MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

Computation Structures Group Memo 134 -1

A Highly Parallel Processor
Using a Data Flow Machine Language

by

Jack B. Dennis

Clement K. Leung
David P. Misunas

This work was supported by grant DCR75-04060 from the National
Science Foundation for research on data flow computer architecture.

January 1977
(Revised June 1979)

A Highly Parallel Processor Using a Data Fiow Machine Language*
by

Jack B. Dennis
Clement K. Leung
David P. Misunas

Abstract: A computer based on the data flow principle executes instructions in response to the
arrival of their operands -- there is no notion of sequential control flow. Because programs
expressed in data flow form are free of sequencing constraints other than those iméosed by the flow
of operands between instructions, a processor using a data flow program representation can be
designed to achieve highly parallel operation through concurrent execution of program parts which
have no data dependencies. A graphical data flow language and a corresponding architecture for a
highly parallel processor are presented in this paper. The language is illustrated by expressing a
Fast Fourier Transform algorithm in data flow form. A machine language program suitable for
executing the FFT algorithm on the data flow processor is derived, and the potential performance

of the processor for this computation is discussed.

“This work was supported by grant DCR75-04060 from the National Science Foundation for
research on data flow computer architecture.

1. Introduction

Most efforts to devise computer architectures for highly paraliel computation have retained
the traditional concept of sequential control flow in their machine level program representations.
On one hand a very limited level of parallelism is achieved through use of multiprocessor
organizations. On the other hand, parallel operation is achieved in single instruction stream
machines either through analysis of the instruction stream as in the IBM 360/195 [5], or through use
of specialized data formats and operations as in machines like the Texas Instruments Advanced
Scientific Computer [25] which have pipelined processing units, and in array machines such as the
Iiac 1V {9) and Staran [i0).

An alternate approach is to use an architecture able to exploit parallelism on a global basis
through use of a machine level program representation based on the concept of data flow. In such
a machine, the execution of instructions is driven by the flow of data, and any instructions that are
not data-dependent may be executed concurrently.

The concept of data-directed instruction execution has appeared several times in the
literature; in particular, see the reports of Shapiro, Saint and Presberg [33], Seeber and Lindquist
[32]) and Miller and Cocke (25]. However, these early papers left many questions unanswered and
failed to relate proposed architecture to a well-defined level of programming language expressive
power.

Later, w;ark in the area of program schemata, especially that of Karp and Miller [21, 22] led
to development of the d-ata flow program graphs [I14, 29] and related abstract models for
data-driven programs [4, 8, 24). This work led to the use of data flow program graphs as the basis
for the conception and development of several computer architectures having potential for extensive
exploitation of parallelism in computation. These early projects include the work of Davis at the

University of Utah (13], Arvind and Costelow at the University of California at Irvine [6], and a

closely related project at Toulouse, France (28], based on the single assignment idea of Tesler and
Enea [34]. Interest in the data driven approach to computer architecture has spread recently with
projects at the Texas Instruments Co., at Manchester and Newcastle Universities in England, and a
second project at the University of Utah.

In the Computation Structures Group of the MIT Laboratory for Computer Science, two of
the authors have designed several hypothetical machines that implement specific data flow
languages (16, 17}, and the architecture of a data flow multiprocessor that implements a high order
data flow language has been presented in the doctoral thesis of Rumbaugh (30, 31]. The subject of
the present paper is a comprehensive treatment of a data flow processor in which the machine
language programs are a direct encoding of programs expressed as data flow program graphs, and
an analysis of its performance potential for a particular computation of considerable importance --
the Fast Fourier Transform.

Data flow program graphs as a representation for computation that exposes concurrency
are developed in Section II. In illustration, a data flow program for the Fast Fourier Transform
algorithm is developed. The overall architecture and printiples of operation of the data flow
processor are presented in Sections III and 1V. The coding of the FFT algorithm as a machine
level program for the data flow processor is developed in Section V. The structure of the routing
networks that convey information between sections of the processor is discussed in Section VI,
where we also estimate the performance potential of our hypothetical processor for the Fast Fourier

Transform. In the concluding section we discuss improvements and extensions of our architectural

COI'ICEP[S.

11. Data Flow Program Graphs
We envision that a user of a data flow processor would express his programs in a textual

language and a translation program would be used to generate the machine level program

representation directly. The design of a textual source language and a translator to match the
qualities of a data flow computer is an interesting problem in itself and has been addressed in a
thesis report by Weng [36] and in (3], but further discussion is beyond the scope of this paper. To
illustrate the concepts of data-driven computation, we have chosen for presentation in this paper a
graphical representation of data flow programs, an example of which is given in Figure 1. These
data flow program graphs are convenient for representing the structure of programs prepared for
execution on the data flow processor and for studying their properties. In later sections, we develop
a program graph to represent a data flow program for an FFT algorithm and also derive from ita
machine language representation of the algorithm.

The nodes of a data flow program graph are of two kinds called actors and links.
Informally, actors perform elementary computational steps and pass results to succeeding actors by
way of the links.

For a formal discussion of the behavior of data flow program graphs we consider
configurations of the program graph in which tokens, represented by large solid dots, are associated
with certain arcs of the graph. Each token carries a value which is an element of some data type.
Several configurations of the program graph in Fig. | are shown in Fig. 2. The behavior of a data
flow program graph is specified by firing rules which specify the possible sequences of
configurations that may describe computations by the program graph. For all links and actors of
data flow program.graphs (with an exception noted later), the firing rule is the following: (1) A
node (an actor or a link) is said to be enabled if a token is present on each of its input arcs and no
token is present on any of its output arcs; (2) any enabled node may be chosen to “fire™; (3) firing a
link means removing the token from the input arc and associating its value with tokens placed on
each of its output arcs; (4) firing an actor means that tokens are removed from each of the actor’s

input arcs, the values associated with the input tokens are used to determine a result, and a token

Figure 1.

e link

A data flow program graph.

(a)

Snapshots of a data flow program in execution.

Figure 2,

carrying this result value is placed on the actor's output arc.

Figure 2 1llustrates the behavior of the program graph of Fig. I, which consists of the eight
actors Al - A8 and the six links LI - L6. Actors Al, A2 and A3 are input operators which place
values from the environment on their output arcs whenever they are available and the arcs are not
occupied. In Fig. 2a the values x?. xg and w0 have been received. In.this configuration of the
program graph, links LI, L2 and L3 are enabled. Suppose links L2 and L3 fire, placing tokens on
the input arcs of the multiplication actor A4. Then A4 may fire, placing a token ca}rying the value
xgwo on its output arc, yielding configuration (b). Links LI and L4 are now enabled and may fire
in either order. Once both fire, configuration (c) is reached. Actors A5 and A6 are now enabled
and their firings deliver the result values x? + xgw0 and x? - xgwo to output actors A7 and A8
through links L5 and L6 as in configuration (d). Whenever the environment is ready to accept an
available output, an output actor removes the token carrying the output value from its input arc
and delivers it to the environment. In the meantime, more input values x}, x% and wl! may have
been received and a second instance of computation by the program graph may follow the first
through the graph, as indicated in the figure. Thus this data flow program graph allows the
execution of computations in pipeline fashion.

The links and actors used in the data flow program graphs of the present paper are shown
in Figs. 3 and 4. The two kinds of links transmit data values (values of type integer, real or
complex, for example) and boolean values, respectively. The behavior of operator actors (Fig.
4a) has already been expléined; the function letter f may denote any primitive operation on data
values. The actors in the program graph of Fig. | are all operators. An identity operator (Fig. 4b)
is a special kind of operator that has one input arc and transmits its input value unchanged.

Deciders, gates and merge actors are used in the representation of conditional or iterative

computation in data flow program graphs. A decider (Fig. 4c) requires a value from each input arc

(a) data link (b) boolean link

o e

Figure 3. Links of the data flow language.

(a)

(d)

operator (b) identity (c) decider
o 60 E e 8 0
T-gate (e) F-gate (f) merge

Figure 4. Actors of the data flow language.

and produces the truth value resulting from applying the predicate p to the values received.
Tokens bearing truth values control the flow of data tokens by means of T-gates, F-gates and
merge actors (Fig. 4d, e, f). A T-gate passes a data token from its data input arc to its output arc
when it receives the value true on its control input arc. It will absorb a data token from its data
input arc and place nothing on its output arc if it receives the truth value false. An F-gate has
similar behavior, but with the sense of the truth value reversed. A merge actor has T- and F-data
input arcs, and a truth value input arc. When a truth value is received, the merge actor places a
token on its output arc bearing the next data value received on the corresponding data input arc.
A token on the other data input arc is unaffected.
The data flow program graph in Fig. 5 illustrates use of the decider, gate and merge actors.
[t represents the computation.of z = x" specified by the following conventional program:
input x, n;
y=Li=n
while 1 > 0 do
beginy:=y:x;i:i-1end
1:=Y
output z;
The successive values assumed by the loop variables y and i pass through the links they label in
the program graph. The decider emits a token caarrying the value true each time execution of the
loop body is required. (This routes the current values of loop variables thfough the body
operators.) When firing of the decider yields false, the value of y is routed to the output link z.
Note the presence of tokens carrying false values on the truth value input arcs of the

merge actors. These tokens allow the merge actors to initiate execution of the loop by passing in

initial values for the loop variables.

Figure 5.

An iterative data flow program.

>0

The Fast Fourier Transform
Now we are ready to construct a data flow program graph for the Fast Fourier Transform
algorithm. The discrete Fourier transform of a sequence of N = 2" input samples Xgr - XN-1 I8 the

sequence of values fg, ..., fiy.} where

N-1)
fk = Z Xi Wlk
i=0
4}
and
W = e-J(2nIN)

The direct computation of these values involves the accumulation of N2 product terms; the Fast
Fourier Transform (FFT) is based on the observation that the transform on 2P data samples can be
simply expressed in terms of two transformations on 2Pl samples. Continuing recursively, one
discovers that the transform on 2" points can be expressed in terms of n . 2" transformations of
two points each. Figure 6 shows the flow of values in one arrangement of the FFT computation for
eight data points (n = 3). This arrangement, in which the computation consists of n stages (the
columns of the figure) having identical form, is known as the time decimated, constant geometry
FFT (191 Each stage of the computation consists of N/2 units of similar form, known as
"butterflies,” which compute two-point transforms.

The general form of this FFT algorithm may be described as follows: Let u,, be the kth

P

component of the vector of values computed by the pth stage of the computation. Then B ., the

P4
qth butterfly of stage p computes

e
Upq = Up-1.2q * Up-1.2qa W P @

€
U qeanl ™ p-i2q " pri2qe WP ®

‘144 po3ewioap awll ‘Axjawoad juejsuod ‘jutod-3y3re 8yl -9 aanlyy

_ _ _ _ _ ,
O —_— o H.III.O
I © + —@ + X
0t \~ _ _ _ _ oz, - S o1, N _/ 00,
0€g 0T 014

e
where the exponcnt e_ . of each phase factor w_ . = W P9 is given by

P4 P9

€pq 2N°P quol(q, 2"°P) (1)

and

0<q<2nt

O<ps<n
The function quo(m,n) yields the integer quotient of m divided by n. The input values for stage
one are related to the data samples by

Ugy = Xj where i=rev(k)
in which rev is the operation on integers such that the n-bit binary representation of i is the
reverse of the n-bit representation of k. The output values are

fy =upg Osk<2"

We wish to take maximum advantage of parallelism in representing the FFT as a data
flow program graph, but since each actor will take space in the machine representation, we do not
want to use a larger program graph than necessary to-exploit concurrency. Since each stage of the
computation uses values computed by thsf preceding stage, it is appropriate to construct the
program graph as an n-cycle iteration in which the body consists of the on1 butterfiies comprising
one stage of computation written out explicitly. The form of the corresponding data flow program
graph is shown in Figure 7 for the eight-point case. .This is fairly easy because the constant
geometry of the computation over all stages makes it possible to use a fixed routing of values from
the outputs of the butterflies to their inputs where they become operands for the next cycle.
Qenerating the phase factors for each butterfly, however, presents a problem. The usual technique
is to use a table lookup in a table of powers of W, but our program graph notation includes no

suitable mechanism. Instead, the factor w_ . used for butterfly q in stage p may be computed from

P9

(e ‘¢ ‘1 ‘0) ur b yowa oz

*:oﬁumumcmo lojoed 3Iseyd 1013u0) dooy

- ! q - 3s57®3 |

_ 3ananf juvjsuo) Iseyq

*Ldd 3utod 3y31e ay3 ao3j ydead weaload moTJ wIwp UOTIRIIIT *f 9an3dyg

(1+bz) Ava_ (bz)asa

the factor Wo-lq used for the previous stage by a simple rule derived as follows: The exponents of
W for Ybq and Wp-1,q 3T (from (4)):
= n-p n-p
epq 2P quo(q, 2"°P)
- on-p+l n-psl
€p-lq = 2 quo(q, 2" F*)
Then
erq ” €-la * pa” €p-la)
PqQ P9 PG P9
=e 14+ 2"P (quolg, 2"P) - 2 quo(g, 2V P*))
P-1.q — — L,
Toq

Careful study of the factor Tp q reveals that

0 if quo{(g, 2"P) is even

Pq -
I if quo(g, 2"P) is odd
Thus Tp,q is the (n - p)tM bit in Gn-] -+ 9o the n-bit binary representation of q. Let bit(r, q) be a

primitive function that yields the r'h bit of q. Then we have

w 1 X G bittn - p,q) « 1then W2 P else 1)

pqg = "p

The initial value of the phase factor for the qth butterfly is

¥iq . welq where €q " ol quo(g,)

WO (14 j0)

The computation of the phase factors ¥4 is performed by the sections of Figure 7 labelled "Phase
Factor Generation” and "Phase Constant Queue.”

We suppose that the signal values are delivered to the program graph as a continuous

$rr

b3
L
Figure 8,

fan-out — Xy
alternator £
—— — — - — -4
| |
1 T | .
(1 - *1
|
|
f

" [
= [
|
|
F >— ~/1-3\ - X
o | ¢ 2
| | o
| |
B f L Xq
| |
ke — - = — - __1
£
= L X5
N —e el T b4
i 6
L £ *7

Tree of fan-out alternators for sample distribution.

Fan-in altermnator.

Figure 9.

stream through a single input operator, and must be distributed among the 2" input links of the
FFT program. This may be done by means of a binary tree of program graph fragments, which
we may call fan-out alternators, connected as in Fig. 8. A similar binary tree of fan-in alternators

(Fig. 9) can be used to form the transform values fg, .., fyy_| into a stream.

I1l. The Data Flow Processor: An Overview
The data flow processor is a stored program computer designed to exploit the concurrency

of action represented by data flow program graphs such as we have illustrated for the Fast Fourier
Transform. The overall structure of this processor is shown in Fig. 10; it consists of five major
sections connected by channels through which information is sent in the form of discrete packets.
The five sections are:

Memory Section -- consists of Instruction Cells which hold

instructions and their operands.

Processing Section -- consists of Processing Units that perform the
basic operations on data values

Arbitration Network -- delivers operation packets from the Memory
Section to the Processing Section.

Control Network -- delivers control packets from the Processing
Section to the Memory Section.

Distribution Network -- delivers data packets from the Processing
Section to the Memory Section.

-Briefly, instructions held in the Memory Section are enabled for execution by the arrival of
their operands in data packets from the Distribution Network and control packets from the Control
Network. Enabled instructions, together with their operands, are sent as operation packets to the
Processinrg Section through the Arbitration Network. The results of instruction execution are sent

through the Distribution and Control Networks to the Memory Section where they become

Processing Section

(’ T
Processing
rﬁ Unit
®
{
®
Processing
r’ Unit \
] Y,

control ® o o
packets

Control
Network
data operation
packets packets
/

® o o
(,\
Instruction
Cell > _J
Nl e
Distribution . ° ° Arbitration
Network R . Network

e . ‘ : L

Instruction
Cell Yoo
. _/

Memory Section

Figure 10. General Structure of the data flow processor,

operands of other instructions. We next consider the operation of each section in more detail.

The Memory Section of the processor is a collection of Instruction Cells. Each Instruction
Cell has a unique identifying address, the cell identifier. An occupied Cell holds an instruction
consisting of an operation code and several destinations. Each destination contains a destination
address, which is a cell identifier, and additional control information used by processing units to
generate result packets. An instruction represents one or more actors of the program graph together
with their output links. Instructions are linked together through destination addresses stored in
their destination fields.

Each Cell also contains three Receivers (Figure 12) which await the arrival of values for
use as operands by the instruction. Once an Instruction Cell has received the necessary operand
values and acknowledge signals,l the Cell becomes enabled and sends an operation packet,
consisting of the instruction and the operand values, to the appropriate Processing Unit through
the Arbitration Network.

The Arbitration Network provides a path from each Instruction Cell to each Processing
Unit, and sorts the operation packets among 1ts output ports according to the operation codes of the
instructions they contain. For each operation packet received, a Processing Unit performs the
operation specified by the instruction using the operand values in the packet, and produces one or
more result packets which are sent to Instruction Cells through the Control Network and
Distribution Network. Each result packet consists of a result value and a destination address
derived from the instruction being processed by the Processing Unit. There are two kinds of resuit
packets: control packets containing boolean values or acknowledge signals, which are sent through

the Control Network; and data packets containing integer or complex values, which are sent

l. Acknowledge packets at the machine level are needed to correctly implement the firing rule for
program graphs. Their use is explained fully in Section V.

through the Distribution Network. The two networks deliver result packets to Receivers of
Instruction Cells as specified by their destination address fields; that is, result packets are routed
according to their destination address.

Arrival of a result packet at an Instruction Cell either provides one of the Receivers of the
Cell with an operand value or delivers an acknowledge signal; if all result packets required by the
instruction in the Cell have been received, the Instruction Cell becomes enabled and dispatches its
contents to the Arbitration Network as a new operation packet.

ANote that the functions performed by the processing unit of a conventional machine are
distributed among several sections of the data flow processor. The operations specified by
instructions are carried out in the Processing Section, but control of instruction sequencing is a
function of the Instruction Cells of the Memory Section, and the decoding of operation codes is
partially done within the Arbitration Network. Also unusual is the fact that address fields
(destination addresses) of instructions only specify where results are to go, and are not used to access
operand values. Instead of instructions having to ask for their operands, the operand values are
sent to the instructions.

We emphasize that all communication between parts of the data flow processor is by packet
transmission over the channels shown explicitly in Fig. 10; there are no connections other than those
shown in the figure. Furthermore, transmission of packets over each channel is done using an
asynchronous protocol so the five sections of the processor may operate independently without need
fo; a clock or other central source of timing signals. Systems organized to operate in this manner
are said to have packet communication architecture [15).

In particular, note that the Instruction Cells are assumed to be physically independent, so
at any time many of them may be enabled. Later, we will show how the Arbitration Network can

be designed so many instruction packets may flow into it concurrently and be funneled into dense

streams of packets directed to the processing units. Similarly, the Control Network and the
Distribution Network can be designed to distribute dense streams of control and data packets
efficiently to the Instruction Cells through highly concurrent operation. In this way, highly parallel
operation of the entire processor is achieved, and the appetites of pipelined processing units can be

satisfied.

1V. The Data Flow Processor: Principles of Operations

We have described the major modules of a data flow processor and a graphical
representation of data flow programs. The architectural implications of data flow concepts is
further studied in this paper by deriving a machine level program representation of the FFT
algorithm from the program graph of Figure 7 and estimating the performance of a data flow
processor in executing this program. In this section we define the data flow processor modules in
sufficient detail to support these developments. An instruction set is specified, and its capabilities
are explained by detailing the principles of operation for an instruction cell and for two functional
units.

The Processing Section consists of five processing un‘its having characteristics appropriate

for the FFT algorithm:

1. Multiplier -- multiplication of complex operands.

o

Adder -- addition and substraction of complex operands.

7

Distributor -- replication and distribution of data and control values.
4. Int-Processor -- integer arithmetic and test operations.
5. Cnti-Processor -- replication and routing of data and control values.
The formats of packets transmitted between major sections of the data flow processor are
given in Figure Il. Each instruction consists of an operation code from opcode-set and an array of

up to five destinations which specify the data and control packets to be generated by instruction

definitions:

type instruction = record
opcode: opcode-set;
dest: arrayli.5] of destination
end;

type destination = record
used: boolean;
send-ack-signal: boolean;
switch: {null, boolean};
addr: address
end;

type address = record
cell-id: 1. n-of-cell;
rec-id: 1.3
end;

type operand = {null, boolean, integer, complex):

type operation-pkt = packet
inst: instruction:
opd: arrayl(l.3] of operand
end;

type cntl-pkt-c - packet

ctype: (ACK, BOOL);
value: {null, boolean}
addr: address

end;

type cntl-pke-r - packet

ctype: (ACK, BOOL),
value: {null, boolean},
rec: 1.3

end;

type data-pkt-c - packet

dtype: (INT, CPLX):

value: {integer, complex};
addr: address

end;

type data-pkt-r = packet

dtype: (INT, CPLX);
value: {integer, complex};
rec: 1.3

end.

Figure IL. Packet Definitions for a Data Flow Processor.

- 14 -

execution in the Processing Section and where the packets are to be sent. A destination consists of
an address and other information to be explained later, which is interpreted by the Processing
Units. An address consists of an integer that designates an Instruction Cell and an integer that
specifies the Receiver of the Instruction Cell which is to receive a control or data packet. An
operation packet consists of an instruction and an array of three operands, each of which may be
null in case the operand 1s not required. Two forms of control packets and two forms of data
packet are declared; this is because the cell-id component of the address field is irrelevant once the
packet has been routed to the correct Instruction Cell by the Control or Distribution Network.
Packets generated by the processing units are of type data-pkt-c or ¢ntl-pkt-c. Packets delivered to
instruction cells are of type data-pkt-r or cntl-pkt-r.

The Arbitration Network delivers an operation packet from an Instruction Cell to the
processing unit specified by its opcode. The Distribution Network delivers a data packet from a
processing unit to the Instruction Cell specified in its cell-id. Similarly the Control Network
delivers control packets from processing units to Instruction Cells. The structure of the routing
networks will be discussed later where we relate their characteristics to the performance potential of

the data flow processor for the FFT algorithm.

Instruction Cell Operation

The function of each Instruction Cell is to receive control and data packets, and to transmit
an operation packet when all needed operands have arrived and the enabling condition for its
instruction is satisfied. In a mach|;1e llanguage program which contains an iteration construct, or
which is intended to process data streams via pipelining, it is necessary to condition instruction
execution on receipt of a .specified number of acknowledge signals (as explained in Section V) in

order to implement the firing rule correctly. Thus the general enabling condition for an Instruction

Cell is that the required data and control packets have arrived and that the Cell has also received a

-15 -

specified number of a‘cknowledge packets.

As shown in Figure 12, an Instruction Cell consists of an input interface module
Cell-Input-Cntl, three Receiver modules and an output interface module Cell-Output-Cntl. The
Cell-Input-Cntl unit processes control and data packets, sending acknowledge signals on to
Cell-Output-Cntl and distributing operand values to the Receivers according to the receiver
number in the packet. The format of receiver packets, sent from Cell-Input-Cntl to the Receivers,

is:

type receiver-pkt = packet rtype: (BOOL, INT, CPLX);
value: {boolean, integer, complex} end,
A behavior description of the Cell-Input-Cntl module is given in Figure 132 Behavior descriptions
for the Receiver module and the Cell-Output-Cntl module are given in Figures 14 and 15.
Each Receiver (Figure 14) may be set (by initializing receiver-type and receiver-mode) to
provide one of three different types of operand values, boolean, integer or complex, and to

operate tn one of two modes: constant and variable. The behavior of a Receiver for each allowed

2. The constructs used in these descriptions are familiar programming language constructs except
for the receive and send statements. We envision that operations specified in the separate boxes
of a behavioral description are carried out concurrently, and are synchronized by passing signals
between them explicitly. A statement

receive x at P

means that the next packet to arrive at input port P is made the value denoted by identifier x. A
statement

sendy at Q

means that the value denoted by identifier y is transmitted at output port Q. Execution of a
receive statement cannot be completed until an input packet is available at the named input port.
Likewise execution of a send statement is not completed until the unit connected to the output port
is prepared to accept a packet. It is also assumed that proper arbitration is performed when send
statements having the same output port are executed concurrently.

Cell-Input-Cntl ignal Cell-Output-Cntl

[s)
3 [
P T
- ey
) V) @
|
; ¢
5 o Receiver[1]]
|
- - &
cntl-net-in b [1] [1]
A data contents
X \ \
kS 3
§ 5| arbmet-out
1-pk ﬁ
tl-pkt-r -
enti-p — Receiver[2] —_ .
c] — &
. . 5 3f 121, N 1215 3
dlst-net-ln,\ I 5 data contents -] .
i B ~ \ : - \ by operation-pkt
o o o
] 1 =
] 3] o
9 Q (3]
o -
® R iver[3]
data-pkt-r ecelv
[3]/ . [3]
y data contents j

\. receiver-pkt

operand———J

Figure 12. Structure of an Instruction Cell.

cntl-pkt-r data-pkt-r—P

cntl-pkt-in data-pkt-in

4 I)
ﬂ Process control packets «/ \

var cntlpkt: cntl-pkt-r;
do forever
begin
receive cntipkt at cnti-pkt-in;
case cntlpkt.ctype of
ACK: send signal at ack-sig-out;
BOOL: send [rtype: BOOL, value: cntipkt.value]
at rec-pkt-outlentlpkt.rec);

end case
end /
ﬂ Process data packets #/ \
var datapkt: data-pkt-r;

do forever
begin
receive data-pkt at data-pkt-in;
send [rtype: datapkt.dtype, value: datapkt.value]
at rec-pkt-out [datapkt.rec};

/\/

ack-sig-out rec-pkt-out{l] rec-pkt-out{2] rec- pkt-out[3)

signal
R 1

Figure 13. Behavior description of Cell-Input-Cnti.

- receiver-pkt

A
L)

QC———— receiver-pkt

data

\

[variables set at instruction load time «/
var receiver-type: (NULL, BOOL, INT, CPLX):
receiver-mode: (constant, variable);
value: operand; /:: set for constant node only «/
I others =/
rec-pkt: receiver-pkt;

case receiver-mode of
/= Receiver in constant node ¢/
constant:
case receiver-type of
NULL: do forever
begin send nil at contents end;
INT, CPLX:
do forever
begin send value at contents end:
otherwise: error;
end case;
/= Receiver in variable node «/
variable:
if recerver-type = NULL then do forever
begin send nil at contents end:
else begin
receive rec-pkt at data;
if rec-pkt.rtype <> receiver-type then error;
else send rec-pkt.value at contents;
end.

otherwise: error:
end case

A /

contents

operand

Figure I14. Behavior description of a Receiver module.

signal

ack-signal

operand —p —J

cperand-

ing (1]

P —<p

(211 (3]

f [variables initialized at instruction load time #/
var ack-expected, ack-received: integer;

/= count acknowledge packets =/

do forever

begin

if ack-received = ack-expected

then begin signal ack-complete; ack-received :=

else begin receive signal at ack-signal;

ack-received := ack-received + | end;
end

]

\

0 end

)

ack-complete

f

H

4

var instr: instruction;
/= others =f

I Assemble operation
do forever
begin

packet «f

R
/I::: variables initialized at instruction load time &/

operand-array: array [1..3) of operand;
opn-pkt: operation-pkt;

receive operand-array [I] at operand-in [1];
receive operand-array [2) at operand-in [2};
receive operand-array [3] at operand-in (3}
opn-pkt := [inst: instr, opd: operand-array);

kon ack-complete send opn-pkt at opn-pkt-ouj
end j

opn-pkt-out

operation-pkt

Figure 15. Behavioral Description of the Cell-Output_Cntl unit

-16 -

combination of type and mode is summarized in Table I. If the instruction held by an Instruction
Cell requires fewer than three operands, then one or more of the Receivers are set to type NULL; in
this case the Receiver 1s always enabled and delivers the value nil repeatedly, since
Cell-Output-Cntl requires an operand packet from each Receiver to form each operation packet.

The instruction held by an Instruction Cell is represented by the value of instr in
Cell-Output-Cntl (Figure 15). The number of acknowledge packets required to enable the
Instruction cell and the number of acknowledge packets received since the previous firing of the
Instruction Cell are stored in ack-expected and ack-received. The upper box of the Cell-Output-Cntl
module waits for arrival of the expected number of acknowledge packets; it then resets its count and
transmits the signal ack-complete. The lower box waits for this signal, and then transmits an
operation packet containing one operand value (possibly nil) from each of the three receivers.

The variables instr, ack-expected and ack-received in Cell-Output-Cntl and receiver-type,
receiver-mode and value in each Receiver must be initialized with values derived from a machine
language program for its proper execution on the data flow processor. The corresponding
"loading” mechanisms for setting these values will not be discussed in this paper.

Table 2 presents the instruction types which will be used to code the FFT program for the
data flow processor. These instructions are defined so several actors in a data flow graph may be
encoded by a single instruction. Although these instructions have been chosen to illustrate the
performance achievable in the FFT computation, they are nevertheless representative of the sort of
instructions that might be included in a complete instruction code. For each type of instruction, the
letter (M, A, D, I or C) under each instruction name indicates the Processing Unit that executes
instructions of that type. The format given in the table specifies the type of each Receiver and
whether a value is required from it. The format also indicates the kinds of destinations that make

sense for the instruction. This requires a bit more explanation. Destinations have the form

Table 1. Type and Mode Settings for Receivers
Symbol Receiver Receiver Packet(s) Enabling

Type " Mode Required Condition
N NULL none always enabled
B BOOL variable BOOL receipt of a boolean packet
I INT variable INT receipt of an integer packet
Cc CPLX variable CPLX receipt of a complex packet
Ic INT constant none always enabled
Cc CPLX constant none always enabled

Name Format Results Name Format Results
i-add c-sw oL > (2) if b = false
Integer L{[p] - : (p +4q] Complex Cll b4] 0-———2——5- {z) if b = true
Add [] Switch B |[b]
(1) k * = a2 (©) * - a
N N
i-sub ’ c-add 0—-—F—>- (x +y) if b = gglse
o——3>= (p - q) | Complex T _
Integer L e | Add and ! X] o —>= [x +y) 1f b = true
Subtract Il[q] a Switch c[y]
(1) Tt 2 (A) W P 2
N B {[b]
i-dist Compl c-sub G—L—>- (x - y) if b = false
o—1—> [r]} omp - ex T MR
Integer I r] Subtract |[C|[x]| &t—>= (x -y} if b = true
Distribute N and Switch clp v i
(D) WP~ 2 (A) = - a
N B i[b] '
c-mul i-less | O~+——> (b} where b =
Complex clI x 1 & > (x xy) Integer Il p 1 ‘ ifrp<g
then true
Multiply clr v] Compare i q 1 clee false
N N
c-dist i-bit O—+—> (b) where b =
Complex Cil z 1 - > (z) I p] Lf bit(p,q) =1
: Bit Test then true
Distribute N I) II[] else false
N
b-dist i-sw e——=_5 p if b = false
--——-—4:> b
Boolean B[b] O+ (b) Integer I I[p 1] O—n——ig—%»- p if b = true
Distribute a
N Switch B |[[b] 1l a
() * > 2 ©) . " >
N

Recelver types: N-NULL; B-BOOL; I-INT; C-CPLX Values: p,q,r-integer; x,y,z-complex; b-boolean

Table 2., Instruction types,

17 -

type destination = record

used: boolean;

send-ack-signal: boolean;

switch: {null, boolean};

addr: address

end;
and are used by Processing Units to determine the control and data packets they generate. The
used field is set to false if this destination is not needed in the program. If an acknowledge packet
is to be sent to the Instruction Cell specified by a destination address, then its send-ack-signal field
is set to true. Otherwise a result packet generated according to the instruction type is sent.

An instruction such as i-add that represents a data flow operator, or such as c-dist that
provides necessary fan-out, would typically use destinations for both purposes. The switch fields of
destinations, while ignored in the execution of these instructions, are used in the several switch
instructions provided. A switch instruction is convenient for coding the commonly occurring
program graph fragment shown in Figure 16. For these instructions, the switch field of a
destination indicates whether a result packet should be sent to the Instruction Cell specified by the
destination address in the event of a false outcome (F), a true outcome (T), or both (nil). In our
figures, destination arcs of switch instructions with non-null switch fields are always labelled with
the corresponding boolean values (Figure 16).

The memory space required in an Instruction Cell depends on the number and type of
operands and the number of destinations used, and the possibilities permitted by our specification
of the Instruction Cell span a wide range. Clearly, the instructions for complex arithmetic are the
most demanding of memory for operands, so the number of used destinations should be limited. In
our programs, we have permitted instructions to have up to five destinations. The manner in

which operands and destination addresses are efficiently coded in Instruction Cells and in operation

packets is a matter that would be dealt with in the detailed design of a complete instruction code.

A

il A ¢
jl"ﬂ I3

'Figure 16. The switch instruction.

- 18 -

Processing Unit Operation

To illustrate the operation of the processing units, we consider the Int-Processor unit and
the Cntl-Processor unit in more detail. Qperation of the remaining units is similar.

As shown 1n Fig. 17, the Int-Processor unit consists of an Int-ALU module and an Int-Cntl
module. The Int-Cntl submodule receives operation packets of the form

linst: [opcode: (i-add, i-sub, bit, less), dest: arrayl[l.5] of destination),
opd: arrayll: integer, 2: integer, 3: null]]

On receipt of an operation packet, Int-Cntl determines whether addition, subtraction, bit test or

comparison is required and sends a command-pkt of the form

[op: (i-add, i-sub, bit, less), opl, op2: integer)

to Int-ALU to request that the appropriate operation be performed. Upon receiving from Int-ALU

a result-pkt of the form

[rtype: (BOOL, INT), value: {boolean, integer}]

Int-Cntl constructs control and data packets for transmission through the Control and Distribution
Networks according to the destination fields of the operation packet.

Behavioral descriptions of the integer processor control unit and of the integer arithmetic
logical unit are given in Figs. I8 and 19. Both descriptions are straightforward and should be easily
understood.

The Int-Cntl module consists of two parts which are activated alternately. The first part
waits for an operation packet to arrive; then it fetches the operands from the packet, determines if
the operation code is either of the four allowed values, and dispatches to the Int-ALU module the

two integer operands and a scalar value indicating whether addition, subtraction, bit test or integer

command -pkt

Int-Cntl
(") Int-ALU
arbnet-in ? —3larbnet-in } (ﬁ
operation-pkt command-out command
cntlne t=0ou teeg—o) cntlnet-out
cntl-pkt-¢ result-in result
N—
distnet-out g} \distnet-out J result-pkt

data-pkt-c

Figure 17. Structure of the Int-Processor processing unit,

operation-pkt result-pkt

arbnet-in result-in

f var dest-arry: array [1.5] of destination; \

opdl, opd2: integer;
op: (i-add, i-sub, bit, less);
op-pkt: operation-pkt;
result: result-pkt;
do forever
begin
/- Process operation packets =/
receive op-pkt at arbnet-in;
typecase op-pkt.opdli] of
integer: opdl := op-pkt.opd[l};
otherwise: error;
end case;
typecase op-pkt.opd(2] of
integer opd?2 := op-pkt.opd(2};
otherwise: error;
end case
op := op-pkt.inst.opcode;
dest-arry := op-pkt.inst.dest;
send [opn:op, opl:opdl, op2:0pd2] at cmnd-out;
/= Transmit data and control packets /
receive result at resuit-in;
for i =1.5do
begin
d := dest-arryli};
if d.used then
case d.send-ack-signal of
true: send(ctype: 'ACK", value: nil, addr: d.addr)
at cntlnet-out;
false: case result.rtype of
BOOL: send [ctype: BOOL, value: result.value, addr: d.addr)
at cntinet-out;
INT: send [dtype: INT, value: resuit.value, addr: d.addr]
at distnet-out;
otherwise: error;

end case
end case
end
k end J
cntinet-out distnet-out cmnd-out
cntl-pkt-c data-pkt-c command-pkt

Figure I8. Behavioral description of the integer processor control unit.

command-pkt

command

(var cmnd: command-pkt; ‘

op: (i-add, 1-sub, bit, less);
rl, r2:integer;
rtype: (BOOL, INT),
value: {boolean, integer};
do forever
begin
receive cmnd at command;
op := cmnd.opn;

rl := emnd.opl;
r2 := cmnd.op2;
case op of

i-add: begin value := rl + 12;
rtype := INT end;
i-sub: begin value := rl - 12;
rtype := INT end;
bit: begin value := odd (rl rshift r2); /« bit test on rzth bit of rl »/
rtype := BOOL end;
less: begin value := rl < r2;
rtype := BOOL end;
otherwise: error;
end case;

send (rtype: rtype; value: value] at result
end

N J

result

result-pkt

Figure 19. Behaviorai description of the Int-ALU unit.

operation-pkt

arbnet-in

K/ar op-pkt: operation-pkt; \

dest-array: array(l..5] of destnation:
d: destination
sendp: array [1.5) of boolean,
ctype: (INT, CPLX);
do forever
begin
' receive op-pkt at arbnet-in;
dest-array := op-pkt.inst-dest;
/= determine conditions for sending result packets «/ |
for 1 =15do
begin
d := dest-arrayli];
typecase d.switch of
null: sendpli] := d.used;
boolean: sendpli] := d.used and
(op-pkt.opd(2] eq d.switch)
otherwise: error
end case
end
I+ use ‘conditions set up above to send result packets «/ .
fori=15do
if sendp [i] then
begin d := dest-arry [i);
if d.send-ack-signal
then send [ctype: ACK, value: nil, address: d.addr)
' at cntinet-out;
else begin
typecase op-pkt.opd(l] of
complex: ctype := CPLX;
integer: ctype := INT;
otherwise: error
end case
send [ctype: ctype; value: op-pkt.opd(l], address: d.addr] .
at distnet-out;

~ end
end . |
vnd :
cntlnet-out distnet-out
cntl-pke-c . ——————— data-pkt-c
Y

Figure 20. Dehavioral description of the Cnti-Processor.

comparison is required. The components of the destination array of the operation packet specify
what is done with the result value when it is returned by Int-ALU. For each destination, Int-Cntl
sends an acknowledge packet, a boolean packet, a data packet, or nothing if the destination is
marked as unused.

Use of the swirch field is illustrated in the operation of the Cntl-Processor unit (Figure 20).
For each operation packet received, the Cntl-Processor unit first of all decides which Instruction
Cells should receive result packets. Each such cell is addressed by a destination marked as used;
furthermore, if the switch field of the destination is set to either true or false, its value must match
that of the boolean operand carried along in the operation packet. To each such cell the

Cntl-Processor unit sends a result packet, just like the Int-Cntl module.

V. The Fast Fourier Transform Program

In this section we develop a complete machine level program for the FFT algorithm
expressed as a data flow program graph in Figure 7. Groups of nodes in the program graph are
encoded tnto machine instructions. For execution on the data flow processor, these machine
instructions are loaded into Instruction Cells and linked together through cell identifiers stored in
the destination fields of these instructions.

To illustrate the general procedure, let us consider the pair of data flow operators shown in
Fig. 2la. First the program graph is partitioned (as in Fig. 2lb, for example), where it is intended
that each blo;k be able to compute concurrently with others in hipeline fashion. Then the program
graph is encoded into Instruction Cells using acknowldge signals so the machine level program
correctly simulates the program graph firing rules. Partitioning of this program segment and the
corresponding machine instruction encoding are shown in Figs. 2Ib and 2lc, respectively. Each
execution of the instructions in Cell-c delivers a data packet to Cell-d. Each execution of the

instruction in Cell-d returns an acknowledge packet to Cell-c, and the re-enabling of Cell-c is

(a) program graph

Cell-a
Tt

[
———

Cell-c
r=--""""77

i..-_______j , Cell-e

(b) partition

)

Cell-a

————— _| :
i
D — -
Cell-b |
_____ I
Cell-c Cell-d
i-add 1/1 i-sub
> I g]| ® > 1 o e
It 1]
c 1 % =
¥—] *_“___T
N i] v N

Cell-b o

(¢) machine level representation

Figure 21.

Machine level representation of program graphs.

-90 -

predicated upon the receipt of this acknowledge packet {c.l. Instruction Cell Operation, Section 1V).
According to the semantics of data flow graphs under the firing rule (Section 11), data link ¢
encoded in Cell-c cannot fire until its output arc is empty. This condition is signalled during the
execution of a machine language program by sending an acknowledge packet from Cell-d to Cell-c.
To indicate the necessary synchronization, the pair of numbers within the ellipse in an Instruction
Cell (Fig. 2lc) specifies the number of acknowledge signals required to enable the cell, ae, and the
number of signals presumed to have been received in the specified configuration, ar. These
variables are initialized to their proper values for each instruction in a machine language program.
It should be noted that when a machine instruction encodes several actors and their output links,
each execution of the machine instruction corresponds to the firing of the actors followed
immediately by the firing of the output links. Hence such a machine instruction must not be
enabled until the instruction cells implementing the output arcs of these data links are all free to
receive the next set of data.

A detailed discussion on the deadlock problems that may arise in a data flow processor
supporting iteration if acknowledgements are not provided in a machine language program can be
found in [I7).

The main body of the FFT program graph (Fig. 7) is an iteration construct. To facilitate
the subsequent presentation, an example of an iteration construct and its machine level
implementation are shown in Fig. 22 Initially Cell-in (Fig.22)is enabled upon receiving a data
packet. Each time the predicate p in Cell-pred evaluates to true, execution of the instruction in
Cell-cntl delivers a data packet to Cell-lj and an acknowledge packet to Cell-lg, allowing a new
iteration. If p evaluates to false, the output of the iteration construct is sent to Ceil-out and an
acknowledge packet is sent to Cell-in, allowing the iteration construct to be re-entered. Cell-cntl can

be re-enabled upon receiving an acknowledgement from either Cell-lj or Cell-out. No

(a) program graph
Cell-in
i-add /D]
—> 1| 1l \
[
Il 2]
N *“)
F
(" cell-pred Cell-entl
2 /D ey QD74 F
1] S>> LI] =
o
g o N I e e
N l N T
4
I
)
- Cen-'ﬂz . I Cell-f,l
[[izaad t-mul Q/D) | r
1 g |] =< —o | 1|l] e
Il 1] Ie ([]
TN T w
C C
(b) machine level implementation

Figure 22.

Cell-out

Machine level representation of an iteration construct.

-9 -

acknowledgement is needed from Cell-pred to Cell-in and Cell-l.. The reader should convince
himself that the cell configuration in Fig. 22 implements an iteration construct correctly, according
to the firing rule for program graphs.

The data flow program graph for the FFT algorithm (Fig. 7) consists of five major
sections: Phase Constant Generation, Loop Control, Phase Factor Generation, Butterfly and

Distribution Trees. We consider each section in turn.

Phase Constant Generation

The Phase Constant Queue section of the FFT program graph (reproduced in Fig. 23)3
might be partitioned into three blocks (Fig. 23a) for machine level encoding. This yields the
instruction cell configuration in Fig. 23b. However, we have already noted that this partition
should not be used naively.to derive the machine language representation in Fig. 23b. The
difficulty is that executing any instruction in Fig. 23b results in delivering a data packet to an
occupied cell receiver, in violation of the firing rule. To avoid this problem, we use the partition in
Fig. 23c, after adding an identity operator, to derive the machine language representation in Fig.

22d.

Loop Control

The data flow graph of the Loop Control section is reproduced in Fig. 24. Partitioning
and implementation of this program graph (Figs. 24a and b) follows closely the strategy illustrated
in Fig. 22. Note that each execution of the instruction held in Cell-cntl delivers two acknowledge

packets back to Cell-cntl, so that the enabling condition of Cell-cntl does not depend on the decision

3. To avoid clustering up the figures, we have introduced a new arc type ———>= to denote a
pair of arcs delivering a data packet in the forward direction and an acknowledge packet in the
opposite direction.

Figure 23.

Machine level repressentation of the phase constant queue.

(a) phase constant queue with partitioning.
c-dist c-dist c-dist .__:]
c|l wl 1] e »c |l W2)| e c [1 wt]
o > W
N N N p
N N
(b) machine language program from (a)
Cell-1 Cell-2 Cell-3 Cell-4
r -1 r 1 r A r 7
W
P
(c) adding an identity operator
c-dist /0 c-dist c-dist /D czdist /D o |
cliwl 1] &+ cll w2 1|7y c]i w¢ 1]|¢T+HC|l 1| &tw
N N N N
N N N N
Cell-1 Cell-2 Cell-3 Cell-4
(d) machine language program from (c)

Cell-in

false

Cell-

(a) partitioning the program graph

pred

(b) machine level representation

Figure 24,

Cell-igﬁ
i-dist (EZI) —t W
I|[1 1| T ‘1
N
N . by
r_ _J
Cell-pred Cell-cnt%_ﬁ F|F F
i-less@ o i-sw @ ::)
- T [I 7| *
Ie|l 4 1 =~ B[] ._:\—\)
N N ;—'
))
{Cell‘ﬁ,z
T
o | 2dd @O |- =
I -
__J
T i L] 11
Ce -zl
T N
1-sub @ .
1|l] | =
n-
p* — I [3]
»*
N N
|\

Machine level representation of the loop control section.

Cell-in

———

C

1-dist @
T T 1] *

[

loop control section.

.—-]
——[>b
p
— 3
Cell-pred Cell-cntl
: * 4 E
i-less OH— hlsw@*-_J
el I I}l - —
Lt s 1]C B II Ll * T
N N ?
J
-
Cell',e,2
.‘i-add® T
jr 1] g
Il]
—te [
Cell-z1
isw QO T
n-p - s 1
* I|(]
N
Figure 25. An optimized machine level implementation of the

-922-

outcome (a boolean operand) it receives from Cell-pred. A slightly optimized implementation of the

Loop Control section is given in Fig. 25, obtained by applying the following transformations to the
machine level representation of Fig. 24b:

i. Whenever execution of the i-sw instruction held in Cell-cntl delivers a
data packet to Cell-lo, an acknowledge packet is also delivered to Cell-lo.

The acknowledgement can be omitted and the enabling condition of Cell-l2
adjusted accordingly. Similarly acknowledgement from Cell-iy to Cell-cntl
can be omitted.

ii. Each time Cell-ll receives an acknowledgement, it will send one in turn

to Cell-cntl. The latter can be eliminated by sending the acknowledgement
intended for Cell-l; to Cell-cntl directly (Fig. 25).

iii. Every execution of the instruction in Cell-cntl leads indirectly, either

through Cell-in or Cell-l}, to delivery of a data packet to Cell-pred.
Acknowledgement from Cell-cntl to Cell-pred can be omitted and the

enabling condition of Cell-pred adjusted accordingly.
These optimizing transformations illustrate the opportunities for reducing the number of

acknowiedgements needed to implement the firing rule correctly.

Phase Factor Generation

For each iteration of the FFT algorithm, each butterfly section receives a phase factor
generated by the program graph shown in Fig. 26. To derive the machine level implementation,
we partition the program graph as in Fig. 26a. The corresponding machine language program is
given in Fig. 26b. Noting that several acknowledgements have been eliminated throﬁgh
optimization, the reader should again convince himself that this machine level program correctly

implements the program graph.

Butterfly Section

Derivation of a machine level program from the program graph of a Butterfly section is

¥pq
Butterfly

(a) partitioning the program graph for phase factor generation

Figure 26. Machine level representation of phase factor generation.

3

L]

-3

CclI1+30]
(N
Gen-cntl _S-sw @
— = C || 1| o
b, e8I]
l N
Gen-6 y
o c-dist (i::) .
w c|I] —
Pq e
hutter fly ————1 N[]
Tlv|t]
L
Gen-5
c-mul
— I c [T] f—r
T
ClI] —
N

(b) machine level implementation

|

¥rev(2q+l) rev(2q)

T

(a) partitioning the program graph

Figure 27. Machine level representation of the butterfly section.,

F But-cntl-1
xrev(Zq) r_, N
cse D] &
Pt
c [1 E t
B I] L I
™\
T N *
- = _J
u2q - <J
b —
< @ 1)“’ = w But-cntl-Z]
rev(2q+ = N i
c-8w * F
[—@]. (= = —
(%=
N X
) . UL ’)
Yog+l ¢)
But-3 But-1
c-add c-dist @/2)
u ———ote | c | [] <t -0 |c | [] p—
q x——
clI 1} -0 | N
N N
But-4 But -2
c-sub c-mul @
u n-l*—————*-_. c|l) o lc |l] i
q+2 ¢l] 4 Py -
" cll] - 'pq
N e f
\

(b)

machine level implementation

f(é)ﬂ

S

-3 -

illustrated in Fig. 27. Generating the cell configuration for performing the required arithmetic is
straightforward. Each butterfly section also contains two control cells to receive either a pair of
inputs (through Xrev(2q) xrev(2q¢l)) to initiate a new FFT computation, or a pair of intermediate

results (through Uog: ”2qol) from the previous stage of the current FFT computation.

Distribution Trees

For each stage of the FFT computation, the values b

. n-p and w, must be distributed to

P P
the Phase Factor Generation sections and the Butterfly sections. This may be done by three
Distribution Trees made up of units as shown in Fig. 28. Use of these units to construct

Distribution Trees allows enough skew in the execution of the Phase Factor Generation and

Butterfly sections that the computation for successive stages of the FFT may overlap substantially.

V1. Routing Network Structure and Performance

The Arbitration, Distribution and Control Networks of the data flow processor are
examples of routing networks that perform the function of directing packets to one of several or
many physical units of the processor. If the parallelism represented in the data flow form of
algorithms such as the FFT is to be exploited by the kind of machine we have described, these
routing networks must be structured so they can handle many packets concurrently. If a high
degree of parallelism is supported, then it is not crucial that each unit acts in the fastest possible
time on information it receives to achieve balanced utilization of sections of the machine.

A structure for the Arbitration Network is shown in Fig. 29a. It is built of arbitration
units, switch units and buffer units: Each arbitration unit passes packets arriving at its input ports
one-at-a-time to its output port, using a round-robin discipline to resolve any ambiguity about
which packet should be sent next. A switch unit assigns a packet at its input to one of its output

ports according to some property of the packet, the operation code in the case of the Arbitration

(a) Arbitration Network

Instruction Cells

e[

(b)

Processing Units

A A
[~

'-‘— stage 1 ——1:——- stage 2 ——-)L,— stage 3 —
arb buf—/_:’.E—’
[4
—>
-ﬁ‘

Distribution Network

-~ o

S

fbu £

s
arb -buf\—"_a—;
’
I

buf

operation

packets

bu f

bu fl—————

arb

e o

data
packets

’ arb

j¢—————stage 1

arb: arbitration unit;

Figure 29, Structure

bu fi—
bu f —>
——
buf 8w :
sw| ¢ |
[}
o
o
2
swl ¢ .
1
bu f sw ¢
TSR
stage 2 —————pwaa- stages 3 and:-4.

sw: switch unit;

buf: buffer unit

of the Arbitration and Distribution Networks.

Processing Units

Instruction Cells

<24-

Network. A buffer unit stores a packet until the succeeding switch or arbitration unit is ready to
accept it. The network shown has three stages: stages | and 2 have arbitration units that funnel
operation packets from many Instruction Cells into a smaller number of more heavily utilized
channels; the switch units 1n stage 2 split the sireams of operation packets into separate streams for
each Processing Unit; and the output streams of the switch units are merged by stage 3 into a single
stream for each Processing Unit.

The Distribution Network (Fig. 29b) is structured in a similar manner and provides a path
for data packets from each Processing Unit to each Instruction Cell. Switch units direct each data
packet toward the appropriate Cell by examining bits of the cell identifier in the packet’s
destination address. A few arbitration units are needed in the Distribution Network to provide for
merging the flow of data packets from different Processing Units to the same group of Instruction
Cells.

Since the Arbitration Network has many inputs, a serial format is appropriate for packet
transfer between Instruction Cells and the Arbitration Network to reduce the number of connections
needed. However, to achieve a high rate of packet flow at the output ports, a parallel format is
required. For this reason, serial-to-parallcl is done within the buffer units as a packet travels
through the Arbitration Network. Parallel-to-serial conversion is performed in the Distribution
Network for similar reasons.

The structure of the Control Network is similar to that of the Distribution Network.
However, the packets passing through the Control Network convey either simple boolean values or
acknowledge signals, and parallel-to-serial conversion of packets is not required; thus the Control
Network is composed of only switch units and arbitration units.

We now turn to an analysis of the performance achievable by the data flow processor in

performing the FFT computation using the programs of Figs. 23, 25, 26, 27, and 28.

- 925 -

Computation by the data flow processor will be at the maximum rate permitted by the
three routing networks (Arbitration, Distribution and Control) provided the capacities of the
Processing Units are not exceeded and provided sufficiently many Instruction Cells are enabled to
keep the Arbitration Network supplied with operation packets. Two factors control the number of
enabled instructions: delays in the passage of packets through the routing networks and constraints
on the enabling of instructions imposed by the structure of the machine level program.

Our plan of analysis is as follows: First we determine the maximum computation ra;te
permitted by the Processing Units for the FFT program. Then we consider suitable structures for
routing networks able to support this computation rate, and compute the minimum packet transit
time for each network. Finally, we show that the processing rate assumed is consistent with the
sequencing constraints embodied in the machine level FFT program.

Table 3 gives the number of operation packets that must be processed during one stage of
the 1024-point FFT computation, and the number of data and control packets that must be
distributed. For determining computation rate, we shall use as a basic measure the rate at which a
Processing Unit can receive bytes at a port. Let this rate be 5 MHz, corresponding to use of a
medium speed logic family. Since serial-to-parallel ;onversion is carried out in the Arbitration
Network, this is also the maximum rate at which a Processing Unit receives operation packets. We
suppose that operation packets can indeed be received every 200 nanoseconds by the Distributor,
Int-Processor and Cntl-Processor units, and at half this rate by the two complex arithmetic
Processing Uﬁi_ts. As shown in Table 4, the Processing Units are able to support execution of one
stage of the 1024-point FFT every 5122 microseconds where this limit on computation rate is set by
the speed of the Cntl-Processor unit.

For the 1024-point FFT, 7349 Instruction Cells are required to hold the machine level data

flow program, so let us hypothesize a processor having 8192 « 213 Instruction Cells. We suppose the

Instruc- Multiplier Adder Distributor Int-Processor Cntl-Processor
tion Cells 0 D o) 0 D C 0 D C 0 D C 0 D C
Butter fly Units 3072 512 1024 1024 1024 1024 2048 512 1024 512 -- == == 1024 1024 2048
Phase Factor ! 3584 256 256 -- -- -- -- 512 1024 512 512 0 1536 1536 1280 2048
Generation '
Distribution Trees 684 -- -- -- -- -- -- 684 1368 2052 -—- == == -- - -
Loop Control 5 - - - -- -- -- -- -- -- 3 3 2 1 2 0
Phase Constant 4 -- - -- -- -- -- 4 5 4 -- == -- -- -- --
Queue
Totals 7349 768 1280 1024 1024 1024 2048 1712 3421 3080 515 3 1538 2561 2306 4096

O - operation packets;

D - data packets;

C - control packets

Table 3.

Packet counts for one stage of the FFT computation.

Table 4.

Processing Time per Operation Packets Period for
Unit Packet Per Stage One Stage
Multiplier 400 ns 768 307.2 microsec.
Adder ‘400 ns 1024 409.6 microsec.
Distributor 200 ns 1712 342.4 microsec.
Int-Processor 200 ns 515 103.0 microsec.
Cntl-Processor 200 ns 2561 512.2 microsec.

Table 5. Design Parameters for an Arbitration Network

arbitration

fan-in fan-out format units flow rate
Stage P; q; 5; Xt n; R = nj/(s; x T)
Stage | 8 1 48 x3 1024 106.6 MHz
Stage 2 8 | 12 x 12 128 533 MH:
Stage 3 8 i Ix 48 16 266 MH:z
Stage ¢ 4 4 Ix14¢ 4 20 MH:
Stage 5 4 5/4 Ix14¢ 4 20 MH:

- 9% -

Arbitration Network has the structure specified in Table 5. Each stage consists of a rank of
arbitration units having fan-in p;, a rank of buffer units, and rank of switch units having fan-out

q;- The number of arbitration or switch units in stage i is n; and these numbers satisfy the relation

ng; =N Pi.p i=1l..14

which expresses the condition that the number of output links from stage i must equal the number
of input links to stage i + . In stage i, the input packets are represented by s; bytes of t; bits each.
The formats specified in the table assume that operation packets are 144 bits in length, and that
serial-to-parallel conversions are done by the buffers in stages 1, 2 and 3. The packet flow rate R,
for each stage is computed as the number of channels (one per arbitration unit) divided by the time
required to transmit the bytes of a packet serially; the time T for transmitting one byte is assumed
to be 200 nsec.

The design parameters of this Arbitration Network have been chosen so that the full 20
MH1z capacity of the Processing Section can be met. The early stages of the network have generous
capacity to accommodate shifts of activity among the Instruction Celis during the running of a

computation. For this network, the minimum transmit time is

5
Tp = L 5; T = (48412:3+14)T = I3 microseconds
i=l
Let us suppose that the Control Network and the Distribution Network of our hypothetical
processsor are similarly designed to accommodate the flows of data packets and control packets
indicated in Table 3. It is reasonable to assume approximately equal transit times for the

Distribution Network and the Arbitration Network, and about one fifth of this time for the Control

Network as it is much simpler than the others:

Tp = 13 microseconds -- Distribution Network delay

-927 -

T = 3 microseconds -- Control Network delay

Now we may ask whether these transit times and the computation rates of the Processing
Units are consistent with the sequencing constraints imposed by the FFT program. To answer this
question, we must determine how the rate of executing the sequence of n stages of the FFT
computation is limited by the structure of the machine level program. We consider the Phase
Factor Generation and Butterfly sections of the program since these make up the major portion of
the iterative computation. The following analysis is readily extended to include the iterative Loop
Control section and the distribution trees without effect on the conclusion. For computing the
period of computation we may assume that the boolean values arriving at input bp are all true so
the switch instructions in cells Gen-cntl, But-cntl-l, and Butcntl-2 always transmit resuits and
signals to their T-destinations and never to their F-destinations. Thus cell Gen-l1 does not
participate in the periodic behavior we wish to analyze.

We shall make two simplifying assumptions of a conservative nature: The first is to
suppose that each Butterfly Unit sends its results to itself rather than to other Butterfly Units. This
assumption is justified by the symmetry of the interconnection pattern of the Butterfly Units. We
further assume that the boolean output of cell Gen-2 is always true since this choice invokes
execution of the multiplication in cell Gen-5, and will yield the worst case period for the
computation.

With these assumptions, the cyclic execution of the FFT program may be accurately
represented by a special kind of Petri net known as a marked graph [12] In Fig. 30 each node of
the marked graph corresponds to an Instruction Cell participating in the cyclic computation or to a
source of input values from the Loop Control Section. Each directed arc represents a data path

between cells specified by one destination of an instruction. The arrowheads of the arcs indicate

the type of the packets -- data, boolean, or signal -- that flow over the corresponding path. Tokens

‘uotieindwod JJid 9yl jo uoridiaosap ydeald pajasy °0f 2an314

-4 [,
cum ?:\\'@
k2
e
) \./’O
10O -
. 9-usy A
© |
\l‘/ M|C8 3
T-13uD-3ng ®
d
q
() 1

Juo-uay

®

¢-T13ud-3Ing

- 98 -

are placed on arcs of the marked graph to represent a live and safe initial configuration of the data
flow program. Signal values are denoted by ¢ and data tokens carry unknown values indicated by
()

We regard each arc of the marked graph as having an associated "propagation delay”
which is the time interval from the moment a token is placed on the arc by its origin node to the
moment presence of the token is observed by the destination node. For data arcs we take this time
to be Tp + Tp + Tp, the time for an operation packet to pass through the Arbitration Network
plus the time for the data packet resulting from instruction execution to pass through the
Distribution Network plus the time Tp for processing an operation packet by a Processing Unit.
Similarly, the propagation delay for boolean and signal arcsis Ty + T + Tp.

Now our question of computation rate for the FFT program becomes a question about the
minimum period for the cyclic behavior of a marked graph when each arc has a known
propagation time. This problem was solved by Karp and Miller [2[} The minimum period is
determined by the directed cycle in the marked graph having the largest value of total delay

divided by the number of tokens on the cycle. Assuming
Ta=13, Tp=13, Tc=3 Tp=4

we find there is one critical cycle in the program -- one involving cells Gen-6, Gen-cntl, Gen-3 and

Gen-5. This cycle has one token and a total delay of 4 x (T, + T, + Tp) = 120 microseconds.

P
Evidently, the sequencing constraints present in our FFT program are not a significant factor in
determining the performance of the data flow processor. Indeed, its performance could be

improved substantially by raising the number or performance of the Processing Units, and

increasing the capacity of the routing networks.

-29 -

VIil. Conclusion

The prospective performance of our hypothetical data flow processor is attractive in
comparison with conventional stored program computers. However, whether such a machine is
practical depends on the feasibility and cost of its construction. In the interest of obtaining a more
practical design, it is attractive to divide the Instruction Cells into groups of eight or more cells and
to implement each group together with associated portions of the Arbitration, Distribution and
Control Networks by a combination of RAM chips and common control logic.

A limitation of the present data flow processor is that one Instruction Cell is required for
each instruction, imposing a practical limit on the size of programs that may be run. This
limitation may be overcome by including an auxiliary memory system that has space for all
instructions of the data flow program and using a smaller number of Instruction Cells arranged to
hold the most active instructions during program execution. The Instruction Cells then form a
"cache” whose contents changes as activity shifts from one section of the program to another. An
outline of the mechanisms required for this extension of the data flow architecture has been given
in (17}, and some ideas on the s.tructure of memory systems for a data flow computer are given in [l,
2, 15). These papers are in harmony with the principles of packet communication architecture.

We are also extending the generality of data flow architectural concepts by developing
mechanisms to support procedure definition and invocation, and data structures. Data flow
program graphs as described by Dennis (I4], among others, encompass procedures and A general
data structure capability, so the major probiems concern development of satisfactory architectural
schemes for implementing these capabilities. Issues in the design of multilevel memory systems for
data flow computers have been studied by Ackerman (I, 2, Rumbaugh’s machine {30] implements
procedures within a more conventional framework. Recently an extension of the processor design of

the present paper to handle procedures and data structures with a high level of generality has been

-10 -

presented in the work of Weng (18, 37 Other approaches are being developed by Arvind,

Gostelow and Plouffe (7), and by Keller, Patil and Lindstrom [23),

29 -

REFERENCES

()

(2]

(3]

(4]

(5]
)

M

[8)
)

)
{1
2]

(13]

Ackerman, W. B. A Structure Memory for Data Flow Computers. Technical Report
LCS/TR-186, Laboratory for Computer Science, Mass. Institute of Technology, Cambridge,
Mass., August 1977.

Ackerman, W. B. A structure processing facility for data flow computers. Proceedings of the
1978 International Conference on Parallel Processing, IEEE, August 1978.

Ackerman, W.B, and J. B. Dennis. VAL -- A value-oriented algorithmic language:
preliminary reference manual, Computation Structures Group, Laboratory for Computer
Science, Mass. Institute of Technology, Cambridge, Mass, June 1979.

Adams, D. A. A Computation Model With Data Flow Sequencing. Technical Report CS 117,

Computer Science Department, School of Humanities and Sciences, Stanford University,
December 1968.

Amdahl, G. M, T. C. Chen, and C. J. Conti. IBM system/360, model 92. Proceedings of the
AFIPS 1964 Fall Joint Computer Conference, Part 2, 1964.

Arvind, and K.P. Gostelow. A computer capable of exchanging processors for
time.Information Processing 77, North Holland, New York 1977, 849-854.

Arvind, K. P. Gostelow, and W. Plouffe. An Asynchronous Programming Language and
Computing Machine. Technical Report 114A, Dept. of Information and Computer Science,
University of California, Irvine, December 1978.

Bahrs, A. Operation patterns. Lecture Notes in Computer Science, 5 Springer Verlag, New
York, 1974, 217-246.

Barnes, G. H,, R. M. Brown, M. Kata, D. J. Kuck, D. L. Slotnick and R. A. Stokes. The Illiac
1V computer. 1EEE Trans. on Computers C-17, 8 (August 1968), 746-757.

Batcher, K. E. STARAN paraliel processor system hardware. Proceedings
Conference, 43, 1974, 405-410. :

f the AFIPS

Bruno,], and S. M. Altman. A theory of asynchronous control networks. IEEE Trans. on
Computers, C-20 (June 1971), 629-638.

Commoner, F,, A. W. Holi, S. Even, and Pnueli. Marked directed graphs. - J. of Computer
and System Sciences, 5, 1971. 511-523.

Davis, A. A. The architecture and system method of DDMI: A recursively structured data
driven machine. Proceedings of the 5th Annual Symposium on Computer Architecture,
IEEE, April 1978, 210-215.

(14

(15

(16]

(173

(18]

(19}

[20]

(21

(22]

(23]

(24]

[25)

(26]

(27)

(28]

-32.

Dennis, J. B.. First version of a data flow procedure language. Lecture Notes in Computer
Science, 19, Sprmger Verlag, New York, 1974, 362-376.

Dennis, J. B. Packet communication architecture. Proceedings of the 1975 Sagamore
Computer Conference on Parallel Processing, IEEE, 1975, 224-229.

Dennis, }. B, and D. P. Misunas. A computer architecture for highly parallel signal
processing. Proceedings of the ACM 1974 National Conference, 1974, $02-409.

Dennis, J. B, and D. P. Misunas. A preliminary architecture for a basic data-flow processor.
Proceedings of the Second Annual Symposium on Computer Architecture, IEEE, New York,
1975, 126-132.

Dennis, J. B, and K.-S Weng. An abstract implementation for concurrent computation with
streams. Proceedings of the 1979 International Conference on Parallel Processing, IEEE,
August 1979.

Gold, B., and C. M. Rader. Digital Processing of Signals. McGraw-Hill, New York, 1969.

Hack, M. Analysis of Production Schemata by Petri Nets. Technical Report MAC-TR-94,
Laboratory for Computer Science, Mass. Institute of Technology, Cambridge, Mass., February
1972.

Karp, R. M., and R. E. Miller. Properties of a model for parallel computations: determinacy,
termination, queueing. SIAM J. of Applied Mathematics, 14 (November 1966), 1390-14il.

Karp, R. M., and R. E. Miller. Parallel program schemata.]. of Computer and System
Sciences, 3, 2 (May 1969), 147-195.

Keller, R. M., S. S. Patil, and G. Lindstrom. A loosely-coupled applicative multi-processing
system. Proceedings of the National Computer Conference, 1979.

Kosinski, P. R. A data flow language for operating systems programming. SIGPLAN
Notices, 8 (September 1973), 89-94.

Miller, R. E. and J. Cocke. Configurable Computers: a New Class of General Purpose
Machines. Report RC 3897, IBM T.]. Watson Research Center, Yorktown Heights, N Y,
June 1972.

Misunas, D. P. Deadlock avoidance in a data-flow architecture. Proceedings of the
Milwaukee Symposium on Automatic Computation and Control, IEEE, April 1975,

Peterson, J. Petri nets. Submitted for publication.

Plas, A.. D. Conte, O. Gelly, and J. C. Syre. Lan system architecture: A parallel data-driven
processor based on single assignment. Proceedings of the 1976 International Conference on
Parallel Processing, IEEE, August 1976, 293-302.

[29]

(30]

(3

(32]

(33]

[34)

(35]

[36)

(37)

[38)

-7

Rodriguez, J. E. A Graph Model for Parallel Computation. Technical Report MAC TR-64,
Laboratory for Computer Science, Mass. Inst. of Technology, Cambridge, Mass., September
1969.

Rumbaugh, J. E. A Parallel Asynchronous Computer Architecture for Data Flow Programs.
Technical Report TR-I50, Laboratory for Computer Science, Mass. Institute of Technology,
Cambridge, Mass., May 1975. '

Rumbaugh, J. E. A data flow multiprocessor. Proceedings of the 1975 Sagamore Computer
Conference on Parallel Procéssing, IEEE, August 1975, 220-223.

Seeber, R. R., and A. B. Lindquist. Associative logic for highly parallel systems. Proceedings
of the AFIPS Conference, 24, 1963, 489-493.

Shapiro, R. M., H. Saint and D. L. Presberg. Representation of Algorithms as Cyclic Partial
Orderings. Report CA-7112-2711, |, Applied Data Research, Wakfield, Mass., December 1971

Tesler, L. G., and H. J. Enea. A language design for concurrent processes. Proceedings of
the AFIPS Conference, 32, 1968, 403-408.

Watson, W. J. The Texas Instruments advanced scientific computer. Proceedings of the
Sixth Annual |[EEE Computer Society International Conference, 1972, 291-293.

Weng, K-S. Stream-Oriented Computation in Recursive Data Flow Schemas. Technical
Memoranda 68, Laboratory for Computer Science, Mass. Institute of Technology, Cambridge,
Mass., October 1975.

Weng, K.-S. An Abstract Implementation for a Generalized Data Flow Language. Technical
Report, MIT Laboratory for Computer Science, Mass. Institute of Technology, Cambridge,
Mass., forthcoming.

Wirth, N. The programming language Pascal. Acta Informatica, 1, 1971, 35-63.

