LABORATORY FOR MASSACHUSETTS

INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

An Introduction to CLU

CSG Memo 136
February 1976

Barbara I, Liskoy

This paper was published in ﬂ%&gOL gtilll&u‘n. It supersedes CSG 112-1,
on .

This research was supported by the Advanced Research Projects Agency of the

Department of Defense and was monitored by the Office of Naval Research under
contract NO0O)14-75-C-0661,

G

W,

345 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

We believe the best approach to developing a methodology that will serve as
4 practical teol for program construction is through the design of a programming
language such that the abstract problem solutions developed using the methedology
-are actual programs in the language. Several benefits accrue from this appreach,
:First, since designs produced using the methodoiegy are actual programs, the
problems of mapping designs inte programs do not require independent treatment.
Second, completeness and precision of the language will be reflected in a meth-
odology that is similariy compiete and precise. Finally, the language provides
4 good vehicle for explaining the methedology to others.

Our research in the area of programming methadology led to a methodolagy [3]
which combines structured programming with madularity. The fundamenta) activity
taking place in structured programming is, in our opinion, the recogniticn of
abstractions. Structured programs are developed by repeated analysis of a
problem into subproblems to be solved by program modules. FEach module is a
program written to run on an abstract machine providing just those abstractions
{data objects and operations) suitable for the problem being solved. The
abstractions in this machine, if not already present in the Programming language
being used, are then realized by means of further modules. The result of this
process is a program structure in which each element 15 a mocdule developed to
suppart an abstraction, The simplicity of this structure, and hence the under-
standability and provability of the structured program, is directly dependent on
2 wise choice of syitable abstractions.

We have studied what kinds of abstraction are useful in writing programs,
and how such abstractions may be represented in programs. Two kinds of abstrac-
tion are recognized at present: abstract operations and abstract data types,
Abstract operations are raturally represented by subroutines or procedures, which
permit them to be used abstractly (without knowledge of details of implementa-
tion). However, a program representation for abstract data types is not so
obvious; the ordinary representation, a description of the way the objects of the
type will occupy storage, forces the user of the type to be aware of implementa-
-tton infarmation.

We believe that the user of an abstract data type is interested in how the
type's objects behave, and that the behavior is best described in terms of a set
of operations [51. He developed a set of criteria about the way abstract data
types should be handled:

1. A data type definition must include definitions of all
operations applicable to objects of that type.
2. A user of an abstract data type need not know how objects
of the type are represented in storage.
3. A user of an abstract data type may manipulate the objects
only through the type's operations, and not through direct
manipu]ation of the storage representation.

This tast eriterion ensures that the aperations pravide a complete description of
the behavior of the type, and enhances the modifiability and provability of
programs.

No existfng language supports the use of abstract data types in a way which
fally satisfies these criteria [6}. The language providing the clasest match to
abstract data types is Simula &7 7). A Simula class may be viewed as a type-
definition, and as part of that definition, the programmer may include all the
operations which make sense for the objects of the new type. Unfartunately,
Simula does not constrain access to the objects to occur only through the
operations, and thus violates criterion 3,

The next section contains an informal fintroduction to CLU, including an
example of an abstract data type definition. This is followed by a discussion of
‘the semantics of CLU. Then an extension of the type definitign mechanism 1
described which permits classes pf types to be defined, Finally, we concluge
by discussing the currept Status of CLU,

THE STRUCTURED PROGRAMMING LANGUAGE, CLU

The principle motivation for the design of CLU 15 to parmit the abstractions
introduced during program design to be easily implemented via CLU modules. Two
kinds of modules are provided by CLU: procedures, which Support abstract oper-
ations, and clusters, which support abstract data types in a way which satisfies
the three criteria discussed above. An abstract data type s defined to be a
set of objects (values) and a set of operations, A cluster implements a type
by defining a representation for the type's objects and by fmplementing the
operatfons in terms of procedures which operate upon the representation,

O s a modular programming language/system, Each CLU moduTe implemants
an abstraction; the cLU System maintains fnformation about abstractions, the
modules implementing them, and the relatfonships between abstractions and
their implementations., This ts done as follows:

1. The CLU system maintains a data base containing a description unit
for each abstraction. At present, a description unit contains two
main pieces of information: the Tnput/output parameter type inter-
face of the abstractfon, and the CL[) modules implementing tne apstrac-
tion {note that there may be more than one module implementing a

given abstraction).

2. A description ynit for an abstraction may be added to the system
before any module implementing the abstraction exists. All that is
required is that a specification of the type requirements of the ah-
straction be provided, For functional abstractions, this congists
of a specification of the types of all input and gutput parameters;
for data abstractions, input and output parameter types myst be
specified for al} operations,

3. The CLU system translates a single CLU module at a time. Whenever
2 module is submitted to the System for translation, the system
checks that its input and output type requirements agree with those
of the abstraction it implements. [f the translation is successful,
fnformation about the module is added to the description unit of the
abstraction being implemented.

& CLU §s 2 strongly-typed language, and complete type checking occurs
at module translation time. A very important part of type checking
(and one which is often neglected) is the checking of interfaces
between modutes. The CLU translater checks such interfaces completely;
ft is able to do so because the association 1ist tells what abstractions
are being used, and the description units for the abstractions
contain complete information about thair type requirements. In addition,
modules are bound at transiation time to the abstractions identified
in the association 1ist; this ansures that the translator’s assumptians
about the type reguirements of the abstractions are valid at execution
t .

6. The selection of a module to implement an abstraction may eccur later
than translation time of a module using the abstraction; any time
prior to execution of the using module is satisfactory. In fact, a
module using an abstraction can be translated in advance of the
existence of a module implementing the abstraction, so top-down
design and implementation are supported by the systam.

CLU provides an ordinary selection of control Structures: if-then and case
are available for conditional testing, and while-do, repeat-until and for ave
avaflable for iteration. A go-to statement is not available. The most impor -
tant form of control is protadure invecation, A return statement 1s availahle
to terminate an invocation {and possibly return Some values); this statement
My appear anywhera within the returning procedure {see Figure 1},

Block structure may be usad within a-single module, but there is ne concept
of nesting one module within another, Therefore, only local variables may
be used in CLU modules (since there is no statfe way of attaching a meaning
to global variables), and communication among modutes takes place through Ynput

Example of a Definition of an Abstract Data Type

An example of an abstract data type definition is presented to illustrate
those features of CLU which are most novel. The type to he defined is that of
Tnteger sets; 3 reasonable group of meaningful opaerations for integer sets is:

create creates an empty sot
tnsert inserts an integer in a set
remove removes an integer from a set

has - tests whether a set contains a particular integer
equal tests whether two sets are the same

similar tests whether two sets contain the same integers
copy copies a set

Ordinary set behayiar is desfred: a set does not behave as if it contains
muttiple copies of the same integer.

A cluster fmplementing integer sets 1s shown 1n Figure 1. A ¢luster
definition consists of three parts: ’

1. f{nterface description

2. object description

3. operation definitigns

ntset = cluster is create, insert, remove, has, equal, similar, copy;

rep = array[int];

create = pper{ } returns {cvt};
v rep := repScreate(0;
return (r);

end create;

insert = oper(s: cvt, 10 int);
Jf search(s, i} > repfhigh(s) then repSextendh(s, i);
return;

end insert;

search = oper(s: rep, 1: int} returns (int):
for §* 3nt : _"2 repSlowl(s) to rep3high(s) by 1 do
7= [j then return 1)
return (__ESh'Igh +
end search;

remove = gper(s: cvt, i: int);
J: int == search(s, i,

if 7> repShigh(s) then return;
s_[.}j ;= simEShigh(sH
$r-etr'act.h s}

return
end remove,

has = pper erEs _c%%i B int returns((boolean].
return{sea s, 1 repShigh{s]);
T X rep.

end E1-H

equal = g r(s t: cvt) returns {boolean);
return (repSequal(s, 2)B

end equal;

simﬂar = oper(s, t: cvt) returns {bovlean);
35122(5}'- repSsize(t) then return {false);
ur 1. Int := repSTow(s) to re *high(s] by 1 dg
if search{t, s[i]) > Tey ﬁ%gh(tj then return (false);
return (true);

end simiTar;

copy = oper(s: cvt) returns {evt);
return (rep¥copy{s));
end copy;

end fntset
Figure 1. The Intset Cluster.

The interface description of a cluster definition provides a very brief
description of the interface which the cluster presents to its users., It
consists of the name of the cluster and a list of the operations defining the
type which the cluster implements: e.g.,

intset = cluster is create, insert remove, has, equal, similar, copy

The use of the reserved word 15 emphasizes the idea of a data type being equiv-
alent to a group of eperations; the group of operations fallowing is is called
the is-11ist.

Users of the abstract data type view objects of that type as indivisible,
non-decomposable entities. Inside the cluster, however, pbjects are viewad ag
decomposable into elements of more primitive type. The pbject descriotion
defines the way objects are viewed within the cluster, be defining a template
which permits objects of that type to be built and decomposed. For example,
the representation chosen for integer sets is meraly an array of integers:

rep = array [int]

This simple representation is possible because CLU provides a powerful kind of
array of unbounded size, Although CLU arrays are primitive in the sense that
they are supported by the CLU translator, they may be viewed just like any data
type as a group of operations, and a description of the array aperations is
sufficient to provide a programmer with a thorough understanding of the array
abstraction. A subset of the arrdy operations is described in Table 1.

The object description is actually a typé deffn1tion: ;;n 1s defined to ke
equal to the type specified on the right hand side of the equal sign, Whenever
the word rep appears later in the cluster, it means this type.

The body of the cluster consists of operation definitions, which provide
fmplementaticons of the permissible operations on the data type. An operation
definition must be given for every operation named in the is-Jist. Operation
definitions are 1ike ordinary procedyre definitions except the bodies of oper-
atfons have access to the rep of the cluster, which permits them to decompose
objects of the cluster type, Operations are not modules; they may be written
only as part of a cluster,

Some operations create new objects of the cluster type; create is an example
of such an operation. The first thing create does is to bring into existence a
variable r of the representing type:

r:orep

It then initializes r to an object of the representing type; it creates the
object by calling on a creating operation of that type:

repicreate(0)

This line 1s an example of an operation call which requires a compound name to
be used to specify the operation. The first part of the name identifies the
type of the operation, while the second part identifies the operation. Since
rep has been defined tg be equal to arraz]in]. the above operation call is the
same as

arraz]int]Screate(O)

1.

array 1imits. Each array has an upper and a Tower bound and a size,
ANl array elements between the bounds are defined (have values);

RO array elements are defined gutside the bounds.

Three operations give limit informatian:

low(a) returns the index of the lowest defined element, or the
Initially defined Jower bound if the array is empty.

high(a) returns the indax of the highest defined element, or
low(a} - 1 if the array is empty.

size(a) returns high(a) - low(a) + 1.

growing arrays. Arrays are empty when initially created. They may grow in
either direction one element at a time.

.create(i) returns a new empty array a with lower bound i
Tow(a) = i, high(a) = § - 1, size(a} = 0,

extendh(a, v} a grows in the high direction by aone element, and v is
stored in that element; high(a) and size{a) increase by 1.

extend1(a, v) like extendh, but growth is in Tow directien.

accessing arrays. Arrays may be accessed and updated in the usual way, but
only elements between the bounds may be referenced. The index is intep-
preted absolutely (not relative tg Tow{a)).
fetch{a, 1) veturns the value in the ith element of a if
tow(a) < 1 < high(a), else error. Syntactic “sugar” is
provided: fetch(a, i} may be written a[i], .
store{a, 1, v) stores v in the ith element of a 1f Tow(a) < i < high(i),
else error. Syntactic sugar is provided: store(a, 1, v)
nay be written a[i] := v.
shrinking arrays. Arrays may shrink from either end, one element at a time,

retracth(a) i€ 2 1s non-empty, returns the value in high{a) and
reduces high{a) and size(a) by 1, else arror.

retractl{a) Tfke retracth, but for low end of array.
equality, ‘

equal(al, a2) two arrays are equal 1if and only if they are the sama
Tdentical array,

similar{al,a2) two arrays are similar if and only if they have tne szme
Vimits, and they are element by element similar.

copy.

copy({a) returmns a new array having tha same limits as a, and
containing a copy of each element of a.

Table 1. CLU Arrays.

Thus a call on the create operation for arrays of integers is made.
Finally, create returns this cbject by the statement
return (r)

However, the type of r is the representing type, while the user of intset
expects an object of type intset, Therefore, the create operaticn must causge
the type of r to change before r s passed to the user of intset. The hezding
of the create operation specifies that this conversion is to occur:

Create = oper{ } returns (cvt)

This Yne states that the Create -operation expects no input parameters, and
returns a single value. The use of the reserved word cvt states that this
-return value will be of the cluster type (intset in this case), and that the
value being returned should be converted to the cluster type from the rep type
Just before it is returned.

dther operations manipulate previcusly existing objects of the cluster type.
For example, the insert operation inserts a given integer into a given intset:

insert = oper (s: cvt, §: int)

Insert does not return any values, but instead modifies the contents of the
Intset object passed to it as a Parameter. The use of the word cvt in

5! ¢cvt

again means that outside the intset cluster, s 1s an object of type intset,

and that a conversion is to occur, However, in this case the conversion is from
the cluster type to the rep type, sa that whenever s is used inside of insert,
it denctes an object of the rep type. The conversion occurs imnediately after
insert is entered.

The first 1fne of insert
If search(s, {) > rep$high(s) then repSextendh(s, i)
1Hlustrates the use of an internal cluster operation. The name search doss not

appear in the Ys-1ist and therefore search is not available for use by users of
intset. Note that search expects an object of type rep as its first parameter:

search = oper(s: rep, i: int) returns (int)

The call of search matches its type requirements because s has type rep inside
fnsert. The gperation call of search does not require a compound name,
fntsetdsearch, because it is an intra-cluster call.

Uses of fntset Yook very similar to the uses of array objects which appear
in the intset operatians. Variables may be declared of type intset:

s: intset
and ntset objects created and assigned to such variables:
- s :=intset$create()
Operations may then be applied to intset objects:

intset$insert(s, 3)
if intsetShas(s, 7} then {intset$remove(s, 7)

Also, intset ocbjects may be passed to procedures and to operations of other
clusters. In every case, the CLU transiator will check that the calied proce-
dure or operation expects an intset object in the position in which s accurs;
any other expectation will cause a type error to be detected, and the transla-
tion will not complete. Therefore, it is impossible for any procedure or
operatfon to treat an intset object as anything but an intset object.

Access to the rep of an abstract object can occur only within a cluster
operation in which a parameter or result is marked by the indicator cvt. This
tndicator specifies that the argument or result is considered to be of the
cluster's abstract type outside the body of the operation, but of type rep
inside the operation body. Thus intset objects can be accessed as objects of
type rep only inside the bodies of operations of the intset cluster.

As was mentioned earlier, hiding an object's representation (criterion 3} is
necessary to ensure that the behavior of the object is completely defined in
terms of the type's operations. In addition, it is beneficial to software
quality. Programs produced in this way are easy to modify: all changes to the
jmplementation of a particular abstraction are guaranteed to be limited to the
supporting cluster,since users of the original cluster were not able to make use
of any implementation details. For example, the cluster for intset could be
rewritten to store the set elements in sort order. Users of intset would be
unaffected by this change {their programs would continue to run correctly)
although performance differences would be noticed,

Hiding the representatfon is also beneficial to proofs of program correct-
ness because it permits the proofs to be modularized along program module
boundaries [8,9
CLU SEMANTICS

The semantics of CLU is based on 2 sharp distinction between variables and

objects, CLU object are the values which are manipulated by CLU orograms.
Each (LU object has a unique type associated with it. CLU objects may be

simpie, e.g., integer objects

or complicated, e¢.9., an array containing integers 1, 6, 10 in elements 1, 2, 3

elold)

However, the complicatedness or simplicity of an object cannot be observed
directly; all that can be done with an object is to manipulate it using the
opeérations defining the object‘s type. These operations provide the only means
for making observations about objects of the type, and the operations compietely
define the behavior of the objects of the type. The objects of some types
exhibit mutable behavior: some operations exist which will change the interipr
of an obJect without changing the object's identify. Array objects have mutabie
behavior; for exampie, the store operation, if asked to change the first element
of the array above to 3, will modify the array object itself, so that at the
completion of the operation the pbject looks 1ike

- =

-

Objects of type intset, defined in the previous section, have mutable behavior
too; operations insert and remove change the state of intset objects. The

.bbjects of other types exhibit coristant behavior: for such types, no operations
exist ta change the state of one of the type's objects. For example, integers,
characters and strings have constant behavior,

CLU objects have an existence independent of particular CLU programs. They
reside in the CLU universe which is 11ke an Algol 68 heap., CLU variables, on
the other hand, exist anly in programs. They merely provide a convenient Way
for programs to reference objects. CLU provides a primitive assignment operator

_which permits a variable to be associated with an object: execution of

x =3

resyits in the variable x denoting the ohject 3. CLU variables have a type,
defined when the variable 7% declared, and an assignment is legal only when the
type of the variable and the type of the object are compatible. Compatible
means efther the types are equal, or the variable's type is a union of several
types including the object's type.

CLU follows the ordinary conventions about coercing a varfable to the object
it denotes whenever the variable appears anywhere but an the left hand side of
3=, (LU 1s unusua) in not viewing an array reference or record selector as a
left hand side; as explained in Table 1,

ai) := v

1s merely syntactic sugar for a call an the array operation, store. ‘The symbol
a i) s not considered to be a yariable in CLU; rather it is an operation
invecatian.

The semantics of parameter Passing in CLU is very straightforward but some-
what unusual, The identifiers of the formal input parameters defined in a
procedure or operation heading are considered to be variables; thus

f = proc (s: array [int], 1: int)
contains the declarztion of two varfables s and 1. When & Procedure or opera-
tion is invoked, the declarations take effect, and the variables are inftiatizaed
by assigning the actual parameters to them. Fpp example, 4f t 1s an array .
containing 3, 6,and 10 in elements 1, 2, 3 then

f(t, 2)
15 2 legal call of fi 1t causes variables s and 1 to be created, and assigrment:

$ 1=t
fi:=2

to be executed, The result of the call of f is i1lustrated in Figure 24,

The reason that Parameter passing fn CLU ig unusual is that assignment to
the formal parameters of a Procedure or operation does Dot affect the actual
parameters. If x 1s an array containing 4 in element 1, and the assignment

$ '=x

oceyrs inside f, the result 15 that s now denotes a different object, hut t fs
unaffected. Figure 2p illustrates the effect of ¢ := x,

Flgure 2a. Situation after f has been called,

heap

Figure 2b, Situation after s := x has been
executed.

Because assignment to formal parameters inside of procedures cannot affect
the actual parameters, CLU parameter passing is not call by reference, and one
- kind of side-effect is eliminated in CLU. We call our parameter passing cail
by sharing, because the object being passed is shared, as 11lustrated in Figure
2a. Enformation can be exchanged between calling and calied procedures by
changing the state of an object received as nput; this is the only kind of side
effect a CLU procedure can have.

Equality

In addition to the primitive notion of assignment, a primitive notion of
equality is often required in order to write meaningful pragrams. Howeyey
unlike assignment, which has a type-independent meaning and can be implemented
automatically, equality has a type-dependent meaning. Therefore, it is not
possible to provide an automatic implementation for equality. Instead, each
cluster must include an equal operation (the operation which is nameg Yequal}

;ofgro:ide an implementation of equality which is meaningful for the type being
efined,

Although the meaning of equality is type-dependent, some general statements
can be made about the meaning of equality which will help the cluster definer
provide the correct definition of the equal operation. First, we can state what
W expect equality to mean. Intuitively, two objects are equal if, at any time
fn the future, one can be substituted far the other without any resuliting
detectable difference in program behavior:

Suppese T 15 a type., s, and S3 are objects of type T, and O13s..150p areg
operations of type T. If s; has been determined to be equal to s; by an
application of the equal operation for T at time t, then at any time
t' > t, any application of operation o, 1 <1 < n, to object g7 must
rovide “"precisely the same results" as that operation applfed to s;, where
tﬂ;ecisely the same results® {s measured by using the equal cperation for
type of the object returned by of.

In trying to apply the above criterion when defining a type, it is helpful
to distinguish between constant and mutable types. For constant types, two
objects are equal if the values inside them are equal insofar as the other
operations of the type are able to distinguish. For example. two compiex
nubers are equal if their real and imaginary components are equal; two strings
are equal #f they contain the same characters in the same order.

Far mutable types, two objects are equal T and only 1f they are the same
identical object. The equal operations for intset (Figure 1) and for arrays
{Table 1) are examples of such operations, The necessity for such a stringent
definition arises directly from the requirement, given above, that ane of two
equal objects can be freely substituted for the other with the same results,
Suppose, for example, that the two distinct array objects, denoted by variables
aand b

were considered to be equal. Now consider the program text:

arraylint]%extendh(a, 2);
1 := £FFE%]int[5$1ze(a)’

where 1 15 some integer variable. Since b can be freely Substituted for a with
no de;:ﬁta?1e difference in program behavior, the following text should have the
same avior

array[int}Sextendh(a, 4);
= arrayf{int]$size{b)

Clearly there is a difference in behavior; the value of 1 1n the first case i5 2
and in the second case, 1. The difference arises because, for mutable types,
operations exist which change the state of cbjects.

S$ince the equal operation is present In almost every type, and its use is
very widespread, CLU provides a short form for calling it. The expression

A=y

is valid only if x and y are objects of the same type, and if they are, it
neans

typeofx$equal(x, y)
For example, 1n the search operation of intset, the expression

1= s{J]
means

Intsequal {1, s[j])

Since the meaning of equality is so constrained for mutable types, it is
useful to have other concepts of equivalence supported by other cluster opera-
tions. One such definition {s associated with the operation name “simitlar":
two objects are similar if their contents are similar, insofar as the other
operations of the type are able to distinguish. Thus, for a and b above,

arvay[int]$similar(a, b) = trve

Another example s the similar operation of intset {Figure 1); two intset
objects are similar {f they contain the same integers, regardless of the order
in which the integers are stored., Note that for both constant and mutabie types,
equality of objects implies similarity. The definer of & cluster has no cbli-
gation to provide a "similar" operation. :

Copying

Often 2 user does not wish to have two variables share an object, or to
share an object with a procedure he calls. Sharing eof abjects between two
variables is dangeraus because a change to the object through ene of the
variables affects the other variable. For example, starting from the situation
in Figure 2b, If

s[1] := 5

{s executed, the result s that x[1] will now returmn 5. (Recall that

s[i] := 5 1s syntactic sugar for the invocation of array[int]$store(s, 1, §),

and x[i] 1s syntactic sugar for the invocation of array[int]Sfetch{x, 1).}

Copying objects is much safer than sharing because such anomolies do not arise,
-However, the meaning of copy is not defined by the CLU semantics; instead, copy

(11ke equal} {5 an operation which must be defined far pach abstraction by giving

an operation definition in the cluster. The reason for this is that the meaning

of copy may be abstraction dependent; in fact, some abstractions may not even

have & copy operation, 5Since capying is freguently desired, definers of

clusters are urged (but not required) to provide a copy operation.

A general guideline for the definitfon of the copy operation, along the
Tines of the one given for equality in the preceding section, is:
1. for constant types, :
y := typeofx$copy{x)
implies
xX=y
2. for mutable types
y := typeofx$copy(x)
implies
typeofx$simitar(x, y}

Examples of copy definitions satisfying the above guidelines ara given for
arrays (Table 1{ and for the intset cluster (Figure 1).

JYPE-GENERATORS

The integer set example described earlier does not capture the concept of
a set as a general receptacle for values; it defines only one particular kind
of set -- a set containing integers. The concept of a generalized set presents
a more pawerful abstraction, the concept of "setness", than does the concept of
integer set. 5Since the purpose of CLU is to support the use and definition of
abstractions, particularly abstractions involving data, we felt it was important
that CLU be powerful encugh to permit z generalized set abstraction to be de-
fined. The CLU mechanism which supports the programming of such abstractions

is called a type-generator.

Type-generators differ from ordinary clusters in that they define a whole
class of types, rather than a single type. Conventional programming languages
egontain one or mare buiit-in type-generators. An example of such a type-
generator is the array. ' An array defines an access mechanism which is indepen-
dent of the type of data which is stored in the array. Whenever an array is to
be used, the program must specify what type of data the array is to contain;
€.9.,

array {int]
array [string]

Type definitions 1ike these can be viewed as selecting a particular array-type
from the:-class of such types which the array type-generator defines.

-ELU permits the programming of clusters which define ‘type-generators rather
than types. An example of the set type-generator is shown in Figure 3. The set
cluster is very similar to the intset cluster shown in Figure 1. The two

- clusters differ only in that the set tluster makes use of a type parameter tp
define the type of element in the set, and everywhere the intset cluster used
the type int to define the type of set element, the set cluster uses the type
parameter,

set = clusterfetype: type] is create, insert, remove, has, equal, similar, copy;
Yep = arrayfetyoe]; |

create = oper() returns (cvt);
return {rep$create{0)};
end create;

insert = oper(s: cvt, i: etypel;

If search(s, 7] > repshigh(s) then replextendh(s, i);
return;

end Tnsert;

search = oper(s: rep, i: etype) returns (int):
for j: Jnt :="repSiow(s) to Tepshigh(s) by 1 do
if etypelequal(i, SF}T then return (j);

return (repShigh(s) + 1§;
end search; =B

| end set
Figure 3. The Set Cluster.,

The interface description for set identifies it as a type-generator by tha
presence of the cluster parameter .

set = cluster[etype: type] {s create, insert, remove,
,has, equal, similar, copy

A1l clusters defining type-generators take one or more cluster parameters.
The rep for set is now '

rep = array EtzEEI

The rep still makes use of the array type-generator, but it selects the
particular array-type using the type parameter of the cluster,

In addition to appearing in the cluster interface definition and in the
mg_ definition, the cluster parameter is also used to define the types of input
and cutput parameters of operations; for example

fnsert = pper(s: cvt, 1: etype)

Finally, the set cluster makes use of same of the etype operations. For example.
in the search operation, the equal operation of etype is used:

etypefequal{i, s[;])

A user-defined type.generator defines a whole class of types just as the
built-in type-generator array does, and the rules for using type-generators are
the same in efther case. First it is necessary to state Precisely what type is
desired. This is done by using a type definition in which values are specified
for the cluster parameters of the type-generator; for example;

intset = set|1nt[
newset = setfset[int]]

As with primitive type-generators, such definitions can be viewed as selecting
particular set-types from the class of types defined by the set type-generator,

. Once a type has been defined, 1t can he used ‘tg declare vériables and make
operation calls, e.g.,

s: {ntset := intsetfcreate{);.
t: intset :» {ntset$copy(s);
$51 newset :* newset$treate{);

newset$insert(ss, s)
STATUS REPORT

A preliminary version of CLU has been defined; 1¢ fc describ
This version permits cluster definitions in suppert of types andegygg-gggg;a-
tors, as dgscr1bgd.above; type-generator parameters may be integer and string
. Constants in add1t1gn ta_types. The built-in types include records and discrim-
inated._(tagged) unions in addition to arrays, integers, booleans, characters,
and strings. A special control structure, the ta case, . 15 provided for
man;g:;a:ign :f;disc;iminate? union objects to ensure that al1 type errors can
cted at translation time. Finall a signaj] i

for the reporting and fandling of errorg'and except?g:§TU]A:tgggggﬁiegia?va?]ab]!
implementation of this first version of CLU is running on a DEC POP-10 computer,

At present we are engaged 1in designing an extended version of CLU. Some
of the topics under investigation include: paralielism, control abstractions,
the meaning of type parameters, and polymorphic functional abstracticns,

ACKNOWLEDGEMENTS

Several people have made important contributions to the design and
fmplementation of CLU, and the author gratefully acknowledges their help. The
contributions of Russ Atkinson, Craig Schaffert,and Alan Snyder have been
particularly significant.

REFEREMCES

1. E.M. Dijkstra, Notes on structured programming. Structured Programming,
A.P.1.C. Studies in Data Processing No. 8, Academic Press, New York 1472,
1-81. : ;

2, D.L, Parnas. Information distribution aspects of design methodology.

Proceedings of the IFIP Congress, August 1971,
3. B. Liskov. A design mothodology for reliable software systems,
Proceedings of the AFIPS 41 (1972), 191-199,

P. Henderson and
Bit 12 (1972}, 38

B. Liskov and §,

R. Snowden. An experiment in structured programming.

~53.

Ziiles, Programming with abstract data types,

Proceedings of ACH SIGPLAN Conference an
!IEF_Luoti?é's'E,‘ 4 TApri1 1974, 30-59.

Investication_gi Current Lanquage Subport for the Data

LAN

J.M. Aello. pn

Yery High Leval Lanquages,

tructured Programming.

Reguirements af §
-1.T., Cambridge

0.J. Dahl, B, Myh

Publication $-22, Norwegian Computing Center, Oslq, 1970,

B. Liskov. Daty
{1975}, 285-285.

B, Liskov and §,
IEEE Transactions

» Mass_ [September 1974,
rhaug, and K. Nygaard.

Technical Mamo TM-51, Project MAC,

The SIMULA &7 Common Base Language,

tyres and program correctness. Proceedings of the AFIPS 44

Zilles. Specification techniques for data abstractions.
on Software Engineering SE-1, (1975), 7-19,

C. Schaffert, A,
Computation Struc
Mass., September

Snyder, and R, Atkinson,
tures Group memerandum,
1975,

The CLU Reference Manyai,
Project MAC, M.T. -» Cambridge,

