecture is divided into parts and each part 
is emulated by a microprocessor. We have designed an 
architectural simulation facility based on this idea. 
The facility consists of a number of microprocessor 
modules arranged so they may easily communicate through 
a network for the simulation of any packet communica- 
tion system. The system to be simulated is specified 
in an architecture description language designed ex- 
pressly for packet communication systems. A host com- 
puter translates architecture descriptions into program 
modules executed by the microprocessors. The host com- 
puter also provides means for debugging and for measur- 
ing performance of the sfmulated system. 

Our explanation of the simulation facility is aided by 
discussing its application to modeling the operation of 
a simple data flow processor. We start with a brief 
description of the data flow processor and show how the 
structure of this processor might appear when expressed 
in our architecture description language. Next comes a 
detailed discussion of the hardware portion of the fa- 
cility and how it supports the modeling of packet com- 
munication systems. We conclude with a brief discus- 
sion of the software support to be implemented on the 
host computer. 

A__nnExample of Packet Communication Architecture 

Throughout this paper we shall use a simple data flow 
processor as an example of a packet communication sys- 
tem. This data flow processor has been proposed for 
certain signal processing computations such as wave- 
form generation and filtering in which a fixed constel- 
lation of operations is applied to a stream of data. 
The processor does not support data-dependent deci- 
sions, structured data, or procedures, though these fea- 
tures have been considered in generalized versions of 
this processor [3, 5, 6, 8]. 

The units and channels that comprise the top-level de- 
scription of the data flow processor are shown in Fig- 
ure i. Instructions of a data flow program to be exe- 
cuted by the data flow processor are stored in Instruc- 
tion Cells (Figure 2). Each Instruction Cell holds an 
instruction of the program, contains registers for 
holding one or two operands of the instruction, and is 
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Figure I. Structure of the elementary 
data flow processor. 

designated by a unique cell identifier. An instruction 
specifies an operation to be performed on its operands 
and specifies each register (by a cell identifier and 
a register index i or 2) which is to receive a copy of 
the result. When all operands of an instruction are 
present in a Cell, the Cell is enabled and its content 
is transmitted as an operation packet to the Arbitra- 
tion Network. Each operation packet is forwarded by 
the Arbitration Network to a Functional Unit capable of 
interpreting the operation packet. A Functional Unit 
performs the function specified by the instruction code 
of the operation packet it receives on the operands in 
the packet and, for each destination specified in the 
operation packet, generates a result packet consisting 
of a copy of the result and the cell identifier/register 
index of a destination cell register. The Distribution 
Network accepts result packets from the Functional 
Units, and delivers each result packet to the Cell ad- 
dressed by the cell identifier in the packet. After 
the result packet is received by a Cell, the result in 
the packet is stored in the register addressed by the 
register index of the packet. If all of its operands 
are present, a Cell receiving a result packet is en- 
abled and generates another operation packet to be pro- 
cessed. A more detailed description of the architec- 
ture and operation of the data flow processor is given 
in [2]. We note that depending on their construction, 
the Arbitration Network and the Distribution Network 
are capable of processing one or more packets simul- 
taneously. 
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ArchiteCture Description Language 

Our architecture description language is a design nota- 
tion for packet communication systems. The basic unit 
of description is a module with a number of input ports 
and output ports. A description module is either a 
structural description or a behavioral description. 
A structural description of a module specifies the 
decomposition of the module into simpler modules and 
the channels connecting ports of these simpler modules. 
A behavioral description specifies the module's behavior 
in the form of a sequentially executed program that: 
(I) receives packets from a specified input port; 
(2) transmits packets over a specified output port; or 
(3) updates state variables of the module. In these 
respects our language is adapted from the notation used 
by Rumbaugh to formally describe his data flow multi- 
processor [9]. 

In addition, our description language borrows much of 
its syntax, type structure and elementary control struc- 
ture from PASCAL [ii]. An information packet or a state 
variable is defined as a PASCAL record whose components 
are individually accessible. Packet type information 
is included in the specification for each channel con- 
nection, and for each input port and output port decla- 
tion, permitting the support software for the simula- 
tion facility to enforce strong type checking through- 
out the hierarchical description of a system. 

The overall architecture of the data flow processor is 
specified in the description language module Processor 
shown in Figure 3. Processor contains a list of sub- 
modules and a list of interconnections. The interface 
assumed for each submodule is given by the type of in- 
formation packet which may be transmitted over its in- 
put and output ports. The relevant packet definitions 

Processor: module (m: integer, n: integer); 

structure : 

Cell [l..m]: module 

distnet-in input port, 

arbnet-out output port; 

Arbitration-Network: module (m, n) 

cell-in [l..m] input port, 

fen-unit-out [l..n] output port; 

Functional-Unit [l..n]: module 

arbnet-in input port 

distnet-out output port; 

Distribution-Network: module (m, n) 

fen-unit-in [l..n] input port, 

cell-out [l..m] output port; 

Cell [l..m] • arbnet-out send operation-pkt 

to Arbitration-Network • cell-in [l..m]; 

Arbitration-Network • fen-unit-out [l..n] send operation-pkt 

to Funetional-Unit [l..n] • arbnet-in; 

Functional-Unit [l..n] distnet-out send result-pkt 

to Distribution-Network.fen-unit-in [l..n]; 

Distribution-Network • cell-out [l..m] send result-pkt 

to Cell [l..m] • distnet-in; 

end Processor; 

Structure of an Instruction Cell. 

Figure 3. Top level description of the data flow processor. 

Figure 2. 
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address = record [cell-id: integer; register-id: integer]; 

operation-pkt = packet [opn: opcode; 

destination: array [1..2] of address; 

opd: array [1..2] of operand]; 

result-pkt = packet [cell-id: integer; 

register-ld: integer; 

opd: operandi; 

Figure 4. Packet definition. 

for Processor are presented in Figure 4. The specifi- 
cation of the data types opcode and operand depends on 
the kind of computation to be implemented on the data 
flow processor and is not given in Figure 4. A complete 
specification of the data flow processor is obtained by 
supplying description modules for Cell, Arbitration- 
Network, Function-Unit and Distribution-Network. Each 
of these description modules must satisfy the interface 
requirements set forth in the definition of Processor 
and must implement the operation of the corresponding 
unit of the data flow processor as outlined above. 

In illustration of the technique for specifying the be- 
havior of a module, a specification of the operation of 
the module Cell is given in Figure 5. Cell communicates 
with the other submodules of Processor via its input 
port distnet-in and its output port arbnet-out. Packets 
of type result-pkt and operation-pkt are received and 
transmitted by Cell at distnet-in and arbnet-out re- 
spectively. The state variahles of Cell provide stor- 
age for packets received and store state information 
for controlling the operation of Cell. The state vari- 
ables are initialized and reset as necessary from one 
cycle of operation of Cell to the next. The when state- 
ment in Cell (Figure 5) is activated upon receipt, at 
distnet-in, of a result packet which delivers an operand 
to the instruction held in Cell. When all the required 
operands are available, an operation packet is formed 
and emitted at arbnet-out by the send statement (Fig- 
ure 5). A when statement contains one or several blocks 
of statements, one block for processing the input pack- 
ets arriving at each input port. The complete execution 
of a when statement embodies: (i) receiving and ac- 
knowledging an input packet from one of the input ports 
monitored by the when statement, and (2) executing the 
block of statements for processing input packets ar- 
riving at the input port. 

The specifications of Processor and Cell illustrate the 
descriptive power of the architecture description lan- 
guage. Other submodules of Processor can be similarly 
defined. After presenting the hardware facilities in 
the next section, we will describe the implementation 
of the module Cell as a program executed on the pro- 
cessor modules. 

Organization of the Simulation Facilities 

The simulation facility shown in Figure 6 is composed 
of a host computer, a number of microcomputer modules 
each consisting of a microprocessor and a number of 
memory modules, a control bus for host-mlcrocomputer 
communication, and a Routing Network for transmitting 
packets between microcomputer modules. The host com- 
puter loads simulation programs into microcomputer 
modules, monitors and controls the progress of a 
simulation, and collects statistical data for per- 
formance evaluation. The control bus transmits com- 
mands, addressing information and data from the host 
to the microcomputer modules, and transmits acknow- 
ledge signals and memory word contents from the 
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Cell: module 

dlstnet-in input port receives result-pkt, 

arbnet-out output port sends operation-pkt; 

behavior 

/* State Variables */ 

respkt : record result-pkt; 

operation: opcode; 

destl, dest2: address; 

operandl, operand2: operand; 

opdl-expected, o~2-expected: boolean; 

opdl-received, e~2-received: boolean; 

repeat begin 

opdl-reeelved := if opdl-expected then false else ~U¢; 

opd2-received := i_f_f opd2-expected then false else true; 

while ~ opdl-reeeived V ~ opd2-received d__oo 

when dlstnet-in receives respkt d_oo 

case respkt • register-id of 

l : be~in 

i_f_fopdl-received then error; 

opdl-received := true; 

operandi := respkt • value en___dd; 

2: begin 

i_~fopd2-received then error~ 

opd2-received := true; 

operand2 := respkt • value en_~d; 

endcase; 

send [opn: operation; 

destinatlon[1]: destl; destination[2]:: dest2; 

opd[l]: operandl; opd[2]: operand2] 

a~tarbnet-out; 

en.~d repeat; 

en___ddCell; 

Figure 5. Specification of the operation of 
an Instruction Cell. 

microcomputer modules to the host. Under control of 
the host, microcomputer modules execute programs 
which simulate the operation of units of a simulated 
system. In addition to communicating with the host 
via the control bus, each microcomputer module is 
connected by an input port and an output port to the 
Routing Network, through which the module sends or 
receives packets from other modules. 

The Routing Network provides a buffered path between 
every pair of microcomputer modules, permitting the 
transmission of packets without regard for whether 
the destination processor is ready to receive them. 
A packet transmitted to the Routing Network from a 
microcomputer consists of a destination address for 
the packet and the packet content. The destination 
address is used by the Routing Network to direct the 
packet to the input port of the appropriate micro- 
computer module. The Routing Network performs arbi- 
tration and distribution functions in a manner simi- 
lar to that described for the Arbitration and 
Distribution Networks in [2]. 

Before we describe the structure of the commands is- 
sued by the host and the various schemes by which the 
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Figure 6. Organization of the simulation facility. 

host controls a simulation, let us examine the mech- 
anisms available for controlling a microcomputer 
module in more detail. The simulation program module 
contained in each microcomputer module is organized 
so program execution starts from a home state and 
returns to this home state after each transaction, 
that is, after the complete processing of a packet. 
Each microcomputer module also has a wait state in 
which no instructions are executed and control of the 
internal busses of the microcomputer module is relin- 
quished to the host. 

Two special registers in each microcomputer module, 
the ru___nn count and the wait fla~, are set by the host 
and utilized to control the progress of a simulation. 
The run count of a microcomputer module is set by the 
host to the desired number of cycles of operation of 
the simulated unit for the current simulation. Each 
time a cycle of operation is completed, the run count 
is decremented. If the decremented run count is zero, 
the microcomputer module enters a wait state and sig- 
nals to the host that it has entered that state. A 
negative run count enables a microcomputer module to 
process transactions until halted by the host. The 
wait flag is set by the host when it is desired that 
the designated microcomputer module(s) enter the wait 
state. The flag is checked by a microcomputer module 
when the module is in the home state. Hence, microcom- 
puter modules placed in the wait state through setting 
of the wait flag have no partially completed transac- 

61 

tions, and all state variables of the modules are in a 
consistent state. 

The host performs its control functions by issuing 
commands to the microcomputer modules via the control 
bus. Commands issued by the host are either 
addressed or universal. A universal command is obeyed 
by all microcomputer modules, and such commands are 
used by the host to start, stop, and temporarily sus- 
pend the execution of a simulation. An addressed 
command is executed only by a designated microcom- 
puter module. Each command transmitted over the bus 
consists of a selection code and a command name. The 
selection code specifies which of the microcomputer 
modules is to respond to the associated command. 
Each microcomputer module examines the selection code 
of each command to determine whether the module 
should respond to it. 

The host can issue one of nine commands to a micro- 
computer module. The possible commands are Read, 
Write, Hold, Release, Halt, Enable, Clear, Start and 
Reset. The Read and Write commands provide the capa- 
bility to examine or alter the contents of a memory 
module associated with a microcomputer module. The 
other commands are used in the selection of a micro- 
computer module for execution of a Read or Write 
command, or for controlling the progress of a simula- 
tion. 

Often, it is desired that several, but not all, of 
the microcomputer modules respond to a Write command 
simultaneously, for example, when loading a simula- 
tion program into a number of microcomputers which 
are to simulate identical units. This function is 
accomplished by individually issuing Enable commands 
to the desired processors. Commands issued subse- 
quently are executed by all enabled processors until 
a Clear command is received from the host. Note that 
the Clear command can be either addressed or universal. 

The Start, Hold, Release, Halt and Reset commands are 
used to implement the various schemes by which the 
host controls a simulation. All microcomputer 
modules of the system are initially in the wait state. 
A simulation is initiated by a universal Start command 
which places all microcomputer modules in their home 
states. A simple scheme to halt a simulation is to 
issue a universal Hold command which halts program exe- 
cution in all microcomputer modules irrcnediately. The 
host is then free to read or write into the memory mod- 
ules by issuing Read and Write commands. Program exe- 
cution at each microcomputer module can be restarted at 
the point of interruption by issuing a universal Release 
command. 

All microcomputer modules can be put into their wait 
states simultaneously and immediately by issuing a 
Reset command. However, when the microcomputer 
modules are to be stopped for the purpose of debug- 
ging and evaluation, all modules should be in consist- 
ent states. This is accomplished through the use of 
a universal Halt command. Execution of the Halt com- 
mand sets the wait flag of each microcomputer module 
by generating a universal Hold command followed by a 
universal Write into the wait flags, and then a uni- 
versal Release. Each microcomputer module, upon 
reaching its home state, then discovers that its wait 
flag is set, enters its wait state, and signals the 
host. When the host has received an acknowledge 
signal designating that each microcomputer module has 
entered its wait state~ it can examine and alter the 
memory contents of any microcomputer module, and it 
can examine the status of each microcomputer input 
port to see if there are any packets present. 

Once a simulation has been halted and the status of 
the facility has been determined, one or several 
microcomputer modules can be enabled for a specified 



number of transactions by properly setting their run 
counts, setting the wait flags of the other microcom- 
puter modules and then issuing a universal Start 
command. Receipt of the Start command causes each 
microcomputer module to exit its wait state and re- 
enter its home state. The microcomputer modules whose 
run counts were set will accept packets at their in- 
put ports. All others will immediately reenter their 
wait states. 

An active microcomputer module will signal the host 
computer after completing the specified number of 
transactions. The acknowledge signals from the micro- 
computer modules are ANDed and ORed to produce a 
Universal Acknowledge and an Addressed Acknowledge, 
indicating that the appropriate processors have re- 
sponded to a universal or addressed command. 

The various control schemes and communication proto- 
cols presented provide a minimal capability for con- 
trolling and examining system operation during a simu- 
lation. The fact that the host can readily access 
the individual memory modules allows one to easily 
extend the control, analysis and debugging capabili- 
ties in software. Each microcomputer module can store 
any desired status information in its memory for the 
host to retrieve, even to the point of retaining all 
packets processed by the module. 

An example of a software evaluation facility is the 
evaluation of performance of individual sections of 
a simulated processor through analysis of event 
counts. An event count is a count maintained by an 
individual microcomputer of the number of transactions 
which have taken place since initiation of a timing 
interval. The use of event counts allows the study 
of the relative efficiency of sections of the simu- 
lated processor and provides data necessary for 
determining such parameters as cache size and struc- 
ture of the memory/processor interconnection networks. 

Simulation of a Packet Communication System on the 
Hardware Facility 

A packet communication system is simulated on the 
hardware facility through simulation of one or more 
units of the system on each microcomputer module. The 
constructs used in the simulation programs are imple- 
mented on a microcomputer module in a straightforward 
manner. The implementation of packet transmission and 
processing, the identification of microcomputer states 
during program execution and the coordination between 
packet processing and microcomputer state transitions 
are further illustrated in this section using the 
module Cell (Figure 5) as an example. 

In general, a unit simulated on a microcomputer module 
may have several input ports. A separate input buffer 
is allocated in memory for each input port of the sim- 
ulated unit. Every packet transmitted through the 
Routing Network specifies a target port, which is an 
input port of a simulated unit. A microcomputer module, 
upon receipt of a packet, uses this target port designa- 
tion to deposit the packet in one of its input buffers. 

The program module Cell has one input port distnet-in. 
If Cell is the only unit simulated on a microcomputer 
module, every packet arriving at the input port of the 
microcomputer is automatically deposited in the buffer 
associated with distnet-in. Any output packet of the 
module Cell is transmitted through the output port 
arbnet-out. 

Each microcomputer module is in a wait state after the 
simulation programs have been loaded. A Start command 
transfers the microcomputer module from the wait state 
to the home state, and initiates execution of the simu- 

lation program. Unless temporarily halted by a Hold 
corm~and, the execution of a simulation program on a 
microcomputer module proceeds until a when statement is 
reached, at which point the microcomputer reenters its 
home state. Upon reentering its home state, the module 
examines its wait flag and enters the wait state if the 
wait flag has been set by the host. If the wait flag 
is not set, the microcomputer module queries its wait 
flag and the status of the input ports monitored by the 
when statement in turn using a round-robin algorithm, 
until the wait flag is set or an input packet becomes 
available. If the wait flag is set, the microcomputer 
enters its wait state. If an input packet becomes 
available first, the when statement is executed. 

When the program module simulating Cell is executed on 
a microcomputer, the microcomputer enters its home 
state each time the when statement (Figure 5) that re- 
ceives result packets at distnet-in is reached. The 
run count of a microcomputer module is decremented at 
the end of each cycle of operation of the simulated 
unit, and the microcomputer module enters its wait 
state if the updated run count becomes zero. In the 
case of Cell, the run count is decremented and examined 
each time the body of the outermost repeat statement is 
executed. 

Software Support 

The structure of the controlling software system for 
the simulation facility is presented in Figure 7. Op- 
eration of sections of the simulated system is speci- 
fied by modules in the architecture description lan- 
guage in the manner described earlier. These modules 
are translated into relocatable microprocessor object 
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Figure 7. Structure of the simulation 
control system. 
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code and are stored in the file system of the host 
computer; the necessary programs from the file are 
linked together to form a non-relocatable micropro- 
cessor program. Either the individual procedures or a 
complete simulation program can be tested by use of a 
microprocessor simulator residing i n the host computer. 
Once the simulation programs have been validated by 
use of the microprocessor simulator, the programs are 
loaded into the microprocessors, and the facility is 
ready to execute a program of the simulated machine. 

A user program to be executed on the simulated archi- 
tecture is compiled into the machine language of the 
simulated machine and sent to the microprocessor sys- 
tem for execution. The debugging and evaluation cap- 
abilities of the system are used to control execution 
of the program and evaluate feasibility of the proposed 
system architecture. 

Conclusion 

The architecture simulation facility appears to be a 
powerful tool for the evaluation of packet communica- 
tion systems. Its capabilities permit the testing and 
evaluation of a broad range of architectural concepts. 
The facility is currently under construction using the 
Motorola M6800 microprocessor and a DEC PDP-II host 
computer. Portions of the software system are being 
developed on a PDP-10 computer to allow use of the lan- 
guage CLU [4, 7]. The system is intended to be used 
primarily for an investigation of the design and cap- 
abilities of data-flow processors, and we expect it to 
be invaluable for this application. 
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