
1977 ACM Student Award
Paper: First Place

An Analysis of Inline
Substitution for a
Structured
Programming
Language
Robert W. Scheifler
Massachusetts Institute of Technology

An optimization technique known as inline
substitution is analyzed. The optimization consists of
replacing a procedure invocation by a modified copy of
the procedure body. The general problem of using
inline substitution to minimize execution time subject
to size constraints is formulated, and an approximate
algorithmic solution is proposed. The algorithm
depends on run-time statistics about the program to be
optimized. Preliminary results for the CLU structured
programming language indicate that, in programs with
a low degree of recursion, over 90 percent of all
procedure calls can be eliminated, with little increase in
the size of compiled code and a small savings in
execution time. Other conclusions based on these
results are also presented.

Key Words and Phrases: inline substitution, open
coding, open compilation, program optimization,
compilers, structured programming languages, run-
time statistics

CR Categories: 4.12

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the'fact that reprinting privileges were granted by per-
mission of the Association for Computing Machinery.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by the
Office of Naval Research under contract N00014-75-C-0661. Au-
thor's address: Programming Methodology Group, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA 02139.

6 4 7

1. Introduction

In recent years various studies have been under-
taken to determine the efficacy of program optimiza-
tion [6, 10, 15, 16]. Results from these studies gener-
ally indicate that current optimization techniques are
indeed worthwhile for conventional algebraic and gen-
eral-purpose languages [6, 15]. With the advent of
structured programming and structured programming
languages, it is important to determine which existing
techniques are more effective, and which are less effec-
tive, when applied to structured programs. This paper
analyzes the efficacy of a technique known as inline
substitution. CLU [7], a structured programming lan-
guage supporting data abstractions [8] currently under
development at M.I .T. , serves as the test vehicle.

In the remainder of this section, we discuss how
inline substitution directly affects program size and
execution time and how use of the technique can affect
other optimizations. Section 2 considers the problem of
using inline substitution to minimize execution time
subject to size constraints and develops an approximate
algorithmic solution. The algorithm has been imple-
mented, and preliminary results are given in Section 3,
with conclusions based on these results presented in
Section 4.

1.1 Inline Substitution
Simply stated, inline substitution consists of replac-

ing a procedure invocation by a modified copy of the
procedure body; i.e. the body is substituted for the
invocation. By invocation we mean a statement or
expression that, when executed, calls an explicitly
named procedure, and we include the notions of sub-
routine, subprogram, and function under the general
term procedure. In literature dealing with conventional
languages, this technique is sometimes known as open
coding or open compilation of subroutines [3, 14].

Exactly how the body is modified depends on the
particular language used. Generally the body must be
enclosed in some construct, such as a begin-end block,
to provide for local definitions of formal arguments and
other variables. In addition, argument passing must be
made explicit. Each call-by-value formal is assigned the
corresponding actual argument; each instance of a call-
by-name formal is replaced by the corresponding ac-
tual; and so on. Conflicts between free names of the
actual arguments and local names of the body are
resolved by a systematic renaming, as are conflicts
between free names of the modified body and those
names whose scope includes the invocation.

Figure 1 presents a sample substitution in CLU. We
note that a CLU variable is not an object that holds a
value, but simply a name used to denote an object. The
assignment x := y makes the variable x denote the same
object that y currently denotes. Any change in the state
of that object will be visible through both variables.
Further, arguments are passed by assignment; in the

Communications September 1977
of Volume 20
the ACM Number 9

example, one can think of the array argument as being
passed by reference and the integer arguments as being
passed by value.

It is not hard to see that the expansion shown is
semantically equivalent to the given invocation. The
meaning of a subroutine call is often described [11] and
even formally defined [9] by the copy rule, which is the
very process of inline substitution. However , the source
code to source code transformation stated above fails to
work correctly in many instances for a wide variety of
languages. Most block-structured languages only allow
blocks as statements; so the expansion of a function call
within an expression is impossible without complex
rewriting rules. If a return from a procedure is allowed
at any point in the procedure body, then there must be
a comparable exit mechanism for begin-end blocks;
otherwise many subroutine calls could not be ex-
panded. Of course, optimization is not usually done on
source code, but rather on some intermediate represen-
tation between source and object code. Some optimiz-
ers, though, convert this representation back to source
code [15], and there are definite problems in incorpo-
rating inline substitution into such optimizers.

Several optimizations are possible in the expanded
invocation shown. Each of the first three assignments
could be removed by replacing all occurrences of the
left-hand side by the right-hand side in the rest of the
block, and the conditional test could be eliminated if n
> 1 were known to hold. Certain simple optimizations
can be incorporated into the substitution algorithm, but
this is unnecessary if other techniques, that in part
achieve the same results, are also employed.

1.2 Direct Cost Effect
Conceptually we can think of a procedure invoca-

tion as being implemented by a single mechanism,
which we shall refer to as the call mechanism. Part of
the size change resulting from a substitution is the
difference between the size of the expanded invocation
and the size of that part of the call mechanism originally
present in the code. In addition, when the last remain-
ing invocation of a procedure is expanded, it may be
possible to discard the procedure; this is also counted in
the size change. Although optimizers tend to concen-
trate on reducing execution time, we consider both
time and space to be scarce in a computer system. The
efficacy of inline substitution thus depends to a large
extent on the average size change, as well as the aver-
age execution time of the call mechanism.

Consider a program composed of just a few large
procedures. When an invocation is expanded there is a
substantial increase in program size, provided more
than one invocation of the procedure exists. The execu-
tion time of the expanded body will be very large
compared to that of the call mechanism, and so the
time savings will only begin to offset the size increase
when the invocation occurs inside an inner loop of the
program, i.e. in a section of code that represents a

6 4 8

Fig. 1. Sample substi tution. Top: part of a quicksort program [4].
Bot tom: an expansion of qsort(L, 1, n). Part i t ion(A, b, e, v) rear-
ranges the elements of A with indexes between b and e and re turns m
such that (Vi, b <-- i <- e)[i <- m ~-~ A[i] <- v] holds.

qsort = proc (A: array[int], b: int, e: int);
i f e > b

then
v: int := (A[b] + Ale]) /2 ;
m: int := part i t ion(A, b, e, v);
qsor t (A, b, m);
qsor t (A, m + 1, e);

end;
end qsort;

begin
A: array[int] := L ;
b: int := 1;
e: int := n;
i f e > b

then
v: int := (A[b] + A l e]) / 2 ;
m: int := par t i t ion(A, b, e, v);
qsor t (A, b, m);
qsor t (A, m + 1, e);

end;
end;

major fraction of the total program execution time.
Hence inline substitution would not appear to be gen-
erally useful for such a program. There is some empiri-
cal evidence to support this statement. Knuth, for ex-
ample, uses the technique only twice in his well-known
study of Fortran programs [6] and (perhaps arbitrarily)
only during the "best conceivable anything goes"
phase of optimization. Descriptions of many optimizers
make no mention of the technique.

A program written in a structured programming
language is constructed by repeated division of a prob-
lem into subproblems, each expressed as a procedure.
As a result, structured programs tend to be composed
of a collection of many small procedures. Introducing
abstract data types [8] into the language increases the
likelihood that programs will contain a large number of
small procedures. An abstract data type consists of a set
of data objects and a set of operations for creating and
manipulating the objects. Each operation is imple-
mented by a separate procedure; in practice many of
these procedures are very small.

Since procedures in structured programs are small,
we may assume that the time to execute a procedure
body is correspondingly small. Hence the call mecha-
nism may represent a considerable amount of overhead
in both time and space. At some point it becomes cost
effective to perform inline substitution to reduce this
overhead. For some procedures the call mechanism
may be as large as the expanded invocation, and total
cost will decrease when the substitution is made. If all
invocations of a procedure are expanded, the proce-
dure itself may no longer be needed, further reducing
total cost. Thus, for structured programming lan-

Communica t ions September 1977
of Volume 20
the A C M Number 9

guages, inline substitution may significantly improve
execution time with only a small increase in size.

1.3 Effect on Other Optimizations
Of course, inline substitution is not expected to be

the only practical optimization technique for structured
programming languages. Yet the success of intraproce-
dural optimizations may depend crucially on its use. In
small procedures one would expect to find constants as
arguments to procedures more often than as right-hand
sides of assignments; hence there will be fewer oppor-
tunities to propagate constants than in large proce-
dures, and so the probability of finding dead code is
lower. One would also expect fewer discoveries of
redundant computations, partly because they often will
be separated by procedure boundaries, and partly be-
cause a programmer is less likely to generate them,
there being less code to comprehend at once. More-
over, large portions of loop bodies may be written as
separate procedures, making some loop optimizations
less likely.

This kind of situation has been analyzed by Zelko-
witz and Bail [16] using the structured programming
language SIMPL. Two global and two local optimiza-
tion techniques were used, with the result that almost
no optimization was possible. Palm [10] implemented
various local and global optimizations for C, a machine-
oriented general-purpose language. The test programs
were composed of many small procedures, and again
only marginal improvements in execution time were
gained. Palm gives several other reasons for this, but
suggests that perhaps inline substitution is the key.

When several optimization techniques are used, the
order of optimization is important. We believe inline
substitution should be performed first. Theoretically
this does little harm, since an optimization that is possi-
ble before inline substitution is almost always possible
afterwards. 1 When an invocation is expanded, the fact
that it was once an invocation can be remembered , and
information (e.g. specifications) about the called pro-
cedure can be used directly without trying to derive that
information from the expanded body. Of course, extra
bookkeeping is required to remember such data, and
the multiple copies of procedure bodies produced by
substitution will mean redundant computation in later
optimizations. However , the alternative, using other
techniques both before and after inline substitution, is
probably still more expensive.

Various optimization techniques, including inline
substitution, have been proposed for languages like
CLU by Atkinson [2]. He speculates that if the rest of
the optimizer can be made "smart" enough, the domi-
nant effect of inline substitution may well be the benefit
afforded to other optimizations, this benefit ultimately
producing greater improvements than those obtained

i A space-increasing optimization is one kind of optimization
that might not be possible, if there are space constraints such as those
developed in the next section.

6 4 9

directly from use of the technique. The remainder of
this paper, however, it limited to an analysis of inline
substitution in the absence of other optimizations.

2. Problem Formulat ion and Solution

We would like to be able to incorporate inline
substitution into an optimizer in such a way that little if
any decision-making input is required from the user.
We believe that the user is responsible for the logical
structure of a program, not the physical structure. Re-
stricting our attention to inline substitution as an iso-
lated technique, it is reasonable to ask if there is an
optimal way to use the technique.

In practice it is not possible to simply expand all
procedure invocations. Not only will such a process
never terminate for recursive procedures, but usually
there will be some constraint placed on the total pro-
gram size. There also may be a limit on the size of
individual procedures. For instance, the compiler used
in our study could not compile extremely large proce-
dures. Moreover , it is not always desirable to optimize
an entire program. One might choose some subset of all
procedures and only consider expanding internal invo-
cations: those that call from a procedure in the subset
to a procedure in the subset. The problem is thus one of
constrained minimization:

Substitution Problem. Given a program, a subset of
all invocations, a maximum program size, and a maxi-
mum procedure size, find a sequence of substitutions
that minimizes the expected program execution time.

We note that in reality there are absolute bounds on the
sizes of programs and procedures, though the problem
statement does not impose such constraints. Further, in
practice, the absolute maximum procedure size is used
for every program. We shall return to these points
later.

Assuming there is a way to compute the time saved
by any sequence, there clearly is a solution to the
Substitution Problem. For any given (nontrivial) pro-
gram there are only a finite number of sequences that
will not violate the size constraints, and all such se-
quences can be generated systematically. However , as
the number of invocations increases, there will be a
combinatorial explosion in the number of possible se-
quences, and such a scheme will require exponential (in
the number of invocations) time to solve the Substitu-
tion Problem.

2.1 Complexity of the Problem
Unfortunately we must conjecture that the Substi-

tution Problem is not tractable, that any solution will
require exponential time for some set of programs. To
support this belief we give an efficient reduction, sug-
gested by Rivest [12], of the Knapsack Problem to the
Substitution Problem; this reduction will show that the
Substitution Problem is at least as hard as the Knapsack

Communica t ions September 1977
of Volume 20
the A C M N u m b e r 9

Problem. The Knapsack Problem is known to be
NP-complete 2 and so is thought to have no tractable
solution:

Knapsack Problem. Given a sequence of positive
integers S = il , in and an integer k, is there a
subsequence that sums to exactly k?

The reduction is based on two almost trivial as-
sumptions about the Substitution Problem. First, we
assume it is possible to construct an invocation with any
integral execution time overhead. By (execution time)
overhead we mean the total overhead for all executions
of the given invocation. For the purpose at hand, we
can choose a fixed call mechanism to be used for all
invocations and define the per call overhead of this
mechanism to be one unit of time. By placing an invo-
cation in a loop we can get any integral overhead. The
second assumption is that it is possible to construct a
procedure of any integral size less than the maximum.
Again, we can define the size of a particular block of
code to be one unit of space and build all procedure
bodies with sequences of this block.

For each integer ij in S = il , in, we construct
procedures Pj and Rj. Pj contains two invocations of Rj,
but only one is included in the set of invocations that
can be expanded. We define the overhead of this one
invocation to be ij units of time. Rj contains no invoca-
tions, and the size increase resulting from its substitu-
tion is defined to be i s units of space.

We define the maximum procedure size so that all
substitutions are possible, but we constrain the maxi-
mum program size increase to k. By construction, the
execution time saved by any sequence of substitutions
will be exactly the same as the resultant size increase,
and so the maximum time savings possible is k. If there
is a subsequence of S that sums to k, then there is a
sequence of substitutions that will obtain the maximum
time savings. Conversely, if there is a sequence that
obtains the maximum time savings, then there is a
subsequence of S that sums to k. Hence we can solve
the Knapsack Problem by solving the Substitution
Problem. Any tractable solution to the Substitution
Problem is thus a tractable solution to the Knapsack
Problem, for we can certainly perform the above con-
struction in polynomial time.

The reduction we have given depends on the fact
that the maximum procedure size and maximum pro-
gram size can be made arbitrarily large. If there are
absolute bounds on these sizes, it may be possible to
solve the Substitution Problem in polynomial time.
However , as long as the bounds are reasonably large,
the polynomial will be of very high degree, and so the
problem is still essentially intractable.

In view of the above, it is reasonable to take an
engineering approach and make certain approxima-
tions in a manner that will arrive, we hope, at a near-

2 Nondeterministic polynomial time complete. See, for example,
[1].

650

optimal solution. To begin, we need some measure of
size and some measure of the execution time overhead
for any given invocation. The size change resulting
from a substitution is easy to compute, but we need a
method for determining how the overhead of an invo-
cation changes as other invocations are expanded. We
make several practical approximations to fulfill these
needs and then return to the actual problem solution at
the end of this sec t ion)

2.2 Size Approximation
There are a number of possible size measures, such

as the number of symbols in the code being optimized,
the number of symbols in the object code, or the
number of machine words occupied by the object code.
This last measure is perhaps the best, and often can be
determined exactly during the optimization phase.
However , there are situations where this is not conven-
ient. For example, it may be very expensive to calculate
object code size from the representat ion being
optimized.

A very simple approximation of object code size can
be made: an operator expression with n operands occu-
pies n + 1 words plus the words occupied by each
operand that is an expression. For example, the expres-
sion a/(b + c) would occupy six words. In the usual tree
representation, this corresponds to summing the num-
ber of leaves less one with twice the number of nodes.
Special cases might be made of certain operators , e.g.
those known to map into single machine instructions.
Control structures can be treated in a similar manner.
An if-then-else statement might occupy two words for
branch instructions plus the words occupied by the
predicate and clauses. The actual approximation seems
unimportant as long as it gives a good indication of
relative size; the size constraints will probably be esti-
mates, and they can easily be expressed as changes
relative to initial sizes.

2.3 Run-Time Statistics
To determine the execution-time overhead of an

invocation we need to know to overhead per call and
the expected number of executions of the invocation.
The overhead per call can be calculated by examining
the code for the invocation. Although one might at-
tempt to derive the expected number of executions
from a static analysis of the program, we prefer a more
accurate approach. The program is run with various
sets of input data and statistics are gathered. These
statistics are used to calculate the expected overhead of
each invocation.

The calculations can be simplified by assuming that
the overhead per call is the same for every invocation.
This is probably a good approximation in general. The
method used to alter the environment and transfer
control will usually be the same for each invocation.

3 Many of the ideas in the rest of this section were first proposed
by Atkinson [2].

Communications September 1977
of Volume 20
the ACM Number 9

Procedures in many languages, especially languages
supporting data abstractions, have few formal argu-
ments and fewer return values, and, in practice, trans-
mission types are chosen in a way that allows each
argument to be passed in about the same amount of
time; so the time spent in data transmission is essen-
tially constant. Thus we can simply use the expected
number of executions of an invocation as the invoca-
tion's execution time overhead.

Suppose the body of a procedure P contains an
invocation S(x) . When an invocation P(y) is expanded,
a new S(x) will be created and must be assigned an
expected number of executions. The ideal way to deter-
mine this number is to keep a statistic on how many
times the old S(x) executes as a result of P 's being called
from P(y). Such a two-level history of control flow
would entail multiple counters for each invocation.
Further, a three-level history would be required to
expand the new S(x) if S had an invocation R (z) , and so
o n .

As a practical matter, the cost of gathering statistics
should be low; it is probably too expensive, in both
time and space, to keep even a two-level history. To
avoid a multilevel history, we choose to make the
following assumption about control flow:

C o n s t a n t R a t i o s A s s u m p t i o n . For any procedure
body and any invocation contained therein, the ex-
pected number of executions of the invocation per
execution of the body is constant.

Although this assumption is very strong, it is the most
reasonable one we can think of that enables us to get by
with just a one-level history. Exactly how this assump-
tion is used will be developed further below.

In addition to keeping statistics for invocations, it
often will be necessary to count the number of times
each procedure is called. In some cases a procedure
may be called via some mechanism other than an ex-
plicit invocation of that procedure. For example, the
language might allow calls through procedure varia-
bles. More importantly, if the invocations considered
for expansion form a small subset of all invocations, the
cost of keeping statistics for all invocations can be
prohibitively greater than the cost of keeping statistics
only for invocations in the subset, additionally counting
the number of times each procedure is called.

2.4 Calculating Expected Numbers
Figure 2 gives a tabular form of the example to be

used in deriving how new expected numbers are calcu-
lated and old expected numbers are modified when a
nonrecursive substitution is performed. In the Before
table, procedures P, S, and R are called p, s, and r
times, respectively. P has an invocation of S with s l

executions, and S has an invocation of R with r l execu-
tions. The After table shows what happens when P's
invocation of S is expanded. The invocation of S disap-
pears, and the expansion creates a new invocation of R,
in the body of P, with some number of executions r2.

651

Fig. 2. Nonrecursive subst i tut ion.

Before expanding S (. . .) : After:
P has p calls P has p calls

S(. . .) has $1 executions R (. . .) has r2 execut ions
S has s calls S has s ' calls

R (. . .) has r l executions R (. . .) has r l ' executions
R has r calls R has r calls

r2 = s l * (r l / s)

s ' = s - s l

r l ' = r l - r2

Fig. 3. Recursive substi tut ion.

Before expanding P (. . .) : After:
P has p calls P has p ' calls

P (. . .) has p l executions P (. . .) has p 2 executions
R (. . .) has r2 executions

R (. . .) has r l executions R (. . .) has r l ' executions
R has r calls R has r calls

p ' = p - p l '

p 2 = p l ' * (p l / p)

r2 = p l ' * (r l / p)

r l ' = r l - r2

p l ' = p * p l / (p + p l)

Clearly the number of calls to S is reduced by the
number of executions of the invocation being ex-
panded, so tha ts ' = s - s l . Since S itself is not called as
often, the number of executions of S's invocation of R
also decreases. This decrease must be compensated by
the number of executions of the new invocation of R,
for certainly the substitution should not alter the num-
ber of times R is called. Thus r l ' = r l - r2 . The
number of calls to P should likewise remain the same.
Last, the Constant Ratios Assumption implies that
r l ' / s ' = r l / s . We can substitute for r l ' and s' in this
equality and find that r2 = s l * (r l / s) .

Figure 3 depicts a situation before and after the
expansion of a recursive invocation. In the After table,
the invocation of P and the invocation of R with r2

executions are created by the expansion. To do the
derivation we also need the number of executions, p l ',

of the expanded invocation.
As in the nonrecursive case, the number of calls to

R must remain the same; so r l ' = r l - r2 . The
executions of the old recursive invocation must go
somewhere; some reappear as executions of the new
recursive invocation, and the rest must remain execu-
tions of the expanded invocation itself, which makes
p l ' = p l - p 2 . Thus the number of calls to P decreases
by the number of executions of the expanded invoca-
tion, o r p ' = p - p l ' .

All that remains is to decide how to apply the
Constant Ratios Assumption. The assumption concerns
the body of a procedure, not the name. It states that,
for any execution of the body of a procedure, the
number of times an invocation contained in that body is
expected to execute is independent of the control flow
history prior to the execution of the body. Therefore

Communica t ions September 1977
of Volume 20
the A C M N u m b e r 9

the assumption must also apply to any copy of the body
that is substituted for an invocation, i.e. the expected
number of executions of an invocation contained in a
copy, per execution of the copy, will be the same as for
the original body of the procedure. In the current
example this means that p 2 / p l ' = p l / p and that r 2 / p l '
= f l i p , which leads to the solution in Figure 3.

2.5 Order of Substitution
The algorithm we choose has three distinct phases.

At each step in the first phase, every substitution that
will result in a nonpositive basic size change is per-
formed, independent of the time saved; the process
repeats until no further substitutions are possible by
this rule. The basic size change for a substitution is the
change in the size of the procedure body containing the
invocation. The reduction in program size possible if
the called procedure can be removed is not counted in
the basic size change, but it/s counted in determining
the program size after the substitution. We use the
basic size change in an attempt to keep procedure sizes
small. As a heuristic, we would rather substitute a small
frequently called procedure often than expand one in-
vocation of a very large procedure within that small
procedure.

The second phase is the heart of the algorithm. At
each step, the invocation with the highest ratio of
expected executions to basic size change, whose expan-
sion will not violate the procedure size constraint, is
expanded. Any invocations created by the substitution
are available at the next step. The order of substitution
can be computed very cheaply by using this rule, but
there are no mathematical guarantees that the result
will be near-optimal. 4 The hope, of course, is that good
results are obtainable for this specific application and
that more expensive calculations are not required. Sub-
stitutions continue according to this rule until the maxi-
mum program size is just exceeded. We prefer not to
complicate the rule to avoid violating the size con-
straint; the maximum is, after all, only approximate,
and in general the additional increase will be small.

Once the second phase is complete, it still may be
possible to expand some invocations without increasing
the total program size. When a nonrecursive procedure
has exactly one invocation to it remaining in the entire
program and the procedure is known not to be called by
any other mechanism, expansion of the invocation also
allows the procedure to be removed, and little if any
total size increase is involved. All such expansions that
do not violate the procedure size constraint are per-
formed in the third and final phase.

3. Preliminary Results

At the time of this work, the CLU compiler was a
high-level to high-level language translator, producing

4 This is not an ~-approximate algorithm as defined by Sahni
[13].

652

object code in MDL [5], a Lisp-like language currently
used as the base language for the M.I.T. Dynamic
Modeling System. Inline substitution is often impossi-
ble in CLU, as well as in the compiler's internal repre-
sentation, but the transformation is always possible for
the MDL code produced by the compiler. For this
reason, the substitution algorithm was implemented for
MDL, with one extension. If, when expanding an invo-
cation, an actual argument is a constant or a variable
and the corresponding formal is not assigned to in the
procedure body, the actual-to-formal assignment is
eliminated by replacing all occurrences of the formal by
the actual in the expanded body.

Four programs were tested: (1) a "programmed"
space war game written in MDL, but containing many
small procedures, (2) the part of the MDL compiler
that orders a set of procedures for compilation, (3) a
simple infix-to-postfix expression translator written in
CLU, and (4) the CLU compiler, which is written
largely in CLU. For each of the first three programs, all
invocations were included for possible expansion. Two
separate tests were made with the CLU compiler. First
the most often used system support routines, written in
MDL, were optimized. That is, only invocations inter-
nal to these procedures were considered. In the second
test, the part of the compiler dealing with declarations,
written in CLU, was optimized along with these origi-
nal support routines.

For Programs 1, 2, and 3, the maximum program
size was set at twice the size of the original program.
For Program 4 the maximum was such that the subset
of procedures being optimized could double in size.
The maximum procedure size was the same for every
test. To determine the accuracy of the size approxima-
tion, both the MDL code and the object code from the
MDL compiler were measured before and after optimi-
zation. After substitutions were complete, the accuracy
of the remaining expected numbers was checked by
gathering statistics for the optimized program. Execu-
tion time was measured both before and after optimiza-
tion. A summary of the results appears in Table I. For
each test, the table shows the various measurements
prior to inline substitution and the actual changes pro-
duced by optimization. The change in the number of
calls and the change in program size, as calculated by
the algorithm, are also shown. We now discuss these
results.

3.1 Size Constraints
The procedure size constraint turned out to be nec-

essary. Initially, an essentially infinite size was allowed,
with the result that some procedures ended up too large
for the MDL compiler to handle. However, the con-
straint was not an important factor in the final out-
come. The reductions in the expected number of calls
under the relaxed constraint were only marginally bet-
ter than those shown, with essentially the same ex-
pected changes in total size.

Communications September 1977
of Volume 20
the ACM Number 9

Tab le I. Summary of Results.

Procs Invs Calls Time Object Source Lines

1. Initial: 77 234 316528 347.5 12357 4687 822
Change: - 6 4 % - 6 5 % - 9 2 % - 2 8 % - 1 % 100%
Expected: - 92% - 100%

2. Initial: 15 28 9645 8.3 2903 1515
Change: - 5 3 % 89% - 5 0 % - 5 % 87% 256%
Expected: - 57% 167%

214

3. Initial: 15 13 769 1.50 1734 917 128
Change: -+93% - 100% - 100% - 17% - 6 7 % - 2 2 %
Expected: - 100% - 2 %

4a. Initial: 79 142 448979 1248 10981 3966 525
Change: 0% - 2 2 % - 1 0 0 % - 1 3 % 9% 34%
Expected: - 100% 44%

4b. Initial: 167 441 779390 1281 31020 16585 2745
Change: - 2 5 % - 1 % - 9 7 % - 7 % 22% 86%
Expected: - 97% 105 %

Time = execution time of compiled code in CPU seconds
Object = size of object code in machine words
Source = size of MDL source code in machine words (5 chars/word)
Lines = number of source text lines
Subs = number of substitutions performed

1 2 3 4a 4b
Subs:

158 23 13 38 234
Procs = number of procedures
Invs = number of internal invocations
Calls = number of internal calls

In four of five tests the vast majority of calls were
eliminated without exceeding the maximum program
size. Program 2 was the exception. For this program,
93 percent of all calls were from recursive invocations
of a single procedure. Size grew very quickly as the
recursive invocations were expanded, but the expected
number of calls decreased rather slowly. Yet, even for
this program, the program size constraint did not signif-
icantly affect the number of calls eliminated. Allowing
all possible substitutions (by using a larger maximum
program size) only reduced the expected number of
calls another 15 percent, with an expected total size
increase of 266 percent.

3.2 Expected Numbers
Perhaps the most striking aspect of Program 1 was

that the expected numbers calculated by the algorithm
agreed exactly, for all invocations of all procedures,
with the numbers obtained by rerunning the optimized
program. The reason is that calculations are only ap-
proximate when the Constant Ratios Assumption is
used; none of the substitutions for Program 1 required
the assumption. The assumption is not used when sub-
stituting a body containing either no invocations or only
invocations with zero expected numbers, nor when
expanding the last remaining invocation of a proce-
dure.

Approximate calculations were required for four
substitutions in Program 2, involving a total of 25
invocations. Five of these invocations were eventually
expanded exactly, leaving 20 approximate numbers,
most of which did not match the actual numbers very

653

closely. All calculations for Programs 3 and 4(a) were
exact, and in both cases all calls were eliminated. Fif-
teen substitutions in Program 4(b) used approximate
calculations, leaving 84 invocations with approximate
numbers. Only the total calls to each procedure were
counted in rerunning this program; so the accuracy of
the individual numbers is not known.

The results indicate that the Constant Ratios As-
sumption may be a poor model of control flow. How-
ever, the results also show that the use of a multilevel
history as a more accurate model is not warranted. It
seems that in most cases virtually all calls can be elimi-
nated with only a small increase in size. Program 2 was
an exception, but in such a highly recursive program it
is difficult to imagine doing much better by using any
algorithm. Hence using the even simpler algorithm of
expanding the most deeply nested invocations first,
which does not require use of run-time statistics, may
be adequate for many programs. However , we believe
there are a large number of practical programs for
which our algorithm performs significantly bet ter than
this simpler algorithm, and it is easy to contrive exam-
ple programs; so we believe the proposed solution is
superior as a general-purpose algorithm.

3.3 Size
As the results show, there is a substantial space

overhead involved with procedure invocations in MDL.
There is also a significant space overhead associated
with each procedure, and the reduction in the total
number of procedures was an important factor in the
size determination.

Communications September 1977
of Volume 20
the ACM Number 9

Program 2 was again the exception. Some attention
was certainly paid to efficiency when the program was
written, but more generally MDL programmers are
well aware of the costs of procedures and procedure
calls and design their programs accordingly. In this
particular program there were few procedures besides
the recursive ones, with no good way of avoiding the
recursion.

The size approximation used was not a good indica-
tion of the actual size of compiled code, but, as we have
stated, this had little impact on the final results. If even
moderate increases in program size cannot be toler-
ated, a much more precise determination of size must
be used, such as directly calculating the size of com-
piled code.

3.4 Execution Time
The average execution time saved per call was

about 350 microseconds for Programs 1, 3, and 4(a),
which agrees with the measured time for a normal
procedure call in MDL. The average time saved for
Program 2 was only about 83 microseconds. The main
reason for this disparity is that a significantly faster call
mechanism is used for recursive invocations than for
nonrecursive invocations. However , the time for a re-
cursive call is actually somewhat faster than this mea-
sured average. Inline substitution turned some recur-
sive invocations into nonrecursive invocations, which
had a canceling effect on the average time.

The average time saved for Program 4(b), 119 mi-
croseconds, is a little harder to explain. All of the
testing was done on a time-sharing system with a paged
memory system, and the time measurements include
paging time. Further, primary memory is composed of
memories of various speeds. These are not obstacles in
timing most programs, but reliable timings are difficult
for very large programs such as the CLU compiler. The
size increase for this test apparently caused a significant
increase in the amont of paging necessary.

It is possible (and standard practice for permanent
M D L programs) to replace the slow calling sequence
for nonrecursive invocations with one equivalent to
that for recursive invocations. If this had been done for
these programs, the reductions in execution time would
have been more nearly the same and on the whole
smaller. As the MDL compiler does no global optimi-
zation, we can only speculate about the benefits of
inline substitution to other optimizations.

of compiled code. For recursive programs, a large num-
ber of calls can be eliminated, but at the expense of a
rather substantial size increase. The execution time
saved directly by inline substitution is small, even for
fairly inefficient procedure call mechanisms; however,
the enlarged context made available to other tech-
niques may lead to much more optimization than would
otherwise be possible. The algorithm we have pre-
sented seems sufficient to obtain these kinds of results
in general, even though our model of control flow is
probably not realistic. Further, we believe that any
general algorithm for inline substitution must be at
least as complex as the one presented if equivalent
results are to be obtained.

Acknowledgments. I give my deepest thanks to Russ
Atkinson for many suggestions and much advice and to
Barbara Liskov for help with various portions of this
work.

References
1. Aho, A.V. et al. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974, pp. 372-374.
2. Atkinson, R.R. Optimization techniques for a structured
programming language. S .M. Th., M.I .T., Cambridge, Mass., 1976.
3. Cocke, J., and Schwartz, J.T. Programming Languages and
Their Compilers: Preliminary Notes. New York U. Press, New York,
1970, pp. 480-494.
4. Hoare, C.A.R., Quicksort. Comput. J. 5, 1 (April 1962), 10-
15.
5. Galley, S.W., and Pfister, G. The MDL Primer and Manual.
SYS.11.01, Lab. Comptr. Sci. M.I.T., Cambridge, Mass., 1975.
6. Knuth, D.E. An empirical study of FORTRAN programs.
Software - Practice and Experience 1,2 (April-June 1971), 105-133.
7. Liskov, B.H., et al. Abstraction mechanisms in CLU.
Computation Structures Group Memo 144-1. Lab. Comptr. Sci.,
M.I.T., Cambridge, Mass., Jan. 1977.
8. Liskov, B.H., and Zilles, S. Programming with abstract data
types. Proc. ACM SIGPLAN Conf. on Very High Level Languages,
SIGPLAN Notices 9, 4 (April 1974), 50-59.
9. Naur, P., Ed. Revised report on the algorithmic language
ALGOL 60. Comm. ACM 6, 1 (Jan. 1963), 11-13.
10. Palm, R.C. A portable optimizer for the language C. S.M. Th.,
M.I.T., Cambridge, Mass., 1975.
11. Pratt, T.W. Programming Languages: Design and
Implementation. Prentice-Hall, Englewood Cliffs, N.J., 1975, pp.
147-151.
12. Rivest, R.L. Private communication.
13. Sahni, S. Approximate algorithms for the 0/1 knapsack
problem. J. ACM 22, 1 (Jan. 1975), 115-124.
14. Schaeffer, M. A Mathematical Theory of Global Program
Optimization. Prentice-Hall, Englewood Cliffs, N.J., 1973, pp. 150-
155.
15. Schneck, P.B., and Angel, E. A FORTRAN to FORTRAN
optimizing compiler. Comput. J. 16, 4 (Nov. 1973), 322-330.
16. Zelkowitz, M.V., and Bail, W.G. Optimization of structured
programs. Software- Practice and Experience 4, 1 (Jan.-March
1974), 51-57.

4. Conclusion

It appears that, in practice, the cost of structuring a
program as a collection of many small procedures is not
large, and in most cases this cost can be essentially
eliminated by means of inline substitution. For struc-
tured programs with a low degree of recursion, the
judicious use of inline substitution can eliminate almost
all procedure calls with little or no increase in the size

654 Communications September 1977
of Volume 20
the ACM Number 9

