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1. Introduction 

In recent years various studies have been under- 
taken to determine the efficacy of program optimiza- 
tion [6, 10, 15, 16]. Results from these studies gener- 
ally indicate that current optimization techniques are 
indeed worthwhile for conventional algebraic and gen- 
eral-purpose languages [6, 15]. With the advent of 
structured programming and structured programming 
languages, it is important  to determine which existing 
techniques are more effective, and which are less effec- 
tive, when applied to structured programs. This paper 
analyzes the efficacy of a technique known as inline 
substitution. CLU [7], a structured programming lan- 
guage supporting data abstractions [8] currently under 
development  at M.I .T. ,  serves as the test vehicle. 

In the remainder of this section, we discuss how 
inline substitution directly affects program size and 
execution time and how use of the technique can affect 
other optimizations. Section 2 considers the problem of 
using inline substitution to minimize execution time 
subject to size constraints and develops an approximate 
algorithmic solution. The algorithm has been imple- 
mented,  and preliminary results are given in Section 3, 
with conclusions based on these results presented in 
Section 4. 

1.1 Inline Substitution 
Simply stated, inline substitution consists of replac- 

ing a procedure invocation by a modified copy of the 
procedure body; i.e. the body is substituted for the 
invocation. By invocation we mean a statement or 
expression that, when executed, calls an explicitly 
named procedure,  and we include the notions of sub- 
routine, subprogram, and function under the general 
term procedure.  In literature dealing with conventional 
languages, this technique is sometimes known as open 
coding or open compilation of subroutines [3, 14]. 

Exactly how the body is modified depends on the 
particular language used. Generally the body must be 
enclosed in some construct, such as a begin-end block, 
to provide for local definitions of formal arguments and 
other variables. In addition, argument passing must be 
made explicit. Each call-by-value formal is assigned the 
corresponding actual argument; each instance of a call- 
by-name formal is replaced by the corresponding ac- 
tual; and so on. Conflicts between free names of the 
actual arguments and local names of the body are 
resolved by a systematic renaming, as are conflicts 
between free names of the modified body and those 
names whose scope includes the invocation. 

Figure 1 presents a sample substitution in CLU.  We 
note that a CLU variable is not an object that holds a 
value, but simply a name used to denote an object.  The 
assignment x := y makes the variable x denote the same 
object that y currently denotes. Any change in the state 
of that object will be visible through both variables. 
Further,  arguments are passed by assignment; in the 
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example, one can think of the array argument as being 
passed by reference and the integer arguments as being 
passed by value. 

It is not hard to see that the expansion shown is 
semantically equivalent to the given invocation. The 
meaning of a subroutine call is often described [11] and 
even formally defined [9] by the copy rule, which is the 
very process of inline substitution. However ,  the source 
code to source code transformation stated above fails to 
work correctly in many instances for a wide variety of 
languages. Most block-structured languages only allow 
blocks as statements; so the expansion of a function call 
within an expression is impossible without complex 
rewriting rules. If a return from a procedure is allowed 
at any point in the procedure body, then there must be 
a comparable exit mechanism for begin-end blocks; 
otherwise many subroutine calls could not be ex- 
panded.  Of course, optimization is not usually done on 
source code, but rather on some intermediate represen- 
tation between source and object code. Some optimiz- 
ers, though, convert this representation back to source 
code [15], and there are definite problems in incorpo- 
rating inline substitution into such optimizers. 

Several optimizations are possible in the expanded 
invocation shown. Each of the first three assignments 
could be removed by replacing all occurrences of the 
left-hand side by the right-hand side in the rest of the 
block, and the conditional test could be eliminated if n 
> 1 were known to hold. Certain simple optimizations 
can be incorporated into the substitution algorithm, but 
this is unnecessary if other  techniques, that in part 
achieve the same results, are also employed.  

1.2 Direct Cost Effect 
Conceptually we can think of a procedure invoca- 

tion as being implemented by a single mechanism, 
which we shall refer to as the call mechanism. Part of 
the size change resulting from a substitution is the 
difference between the size of the expanded invocation 
and the size of that part of the call mechanism originally 
present in the code. In addition, when the last remain- 
ing invocation of a procedure is expanded,  it may be 
possible to discard the procedure;  this is also counted in 
the size change. Although optimizers tend to concen- 
trate on reducing execution time, we consider both 
time and space to be scarce in a computer  system. The 
efficacy of inline substitution thus depends to a large 
extent on the average size change, as well as the aver- 
age execution time of the call mechanism. 

Consider a program composed of just a few large 
procedures.  When an invocation is expanded there is a 
substantial increase in program size, provided more 
than one invocation of the procedure exists. The execu- 
tion time of the expanded body will be very large 
compared to that of the call mechanism, and so the 
time savings will only begin to offset the size increase 
when the invocation occurs inside an inner loop of the 
program, i.e. in a section of code that represents a 
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Fig. 1. Sample substi tution.  Top: part  of a quicksort  program [4]. 
Bot tom:  an expansion of qsort(L,  1, n). Part i t ion(A,  b, e, v) rear- 
ranges the elements  of  A with indexes between b and e and re turns  m 
such that  (Vi,  b <-- i <- e)[i <- m ~-~ A[i] <- v] holds. 

qsort  = proc (A: array[int], b: int, e: int); 
i f e > b  

then 
v: int := (A[b] + Ale] ) /2 ;  
m: int := part i t ion(A,  b, e, v); 
qsor t (A,  b, m);  
qsor t (A,  m + 1, e); 

end; 
end qsort; 

begin 
A: array[int] := L ;  
b: int := 1; 
e: int := n; 
i f e > b  

then 
v: int := (A[b] + A l e ] ) / 2 ;  
m: int := par t i t ion(A,  b, e, v); 
qsor t (A,  b, m);  
qsor t (A,  m + 1, e); 

end; 
end; 

major fraction of the total program execution time. 
Hence inline substitution would not appear  to be gen- 
erally useful for such a program. There is some empiri- 
cal evidence to support  this statement.  Knuth,  for ex- 
ample, uses the technique only twice in his well-known 
study of Fortran programs [6] and (perhaps arbitrarily) 
only during the "best  conceivable . . . .  anything goes" 
phase of optimization. Descriptions of many optimizers 
make no mention of the technique. 

A program written in a structured programming 
language is constructed by repeated division of a prob- 
lem into subproblems, each expressed as a procedure.  
As a result, structured programs tend to be composed 
of a collection of many small procedures.  Introducing 
abstract data types [8] into the language increases the 
likelihood that programs will contain a large number  of 
small procedures.  An abstract data type consists of a set 
of data objects and a set of operations for creating and 
manipulating the objects. Each operation is imple- 
mented by a separate procedure;  in practice many of 
these procedures are very small. 

Since procedures in structured programs are small, 
we may assume that the time to execute a procedure 
body is correspondingly small. Hence the call mecha- 
nism may represent a considerable amount  of overhead 
in both time and space. At  some point it becomes cost 
effective to perform inline substitution to reduce this 
overhead.  For some procedures the call mechanism 
may be as large as the expanded invocation, and total 
cost will decrease when the substitution is made.  If all 
invocations of a procedure are expanded,  the proce- 
dure itself may no longer be needed,  further reducing 
total cost. Thus, for structured programming lan- 
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guages, inline substitution may significantly improve 
execution time with only a small increase in size. 

1.3 Effect on Other Optimizations 
Of course, inline substitution is not expected to be 

the only practical optimization technique for structured 
programming languages. Yet the success of intraproce- 
dural optimizations may depend crucially on its use. In 
small procedures one would expect to find constants as 
arguments to procedures more often than as right-hand 
sides of assignments; hence there will be fewer oppor- 
tunities to propagate  constants than in large proce- 
dures, and so the probability of finding dead code is 
lower. One would also expect fewer discoveries of 
redundant  computations, partly because they often will 
be separated by procedure boundaries, and partly be- 
cause a programmer is less likely to generate them, 
there being less code to comprehend at once. More- 
over, large portions of loop bodies may be written as 
separate procedures,  making some loop optimizations 
less likely. 

This kind of situation has been analyzed by Zelko- 
witz and Bail [16] using the structured programming 
language SIMPL. Two global and two local optimiza- 
tion techniques were used, with the result that almost 
no optimization was possible. Palm [10] implemented 
various local and global optimizations for C, a machine- 
oriented general-purpose language. The test programs 
were composed of many small procedures,  and again 
only marginal improvements in execution time were 
gained. Palm gives several other reasons for this, but 
suggests that perhaps inline substitution is the key. 

When several optimization techniques are used, the 
order of optimization is important.  We believe inline 
substitution should be performed first. Theoretically 
this does little harm, since an optimization that is possi- 
ble before inline substitution is almost always possible 
afterwards. 1 When an invocation is expanded,  the fact 
that it was once an invocation can be remembered ,  and 
information (e.g. specifications) about the called pro- 
cedure can be used directly without trying to derive that 
information from the expanded body. Of course, extra 
bookkeeping is required to remember  such data, and 
the multiple copies of procedure bodies produced by 
substitution will mean redundant  computation in later 
optimizations. However ,  the alternative, using other 
techniques both before and after inline substitution, is 
probably still more expensive. 

Various optimization techniques, including inline 
substitution, have been proposed for languages like 
CLU by Atkinson [2]. He speculates that if the rest of 
the optimizer can be made "smart"  enough, the domi- 
nant effect of inline substitution may well be the benefit 
afforded to other optimizations, this benefit  ultimately 
producing greater improvements than those obtained 

i A space-increasing optimization is one kind of optimization 
that might  not  be possible, if there  are space constraints such as those 
developed in the next section. 
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directly from use of the technique. The remainder  of 
this paper, however,  it limited to an analysis of inline 
substitution in the absence of other optimizations. 

2. Problem Formulat ion and Solution 

We would like to be able to incorporate inline 
substitution into an optimizer in such a way that little if 
any decision-making input is required from the user. 
We believe that the user is responsible for the logical 
structure of a program, not the physical structure. Re- 
stricting our attention to inline substitution as an iso- 
lated technique, it is reasonable to ask if there is an 
optimal way to use the technique. 

In practice it is not possible to simply expand all 
procedure invocations. Not only will such a process 
never terminate for recursive procedures,  but usually 
there will be some constraint placed on the total pro- 
gram size. There  also may be a limit on the size of 
individual procedures.  For instance, the compiler used 
in our study could not compile extremely large proce- 
dures. Moreover ,  it is not always desirable to optimize 
an entire program. One might choose some subset of all 
procedures and only consider expanding internal invo- 
cations: those that call from a procedure in the subset 
to a procedure in the subset. The problem is thus one of 
constrained minimization: 

Substitution Problem. Given a program, a subset of 
all invocations, a maximum program size, and a maxi- 
mum procedure size, find a sequence of substitutions 
that minimizes the expected program execution time. 

We note that in reality there are absolute bounds on the 
sizes of programs and procedures,  though the problem 
statement does not impose such constraints. Further,  in 
practice, the absolute maximum procedure size is used 
for every program. We shall return to these points 
later. 

Assuming there is a way to compute the time saved 
by any sequence, there clearly is a solution to the 
Substitution Problem. For any given (nontrivial) pro- 
gram there are only a finite number of sequences that 
will not violate the size constraints, and all such se- 
quences can be generated systematically. However ,  as 
the number of invocations increases, there will be a 
combinatorial explosion in the number of possible se- 
quences, and such a scheme will require exponential (in 
the number of invocations) time to solve the Substitu- 
tion Problem. 

2.1 Complexity of  the Problem 
Unfortunately we must conjecture that the Substi- 

tution Problem is not tractable, that any solution will 
require exponential time for some set of programs. To 
support this belief we give an efficient reduction,  sug- 
gested by Rivest [12], of the Knapsack Problem to the 
Substitution Problem; this reduction will show that the 
Substitution Problem is at least as hard as the Knapsack 
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Problem. The Knapsack Problem is known to be 
NP-complete 2 and so is thought to have no tractable 
solution: 

Knapsack Problem. Given a sequence of positive 
integers S = il . . . .  , in and an integer k, is there a 
subsequence that sums to exactly k? 

The reduction is based on two almost trivial as- 
sumptions about the Substitution Problem. First, we 
assume it is possible to construct an invocation with any 
integral execution time overhead. By (execution time) 
overhead we mean the total overhead for all executions 
of the given invocation. For  the purpose at hand, we 
can choose a fixed call mechanism to be used for all 
invocations and define the per call overhead of this 
mechanism to be one unit of time. By placing an invo- 
cation in a loop we can get any integral overhead.  The 
second assumption is that it is possible to construct a 
procedure of any integral size less than the maximum. 
Again, we can define the size of a particular block of 
code to be one unit of space and build all procedure 
bodies with sequences of this block. 

For  each integer ij in S = il . . . .  , in, we construct 
procedures Pj and Rj. Pj contains two invocations of Rj, 
but only one is included in the set of invocations that 
can be expanded.  We define the overhead of this one 
invocation to be ij units of time. Rj contains no invoca- 
tions, and the size increase resulting from its substitu- 
tion is defined to be i s units of space. 

We define the maximum procedure size so that all 
substitutions are possible, but we constrain the maxi- 
mum program size increase to k. By construction, the 
execution time saved by any sequence of substitutions 
will be exactly the same as the resultant size increase, 
and so the maximum time savings possible is k. If there 
is a subsequence of S that sums to k, then there is a 
sequence of substitutions that will obtain the maximum 
time savings. Conversely, if there is a sequence that 
obtains the maximum time savings, then there is a 
subsequence of S that sums to k. Hence we can solve 
the Knapsack Problem by solving the Substitution 
Problem. Any tractable solution to the Substitution 
Problem is thus a tractable solution to the Knapsack 
Problem, for we can certainly perform the above con- 
struction in polynomial time. 

The reduction we have given depends on the fact 
that the maximum procedure size and maximum pro- 
gram size can be made arbitrarily large. If there are 
absolute bounds on these sizes, it may be possible to 
solve the Substitution Problem in polynomial time. 
However ,  as long as the bounds are reasonably large, 
the polynomial will be of very high degree,  and so the 
problem is still essentially intractable. 

In view of the above,  it is reasonable to take an 
engineering approach and make certain approxima- 
tions in a manner  that will arrive, we hope,  at a near- 

2 Nondeterministic polynomial time complete. See, for example, 
[1]. 

650 

optimal solution. To begin, we need some measure of 
size and some measure of the execution time overhead 
for any given invocation. The size change resulting 
from a substitution is easy to compute,  but we need a 
method for determining how the overhead of an invo- 
cation changes as other  invocations are expanded.  We 
make several practical approximations to fulfill these 
needs and then return to the actual problem solution at 
the end of this sec t ion)  

2.2 Size Approximation 
There  are a number  of possible size measures,  such 

as the number of symbols in the code being optimized, 
the number  of symbols in the object code, or the 
number  of machine words occupied by the object  code. 
This last measure is perhaps the best, and often can be 
determined exactly during the optimization phase. 
However ,  there are situations where this is not conven- 
ient. For example, it may be very expensive to calculate 
object  code size from the representat ion being 
optimized. 

A very simple approximation of object code size can 
be made: an operator  expression with n operands occu- 
pies n + 1 words plus the words occupied by each 
operand that is an expression. For  example,  the expres- 
sion a/(b + c) would occupy six words. In the usual tree 
representation,  this corresponds to summing the num- 
ber of leaves less one with twice the number  of nodes. 
Special cases might be made of certain operators ,  e.g. 
those known to map into single machine instructions. 
Control  structures can be treated in a similar manner.  
An if-then-else statement might occupy two words for 
branch instructions plus the words occupied by the 
predicate and clauses. The actual approximation seems 
unimportant  as long as it gives a good indication of 
relative size; the size constraints will probably be esti- 
mates, and they can easily be expressed as changes 
relative to initial sizes. 

2.3 Run-Time Statistics 
To determine the execution-time overhead of an 

invocation we need to know to overhead per call and 
the expected number  of executions of the invocation. 
The overhead per call can be calculated by examining 
the code for the invocation. Although one might at- 
tempt to derive the expected number  of executions 
from a static analysis of the program, we prefer  a more 
accurate approach. The program is run with various 
sets of input data and statistics are gathered.  These 
statistics are used to calculate the expected overhead of 
each invocation. 

The calculations can be simplified by assuming that 
the overhead per call is the same for every invocation. 
This is probably a good approximation in general.  The 
method used to alter the environment and transfer 
control will usually be the same for each invocation. 

3 Many of the ideas in the rest of this section were first proposed 
by Atkinson [2]. 
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Procedures in many languages, especially languages 
supporting data abstractions, have few formal argu- 
ments and fewer return values, and, in practice, trans- 
mission types are chosen in a way that allows each 
argument to be passed in about the same amount  of 
time; so the time spent in data transmission is essen- 
tially constant. Thus we can simply use the expected 
number  of executions of an invocation as the invoca- 
tion's execution time overhead.  

Suppose the body of a procedure P contains an 
invocation S(x) .  When an invocation P(y) is expanded,  
a new S(x)  will be created and must be assigned an 
expected number of executions. The ideal way to deter- 
mine this number is to keep a statistic on how many 
times the old S(x)  executes as a result of P 's  being called 
from P(y). Such a two-level history of control flow 
would entail multiple counters for each invocation. 
Further,  a three-level history would be required to 
expand the new S(x)  if S had an invocation R ( z ) ,  and so 
o n .  

As a practical matter,  the cost of gathering statistics 
should be low; it is probably too expensive, in both 
time and space, to keep even a two-level history. To 
avoid a multilevel history, we choose to make the 
following assumption about control flow: 

C o n s t a n t  R a t i o s  A s s u m p t i o n .  For any procedure 
body and any invocation contained therein,  the ex- 
pected number of executions of the invocation per 
execution of the body is constant. 

Although this assumption is very strong, it is the most 
reasonable one we can think of that enables us to get by 
with just a one-level history. Exactly how this assump- 
tion is used will be developed further below. 

In addition to keeping statistics for invocations, it 
often will be necessary to count the number  of times 
each procedure is called. In some cases a procedure 
may be called via some mechanism other than an ex- 
plicit invocation of that procedure.  For example,  the 
language might allow calls through procedure varia- 
bles. More importantly, if the invocations considered 
for expansion form a small subset of all invocations, the 
cost of keeping statistics for all invocations can be 
prohibitively greater than the cost of keeping statistics 
only for invocations in the subset, additionally counting 
the number of times each procedure is called. 

2.4 Calculating Expected Numbers 
Figure 2 gives a tabular form of the example to be 

used in deriving how new expected numbers are calcu- 
lated and old expected numbers are modified when a 
nonrecursive substitution is performed.  In the Before 
table, procedures P, S, and R are called p,  s, and r 
times, respectively. P has an invocation of S with s l  

executions, and S has an invocation of R with r l  execu- 
tions. The After  table shows what happens when P's  
invocation of S is expanded.  The invocation of S disap- 
pears, and the expansion creates a new invocation of R, 
in the body of P,  with some number of executions r2.  

651  

Fig. 2. Nonrecursive subst i tut ion.  

Before expanding S ( . . . ) :  After:  
P has p calls P has p calls 

S( .  . .)  has $1 executions R ( .  . .) has r2  execut ions 
S has s calls S has s '  calls 

R ( .  . .) has r l  executions R ( .  . .)  has r l '  executions 
R has  r calls R has r calls 

r2  = s l  * ( r l / s )  

s '  = s - s l  

r l '  = r l  - r2  

Fig. 3. Recursive substi tut ion.  

Before expanding P ( . . . ) :  After:  
P has  p calls P has p '  calls 

P ( .  . .)  has p l  executions P ( .  . .)  has p 2  executions 
R ( .  . .)  has r2 executions 

R ( .  . .)  has r l  executions R ( .  . .) has r l '  executions 
R has r calls R has r calls 

p '  = p  - p l '  

p 2  = p l '  * ( p l / p )  

r2 = p l '  * ( r l / p )  

r l '  = r l  - r2 

p l '  = p * p l / ( p  + p l )  

Clearly the number  of calls to S is reduced by the 
number  of executions of the invocation being ex- 
panded,  so tha ts '  = s - s l .  Since S itself is not called as 
often, the number of executions of S's invocation of R 
also decreases. This decrease must be compensated by 
the number  of executions of the new invocation of R, 
for certainly the substitution should not alter the num- 
ber of times R is called. Thus r l '  = r l  - r2 .  The 
number  of calls to P should likewise remain the same. 
Last, the Constant Ratios Assumption implies that 
r l ' / s '  = r l / s .  We can substitute for r l '  and s' in this 
equality and find that r2  = s l  * ( r l / s ) .  

Figure 3 depicts a situation before and after the 
expansion of a recursive invocation. In the After  table, 
the invocation of P and the invocation of R with r2  

executions are created by the expansion. To do the 
derivation we also need the number of executions, p l  ', 

of the expanded invocation. 
As in the nonrecursive case, the number of calls to 

R must remain the same; so r l '  = r l  - r2 .  The 
executions of the old recursive invocation must go 
somewhere;  some reappear  as executions of the new 
recursive invocation, and the rest must remain execu- 
tions of the expanded invocation itself, which makes 
p l '  = p l  - p 2 .  Thus the number of calls to P decreases 
by the number of executions of the expanded invoca- 
tion, o r p '  = p - p l ' .  

All that remains is to decide how to apply the 
Constant Ratios Assumption.  The assumption concerns 
the body of a procedure,  not the name. It states that, 
for any execution of the body of a procedure,  the 
number  of times an invocation contained in that body is 
expected to execute is independent  of the control flow 
history prior to the execution of the body. Therefore  
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the assumption must also apply to any copy of the body 
that is substituted for an invocation, i.e. the expected 
number of executions of an invocation contained in a 
copy, per execution of the copy, will be the same as for 
the original body of the procedure. In the current 
example this means that p 2 / p l '  = p l / p  and that r 2 / p l '  
= f l i p ,  which leads to the solution in Figure 3. 

2.5 Order of Substitution 
The algorithm we choose has three distinct phases. 

At each step in the first phase, every substitution that 
will result in a nonpositive basic size change is per- 
formed, independent of the time saved; the process 
repeats until no further substitutions are possible by 
this rule. The basic size change for a substitution is the 
change in the size of the procedure body containing the 
invocation. The reduction in program size possible if 
the called procedure can be removed is not  counted in 
the basic size change, but it/s counted in determining 
the program size after the substitution. We use the 
basic size change in an attempt to keep procedure sizes 
small. As a heuristic, we would rather substitute a small 
frequently called procedure often than expand one in- 
vocation of a very large procedure within that small 
procedure. 

The second phase is the heart of the algorithm. At 
each step, the invocation with the highest ratio of 
expected executions to basic size change, whose expan- 
sion will not violate the procedure size constraint, is 
expanded. Any invocations created by the substitution 
are available at the next step. The order of substitution 
can be computed very cheaply by using this rule, but 
there are no mathematical guarantees that the result 
will be near-optimal. 4 The hope, of course, is that good 
results are obtainable for this specific application and 
that more expensive calculations are not required. Sub- 
stitutions continue according to this rule until the maxi- 
mum program size is just exceeded. We prefer not to 
complicate the rule to avoid violating the size con- 
straint; the maximum is, after all, only approximate, 
and in general the additional increase will be small. 

Once the second phase is complete, it still may be 
possible to expand some invocations without increasing 
the total program size. When a nonrecursive procedure 
has exactly one invocation to it remaining in the entire 
program and the procedure is known not to be called by 
any other mechanism, expansion of the invocation also 
allows the procedure to be removed, and little if any 
total size increase is involved. All such expansions that 
do not violate the procedure size constraint are per- 
formed in the third and final phase. 

3. Preliminary Results 

At the time of this work, the CLU compiler was a 
high-level to high-level language translator, producing 

4 This is not an ~-approximate algorithm as defined by Sahni 
[13]. 
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object code in MDL [5], a Lisp-like language currently 
used as the base language for the M.I.T. Dynamic 
Modeling System. Inline substitution is often impossi- 
ble in CLU, as well as in the compiler's internal repre- 
sentation, but the transformation is always possible for 
the MDL code produced by the compiler. For this 
reason, the substitution algorithm was implemented for 
MDL, with one extension. If, when expanding an invo- 
cation, an actual argument is a constant or a variable 
and the corresponding formal is not assigned to in the 
procedure body, the actual-to-formal assignment is 
eliminated by replacing all occurrences of the formal by 
the actual in the expanded body. 

Four programs were tested: (1) a "programmed" 
space war game written in MDL, but containing many 
small procedures, (2) the part of the MDL compiler 
that orders a set of procedures for compilation, (3) a 
simple infix-to-postfix expression translator written in 
CLU, and (4) the CLU compiler, which is written 
largely in CLU. For each of the first three programs, all 
invocations were included for possible expansion. Two 
separate tests were made with the CLU compiler. First 
the most often used system support routines, written in 
MDL, were optimized. That is, only invocations inter- 
nal to these procedures were considered. In the second 
test, the part of the compiler dealing with declarations, 
written in CLU, was optimized along with these origi- 
nal support routines. 

For Programs 1, 2, and 3, the maximum program 
size was set at twice the size of the original program. 
For Program 4 the maximum was such that the subset 
of procedures being optimized could double in size. 
The maximum procedure size was the same for every 
test. To determine the accuracy of the size approxima- 
tion, both the MDL code and the object code from the 
MDL compiler were measured before and after optimi- 
zation. After substitutions were complete, the accuracy 
of the remaining expected numbers was checked by 
gathering statistics for the optimized program. Execu- 
tion time was measured both before and after optimiza- 
tion. A summary of the results appears in Table I. For 
each test, the table shows the various measurements 
prior to inline substitution and the actual changes pro- 
duced by optimization. The change in the number of 
calls and the change in program size, as calculated by 
the algorithm, are also shown. We now discuss these 
results. 

3.1 Size Constraints 
The procedure size constraint turned out to be nec- 

essary. Initially, an essentially infinite size was allowed, 
with the result that some procedures ended up too large 
for the MDL compiler to handle. However, the con- 
straint was not an important factor in the final out- 
come. The reductions in the expected number of calls 
under the relaxed constraint were only marginally bet- 
ter than those shown, with essentially the same ex- 
pected changes in total size. 
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Tab le  I. Summary of Results. 

Procs Invs Calls Time Object Source Lines 

1. Initial: 77 234 316528 347.5 12357 4687 822 
Change: - 6 4 %  - 6 5 %  - 9 2 %  - 2 8 %  - 1 %  100% 
Expected: - 92% - 100% 

2. Initial: 15 28 9645 8.3 2903 1515 
Change: - 5 3 %  89% - 5 0 %  - 5 %  87% 256% 
Expected: - 57% 167% 

214 

3. Initial: 15 13 769 1.50 1734 917 128 
Change: -+93% - 100% - 100% - 17% - 6 7 %  - 2 2 %  
Expected: - 100% - 2 %  

4a. Initial: 79 142 448979 1248 10981 3966 525 
Change: 0% - 2 2 %  - 1 0 0 %  - 1 3 %  9% 34% 
Expected: - 100% 44% 

4b. Initial: 167 441 779390 1281 31020 16585 2745 
Change: - 2 5 %  - 1 %  - 9 7 %  - 7 %  22% 86% 
Expected: - 97% 105 % 

Time = execution time of compiled code in CPU seconds 
Object = size of object code in machine words 
Source = size of MDL source code in machine words (5 chars/word) 
Lines = number of source text lines 
Subs = number of substitutions performed 

1 2 3 4a 4b 
Subs: 

158 23 13 38 234 
Procs = number of procedures 
Invs = number of internal invocations 
Calls = number of internal calls 

In four of five tests the vast majority of calls were 
eliminated without exceeding the maximum program 
size. Program 2 was the exception. For this program, 
93 percent of all calls were from recursive invocations 
of a single procedure.  Size grew very quickly as the 
recursive invocations were expanded,  but the expected 
number of calls decreased rather slowly. Yet,  even for 
this program, the program size constraint did not signif- 
icantly affect the number of calls eliminated. Allowing 
all possible substitutions (by using a larger maximum 
program size) only reduced the expected number of 
calls another 15 percent,  with an expected total size 
increase of 266 percent.  

3.2 Expected Numbers 
Perhaps the most striking aspect of Program 1 was 

that the expected numbers calculated by the algorithm 
agreed exactly, for all invocations of all procedures,  
with the numbers obtained by rerunning the optimized 
program. The reason is that calculations are only ap- 
proximate when the Constant Ratios Assumption is 
used; none of the substitutions for Program 1 required 
the assumption. The assumption is not used when sub- 
stituting a body containing either no invocations or only 
invocations with zero expected numbers, nor when 
expanding the last remaining invocation of a proce- 
dure. 

Approximate calculations were required for four 
substitutions in Program 2, involving a total of 25 
invocations. Five of these invocations were eventually 
expanded exactly, leaving 20 approximate numbers, 
most of which did not match the actual numbers very 
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closely. All calculations for Programs 3 and 4(a) were 
exact, and in both cases all calls were eliminated. Fif- 
teen substitutions in Program 4(b) used approximate 
calculations, leaving 84 invocations with approximate 
numbers. Only the total calls to each procedure were 
counted in rerunning this program; so the accuracy of 
the individual numbers is not known. 

The results indicate that the Constant Ratios As- 
sumption may be a poor  model of control flow. How- 
ever, the results also show that the use of a multilevel 
history as a more accurate model is not warranted.  It 
seems that in most cases virtually all calls can be elimi- 
nated with only a small increase in size. Program 2 was 
an exception, but in such a highly recursive program it 
is difficult to imagine doing much better  by using any 
algorithm. Hence using the even simpler algorithm of 
expanding the most deeply nested invocations first, 
which does not require use of run-time statistics, may 
be adequate for many programs. However ,  we believe 
there are a large number  of practical programs for 
which our algorithm performs significantly bet ter  than 
this simpler algorithm, and it is easy to contrive exam- 
ple programs; so we believe the proposed solution is 
superior as a general-purpose algorithm. 

3.3 Size 
As the results show, there is a substantial space 

overhead involved with procedure invocations in MDL.  
There  is also a significant space overhead associated 
with each procedure,  and the reduction in the total 
number  of procedures was an important factor in the 
size determination. 
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Program 2 was again the exception. Some attention 
was certainly paid to efficiency when the program was 
written, but more generally MDL programmers are 
well aware of the costs of procedures and procedure 
calls and design their programs accordingly. In this 
particular program there were few procedures besides 
the recursive ones, with no good way of avoiding the 
recursion. 

The size approximation used was not a good indica- 
tion of the actual size of compiled code, but,  as we have 
stated, this had little impact on the final results. If even 
moderate increases in program size cannot be toler- 
ated, a much more precise determination of size must 
be used, such as directly calculating the size of com- 
piled code. 

3.4 Execution Time 
The average execution time saved per call was 

about 350 microseconds for Programs 1, 3, and 4(a), 
which agrees with the measured time for a normal 
procedure call in MDL.  The average time saved for 
Program 2 was only about 83 microseconds. The main 
reason for this disparity is that a significantly faster call 
mechanism is used for recursive invocations than for 
nonrecursive invocations. However ,  the time for a re- 
cursive call is actually somewhat faster than this mea- 
sured average. Inline substitution turned some recur- 
sive invocations into nonrecursive invocations, which 
had a canceling effect on the average time. 

The average time saved for Program 4(b),  119 mi- 
croseconds, is a little harder  to explain. All of the 
testing was done on a time-sharing system with a paged 
memory system, and the time measurements include 
paging time. Further,  primary memory is composed of 
memories of various speeds. These are not obstacles in 
timing most programs, but reliable timings are difficult 
for very large programs such as the CLU compiler. The 
size increase for this test apparently caused a significant 
increase in the amont of paging necessary. 

It is possible (and standard practice for permanent  
M D L  programs) to replace the slow calling sequence 
for nonrecursive invocations with one equivalent to 
that for recursive invocations. If this had been done for 
these programs, the reductions in execution time would 
have been more nearly the same and on the whole 
smaller. As the MDL compiler does no global optimi- 
zation, we can only speculate about the benefits of 
inline substitution to other  optimizations. 

of compiled code. For recursive programs, a large num- 
ber of calls can be eliminated, but at the expense of a 
rather substantial size increase. The execution time 
saved directly by inline substitution is small, even for 
fairly inefficient procedure call mechanisms; however,  
the enlarged context made available to other  tech- 
niques may lead to much more optimization than would 
otherwise be possible. The algorithm we have pre- 
sented seems sufficient to obtain these kinds of results 
in general,  even though our model of control flow is 
probably not realistic. Further,  we believe that any 
general algorithm for inline substitution must be at 
least as complex as the one presented if equivalent 
results are to be obtained. 
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4. Conclusion 

It appears that,  in practice, the cost of structuring a 
program as a collection of many small procedures is not 
large, and in most cases this cost can be essentially 
eliminated by means of inline substitution. For  struc- 
tured programs with a low degree of recursion, the 
judicious use of inline substitution can eliminate almost 
all procedure calls with little or no increase in the size 
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