

A Computer Simulation Facility for Packet Communication Architecture

by

Clement K.C. Leung
David P. Misunas
Andrij Neczwid
Jack B. Dennis

Project MAC
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract: Several proposals for computer data processing and memory systems that exploit the inherent parallel-
ism in programs expressed in data flow form have been advanced recently. These systems have packet communication
architecture -- each system consists of many units that interact only through the transmission of information
packets through channels that link pairs of units.

A simulation facility for evaluating the prograranability and potential performance of these proposed data pro-
cessing and memory systems has been designed. The facility uses microprocessor modules to emulate the behavior
of system units or groups of units. By conducting a simulation in accurate scale time a precise extrapolation
of performance of a proposed system may be obtained.

The user of the facility will specify the system to be simulated in an architecture description language. A host
computer translates the system description modules into microprocessor programs and controls the loading and moni-
tors the operation of the microprocessors. Application of the facility is illustrated by considerat:ion of a sim-
ple data flow processor.

Introduction

Recently, a number of proposals for computer data pro-
cessing and memory systems organized to exploit the
parallelism inherent in programs expressed in data flow
form have been developed. These include a series of
machines of increasing capability described by Dennis
and Misunas [2, 3], two machines capable of supporting
high level language including procedures as data [5, 6,
8, 9, I0] and memory systems organized for highly paral-
lel operation [I].

Each of these systems consists of many units connected
by channels, and is organized so the units operate asyn-
9hronously and interact only through transmission of in-
formation packets over the channels. Each unit of these
systems is designed so it never has to wait for a re-
sponse to a packet it has transmitted to another unit~
if other packets are waiting for its attention; this
design principle permits a high level of concurrent
processing. The units themselves may be constructed
of simpler units and channels that cooperate in the
same manner, yielding a hierarchical structure in which
interactions occur only at well-defined interfaces.
Systems structured to operate according to this disci-
pline are called packet communication systems and are
said to have packet communication architecture.

The application of packet communication architecture to
computer system design is now sufficiently advanced that
careful evaluation of the performance potential of pro-
posed systems is required. Since analytic techniques
of sufficient power are not known, evaluations must be
carried out by simulation. The simulation of a conven-
tional computer architecture is readily carried out by
programming a conventional Von Neuman-type computer,
and the result of such simulation may be easily inter-
preted to predict performance of a proposed machine.
However, simulation of a highly asynchronous system is
not so easily accomplished using a conventional sequen-
tial computer -- much effort (in programming and in
simulation runs) would be spent in the implementation
of psuedo parallel processes and the coordination of
their interactions.

The work reported here was supported by the National
Science Foundation under grant DCR75-04060.

58

With the advent of low-cost LSI processors there is an
attractive alternative to programmed simulation on a
conventional computer: a system having packet communi-
cation architecture is divided into parts and each part
is emulated by a microprocessor. We have designed an
architectural simulation facility based on this idea.
The facility consists of a number of microprocessor
modules arranged so they may easily communicate through
a network for the simulation of any packet communica-
tion system. The system to be simulated is specified
in an architecture description language designed ex-
pressly for packet communication systems. A host com-
puter translates architecture descriptions into program
modules executed by the microprocessors. The host com-
puter also provides means for debugging and for measur-
ing performance of the sfmulated system.

Our explanation of the simulation facility is aided by
discussing its application to modeling the operation of
a simple data flow processor. We start with a brief
description of the data flow processor and show how the
structure of this processor might appear when expressed
in our architecture description language. Next comes a
detailed discussion of the hardware portion of the fa-
cility and how it supports the modeling of packet com-
munication systems. We conclude with a brief discus-
sion of the software support to be implemented on the
host computer.

A__nnExample of Packet Communication Architecture

Throughout this paper we shall use a simple data flow
processor as an example of a packet communication sys-
tem. This data flow processor has been proposed for
certain signal processing computations such as wave-
form generation and filtering in which a fixed constel-
lation of operations is applied to a stream of data.
The processor does not support data-dependent deci-
sions, structured data, or procedures, though these fea-
tures have been considered in generalized versions of
this processor [3, 5, 6, 8].

The units and channels that comprise the top-level de-
scription of the data flow processor are shown in Fig-
ure i. Instructions of a data flow program to be exe-
cuted by the data flow processor are stored in Instruc-
tion Cells (Figure 2). Each Instruction Cell holds an
instruction of the program, contains registers for
holding one or two operands of the instruction, and is

Functional
Unit 0

Functional
Unit n-i I

result
,ackets

operation
packets

~Distribution I "

J lnstruction
"1 Cell 0 i

Instruction
i Memory

.I Instruction I
~ Cell m-I

Figure I. Structure of the elementary
data flow processor.

designated by a unique cell identifier. An instruction
specifies an operation to be performed on its operands
and specifies each register (by a cell identifier and
a register index i or 2) which is to receive a copy of
the result. When all operands of an instruction are
present in a Cell, the Cell is enabled and its content
is transmitted as an operation packet to the Arbitra-
tion Network. Each operation packet is forwarded by
the Arbitration Network to a Functional Unit capable of
interpreting the operation packet. A Functional Unit
performs the function specified by the instruction code
of the operation packet it receives on the operands in
the packet and, for each destination specified in the
operation packet, generates a result packet consisting
of a copy of the result and the cell identifier/register
index of a destination cell register. The Distribution
Network accepts result packets from the Functional
Units, and delivers each result packet to the Cell ad-
dressed by the cell identifier in the packet. After
the result packet is received by a Cell, the result in
the packet is stored in the register addressed by the
register index of the packet. If all of its operands
are present, a Cell receiving a result packet is en-
abled and generates another operation packet to be pro-
cessed. A more detailed description of the architec-
ture and operation of the data flow processor is given
in [2]. We note that depending on their construction,
the Arbitration Network and the Distribution Network
are capable of processing one or more packets simul-
taneously.

Instruction Cell

resister

fins truction I des tination Idestina tion ~

resister

I operandi

register

I operand 2

ArchiteCture Description Language

Our architecture description language is a design nota-
tion for packet communication systems. The basic unit
of description is a module with a number of input ports
and output ports. A description module is either a
structural description or a behavioral description.
A structural description of a module specifies the
decomposition of the module into simpler modules and
the channels connecting ports of these simpler modules.
A behavioral description specifies the module's behavior
in the form of a sequentially executed program that:
(I) receives packets from a specified input port;
(2) transmits packets over a specified output port; or
(3) updates state variables of the module. In these
respects our language is adapted from the notation used
by Rumbaugh to formally describe his data flow multi-
processor [9].

In addition, our description language borrows much of
its syntax, type structure and elementary control struc-
ture from PASCAL [ii]. An information packet or a state
variable is defined as a PASCAL record whose components
are individually accessible. Packet type information
is included in the specification for each channel con-
nection, and for each input port and output port decla-
tion, permitting the support software for the simula-
tion facility to enforce strong type checking through-
out the hierarchical description of a system.

The overall architecture of the data flow processor is
specified in the description language module Processor
shown in Figure 3. Processor contains a list of sub-
modules and a list of interconnections. The interface
assumed for each submodule is given by the type of in-
formation packet which may be transmitted over its in-
put and output ports. The relevant packet definitions

Processor: module (m: integer, n: integer);

structure :

Cell [l..m]: module

distnet-in input port,

arbnet-out output port;

Arbitration-Network: module (m, n)

cell-in [l..m] input port,

fen-unit-out [l..n] output port;

Functional-Unit [l..n]: module

arbnet-in input port

distnet-out output port;

Distribution-Network: module (m, n)

fen-unit-in [l..n] input port,

cell-out [l..m] output port;

Cell [l..m] • arbnet-out send operation-pkt

to Arbitration-Network • cell-in [l..m];

Arbitration-Network • fen-unit-out [l..n] send operation-pkt

to Funetional-Unit [l..n] • arbnet-in;

Functional-Unit [l..n] distnet-out send result-pkt

to Distribution-Network.fen-unit-in [l..n];

Distribution-Network • cell-out [l..m] send result-pkt

to Cell [l..m] • distnet-in;

end Processor;

Structure of an Instruction Cell.

Figure 3. Top level description of the data flow processor.

Figure 2.

59

address = record [cell-id: integer; register-id: integer];

operation-pkt = packet [opn: opcode;

destination: array [1..2] of address;

opd: array [1..2] of operand];

result-pkt = packet [cell-id: integer;

register-ld: integer;

opd: operandi;

Figure 4. Packet definition.

for Processor are presented in Figure 4. The specifi-
cation of the data types opcode and operand depends on
the kind of computation to be implemented on the data
flow processor and is not given in Figure 4. A complete
specification of the data flow processor is obtained by
supplying description modules for Cell, Arbitration-
Network, Function-Unit and Distribution-Network. Each
of these description modules must satisfy the interface
requirements set forth in the definition of Processor
and must implement the operation of the corresponding
unit of the data flow processor as outlined above.

In illustration of the technique for specifying the be-
havior of a module, a specification of the operation of
the module Cell is given in Figure 5. Cell communicates
with the other submodules of Processor via its input
port distnet-in and its output port arbnet-out. Packets
of type result-pkt and operation-pkt are received and
transmitted by Cell at distnet-in and arbnet-out re-
spectively. The state variahles of Cell provide stor-
age for packets received and store state information
for controlling the operation of Cell. The state vari-
ables are initialized and reset as necessary from one
cycle of operation of Cell to the next. The when state-
ment in Cell (Figure 5) is activated upon receipt, at
distnet-in, of a result packet which delivers an operand
to the instruction held in Cell. When all the required
operands are available, an operation packet is formed
and emitted at arbnet-out by the send statement (Fig-
ure 5). A when statement contains one or several blocks
of statements, one block for processing the input pack-
ets arriving at each input port. The complete execution
of a when statement embodies: (i) receiving and ac-
knowledging an input packet from one of the input ports
monitored by the when statement, and (2) executing the
block of statements for processing input packets ar-
riving at the input port.

The specifications of Processor and Cell illustrate the
descriptive power of the architecture description lan-
guage. Other submodules of Processor can be similarly
defined. After presenting the hardware facilities in
the next section, we will describe the implementation
of the module Cell as a program executed on the pro-
cessor modules.

Organization of the Simulation Facilities

The simulation facility shown in Figure 6 is composed
of a host computer, a number of microcomputer modules
each consisting of a microprocessor and a number of
memory modules, a control bus for host-mlcrocomputer
communication, and a Routing Network for transmitting
packets between microcomputer modules. The host com-
puter loads simulation programs into microcomputer
modules, monitors and controls the progress of a
simulation, and collects statistical data for per-
formance evaluation. The control bus transmits com-
mands, addressing information and data from the host
to the microcomputer modules, and transmits acknow-
ledge signals and memory word contents from the

60

Cell: module

dlstnet-in input port receives result-pkt,

arbnet-out output port sends operation-pkt;

behavior

/* State Variables */

respkt : record result-pkt;

operation: opcode;

destl, dest2: address;

operandl, operand2: operand;

opdl-expected, o~2-expected: boolean;

opdl-received, e~2-received: boolean;

repeat begin

opdl-reeelved := if opdl-expected then false else ~U¢;

opd2-received := i_f_f opd2-expected then false else true;

while ~ opdl-reeeived V ~ opd2-received d__oo

when dlstnet-in receives respkt d_oo

case respkt • register-id of

l : be~in

i_f_fopdl-received then error;

opdl-received := true;

operandi := respkt • value en___dd;

2: begin

i_~fopd2-received then error~

opd2-received := true;

operand2 := respkt • value en_~d;

endcase;

send [opn: operation;

destinatlon[1]: destl; destination[2]:: dest2;

opd[l]: operandl; opd[2]: operand2]

a~tarbnet-out;

en.~d repeat;

en___ddCell;

Figure 5. Specification of the operation of
an Instruction Cell.

microcomputer modules to the host. Under control of
the host, microcomputer modules execute programs
which simulate the operation of units of a simulated
system. In addition to communicating with the host
via the control bus, each microcomputer module is
connected by an input port and an output port to the
Routing Network, through which the module sends or
receives packets from other modules.

The Routing Network provides a buffered path between
every pair of microcomputer modules, permitting the
transmission of packets without regard for whether
the destination processor is ready to receive them.
A packet transmitted to the Routing Network from a
microcomputer consists of a destination address for
the packet and the packet content. The destination
address is used by the Routing Network to direct the
packet to the input port of the appropriate micro-
computer module. The Routing Network performs arbi-
tration and distribution functions in a manner simi-
lar to that described for the Arbitration and
Distribution Networks in [2].

Before we describe the structure of the commands is-
sued by the host and the various schemes by which the

Control
Bus

A \

V
Interface

micro-
processor

I memory

micro- r
processor

i memory

Routing
Network

i
i
!

!

I

I
I
I
f
!

I
t

I
i

Host

I

!

l

v

Figure 6. Organization of the simulation facility.

host controls a simulation, let us examine the mech-
anisms available for controlling a microcomputer
module in more detail. The simulation program module
contained in each microcomputer module is organized
so program execution starts from a home state and
returns to this home state after each transaction,
that is, after the complete processing of a packet.
Each microcomputer module also has a wait state in
which no instructions are executed and control of the
internal busses of the microcomputer module is relin-
quished to the host.

Two special registers in each microcomputer module,
the ru___nn count and the wait fla~, are set by the host
and utilized to control the progress of a simulation.
The run count of a microcomputer module is set by the
host to the desired number of cycles of operation of
the simulated unit for the current simulation. Each
time a cycle of operation is completed, the run count
is decremented. If the decremented run count is zero,
the microcomputer module enters a wait state and sig-
nals to the host that it has entered that state. A
negative run count enables a microcomputer module to
process transactions until halted by the host. The
wait flag is set by the host when it is desired that
the designated microcomputer module(s) enter the wait
state. The flag is checked by a microcomputer module
when the module is in the home state. Hence, microcom-
puter modules placed in the wait state through setting
of the wait flag have no partially completed transac-

61

tions, and all state variables of the modules are in a
consistent state.

The host performs its control functions by issuing
commands to the microcomputer modules via the control
bus. Commands issued by the host are either
addressed or universal. A universal command is obeyed
by all microcomputer modules, and such commands are
used by the host to start, stop, and temporarily sus-
pend the execution of a simulation. An addressed
command is executed only by a designated microcom-
puter module. Each command transmitted over the bus
consists of a selection code and a command name. The
selection code specifies which of the microcomputer
modules is to respond to the associated command.
Each microcomputer module examines the selection code
of each command to determine whether the module
should respond to it.

The host can issue one of nine commands to a micro-
computer module. The possible commands are Read,
Write, Hold, Release, Halt, Enable, Clear, Start and
Reset. The Read and Write commands provide the capa-
bility to examine or alter the contents of a memory
module associated with a microcomputer module. The
other commands are used in the selection of a micro-
computer module for execution of a Read or Write
command, or for controlling the progress of a simula-
tion.

Often, it is desired that several, but not all, of
the microcomputer modules respond to a Write command
simultaneously, for example, when loading a simula-
tion program into a number of microcomputers which
are to simulate identical units. This function is
accomplished by individually issuing Enable commands
to the desired processors. Commands issued subse-
quently are executed by all enabled processors until
a Clear command is received from the host. Note that
the Clear command can be either addressed or universal.

The Start, Hold, Release, Halt and Reset commands are
used to implement the various schemes by which the
host controls a simulation. All microcomputer
modules of the system are initially in the wait state.
A simulation is initiated by a universal Start command
which places all microcomputer modules in their home
states. A simple scheme to halt a simulation is to
issue a universal Hold command which halts program exe-
cution in all microcomputer modules irrcnediately. The
host is then free to read or write into the memory mod-
ules by issuing Read and Write commands. Program exe-
cution at each microcomputer module can be restarted at
the point of interruption by issuing a universal Release
command.

All microcomputer modules can be put into their wait
states simultaneously and immediately by issuing a
Reset command. However, when the microcomputer
modules are to be stopped for the purpose of debug-
ging and evaluation, all modules should be in consist-
ent states. This is accomplished through the use of
a universal Halt command. Execution of the Halt com-
mand sets the wait flag of each microcomputer module
by generating a universal Hold command followed by a
universal Write into the wait flags, and then a uni-
versal Release. Each microcomputer module, upon
reaching its home state, then discovers that its wait
flag is set, enters its wait state, and signals the
host. When the host has received an acknowledge
signal designating that each microcomputer module has
entered its wait state~ it can examine and alter the
memory contents of any microcomputer module, and it
can examine the status of each microcomputer input
port to see if there are any packets present.

Once a simulation has been halted and the status of
the facility has been determined, one or several
microcomputer modules can be enabled for a specified

number of transactions by properly setting their run
counts, setting the wait flags of the other microcom-
puter modules and then issuing a universal Start
command. Receipt of the Start command causes each
microcomputer module to exit its wait state and re-
enter its home state. The microcomputer modules whose
run counts were set will accept packets at their in-
put ports. All others will immediately reenter their
wait states.

An active microcomputer module will signal the host
computer after completing the specified number of
transactions. The acknowledge signals from the micro-
computer modules are ANDed and ORed to produce a
Universal Acknowledge and an Addressed Acknowledge,
indicating that the appropriate processors have re-
sponded to a universal or addressed command.

The various control schemes and communication proto-
cols presented provide a minimal capability for con-
trolling and examining system operation during a simu-
lation. The fact that the host can readily access
the individual memory modules allows one to easily
extend the control, analysis and debugging capabili-
ties in software. Each microcomputer module can store
any desired status information in its memory for the
host to retrieve, even to the point of retaining all
packets processed by the module.

An example of a software evaluation facility is the
evaluation of performance of individual sections of
a simulated processor through analysis of event
counts. An event count is a count maintained by an
individual microcomputer of the number of transactions
which have taken place since initiation of a timing
interval. The use of event counts allows the study
of the relative efficiency of sections of the simu-
lated processor and provides data necessary for
determining such parameters as cache size and struc-
ture of the memory/processor interconnection networks.

Simulation of a Packet Communication System on the
Hardware Facility

A packet communication system is simulated on the
hardware facility through simulation of one or more
units of the system on each microcomputer module. The
constructs used in the simulation programs are imple-
mented on a microcomputer module in a straightforward
manner. The implementation of packet transmission and
processing, the identification of microcomputer states
during program execution and the coordination between
packet processing and microcomputer state transitions
are further illustrated in this section using the
module Cell (Figure 5) as an example.

In general, a unit simulated on a microcomputer module
may have several input ports. A separate input buffer
is allocated in memory for each input port of the sim-
ulated unit. Every packet transmitted through the
Routing Network specifies a target port, which is an
input port of a simulated unit. A microcomputer module,
upon receipt of a packet, uses this target port designa-
tion to deposit the packet in one of its input buffers.

The program module Cell has one input port distnet-in.
If Cell is the only unit simulated on a microcomputer
module, every packet arriving at the input port of the
microcomputer is automatically deposited in the buffer
associated with distnet-in. Any output packet of the
module Cell is transmitted through the output port
arbnet-out.

Each microcomputer module is in a wait state after the
simulation programs have been loaded. A Start command
transfers the microcomputer module from the wait state
to the home state, and initiates execution of the simu-

lation program. Unless temporarily halted by a Hold
corm~and, the execution of a simulation program on a
microcomputer module proceeds until a when statement is
reached, at which point the microcomputer reenters its
home state. Upon reentering its home state, the module
examines its wait flag and enters the wait state if the
wait flag has been set by the host. If the wait flag
is not set, the microcomputer module queries its wait
flag and the status of the input ports monitored by the
when statement in turn using a round-robin algorithm,
until the wait flag is set or an input packet becomes
available. If the wait flag is set, the microcomputer
enters its wait state. If an input packet becomes
available first, the when statement is executed.

When the program module simulating Cell is executed on
a microcomputer, the microcomputer enters its home
state each time the when statement (Figure 5) that re-
ceives result packets at distnet-in is reached. The
run count of a microcomputer module is decremented at
the end of each cycle of operation of the simulated
unit, and the microcomputer module enters its wait
state if the updated run count becomes zero. In the
case of Cell, the run count is decremented and examined
each time the body of the outermost repeat statement is
executed.

Software Support

The structure of the controlling software system for
the simulation facility is presented in Figure 7. Op-
eration of sections of the simulated system is speci-
fied by modules in the architecture description lan-
guage in the manner described earlier. These modules
are translated into relocatable microprocessor object

relocatable
microprocessor

architecture machine
description language

71anguagel I system ~Translator I modules~-
specification -----~Iinker

l icroprocessor~ imulator 7

absolute
micro-
processor
machine
language
programs

source machine
language of language of
simulated simulated

user ~ I machine~-- 1
programs Compiler ~ L o a d e r

user
interaction Execution
during Monitor
simulation

Interfaee

Control
Bus

Figure 7. Structure of the simulation
control system.

62

code and are stored in the file system of the host
computer; the necessary programs from the file are
linked together to form a non-relocatable micropro-
cessor program. Either the individual procedures or a
complete simulation program can be tested by use of a
microprocessor simulator residing i n the host computer.
Once the simulation programs have been validated by
use of the microprocessor simulator, the programs are
loaded into the microprocessors, and the facility is
ready to execute a program of the simulated machine.

A user program to be executed on the simulated archi-
tecture is compiled into the machine language of the
simulated machine and sent to the microprocessor sys-
tem for execution. The debugging and evaluation cap-
abilities of the system are used to control execution
of the program and evaluate feasibility of the proposed
system architecture.

Conclusion

The architecture simulation facility appears to be a
powerful tool for the evaluation of packet communica-
tion systems. Its capabilities permit the testing and
evaluation of a broad range of architectural concepts.
The facility is currently under construction using the
Motorola M6800 microprocessor and a DEC PDP-II host
computer. Portions of the software system are being
developed on a PDP-10 computer to allow use of the lan-
guage CLU [4, 7]. The system is intended to be used
primarily for an investigation of the design and cap-
abilities of data-flow processors, and we expect it to
be invaluable for this application.

Acknowledgements

The authors wish to thank Bob Jacobsen and Dave Isaman
for many helpful cormnents and suggestions.

References

i. Dennis, J. B. Packet communication architecture.
Proceedings of the 1975 Sagamore Computer Confer-
ence on Parallel Processing, IEEE, New York, 1975.

2. Dennis, J. B., and D. P. Misunas. A computer arch-
itecture for highly parallel signal processing.
Proceedings of the ACM 1974 National Conference,
ACM, New York, November 1974, 402-409.

3. Dennis, J. B., and D. P. Misunas. A preliminary
architecture for a basic data-flow processor.
Proceedings of the Second Annual Symposium on Com-
puter Architecture, IEEE, New York, 1975, 126-132.

4. Liskov, B. H., and S. N. Zilles. Prograrmnlng with
abstract data types. Proceedings of ACM SIGPLAN
Conference on Very High Level Languages, SIGPLAN
Notices 9,4 (April 1974), 50-59.

5. Misunas, D. P. A Computer Architecture for Data-
Flow Computation. S.M. Thesis, Department of Elec-
trical Engineering and Computer Science, M.I.T.,
Cambridge, Mass., June 1975.

6. Misunas, D. P. Structure processing in a data-flow
computer. Proceedings of the 1975 Sagamore Co____mm-
purer Conference on Parallel Processing, IEEE,
New York, 1975.

7. Project MAC Progress Report X_~I, July 1973-1974.
Project MAC, M.I.T., Cambridge, Mass., 35-50.

8. Pro~ect MAC Progress Report X1, July 1973-1974.
Project MAC, M.I.T., Cambridge, Mass., 84-90.

9. Rumbaugh, J. E. A Parallel Asynchronous Computer
Architecture for Data Flow Programs. Report TR-150,
Project MAC, M.I.T., Cambridge, Mass., May 1975.

Rumbaugh, J. E. A data flow multiprocessor.
Proceedings of the 1975 Sagamore Computer Confer-
ence on Parallel Processing, IEEE, New York 1975.

Wirth, N. The prograrmning language PASCAL.
Acta Informatica I (1971), 35-63.

i0.

63

