MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Laboratory for Computer Science

(formerly Project MAC)

Computation Structures Group Memo 140

Computer Architecture and rhe Cost of Software

Jack B. Dennis

(This paper was presented at the Third Annual Computer
Architecture Symposium, January 1976, and appeared in
SIGARCH News, April 1976).

This research was supported by the National Science Founda-
tion under grants DCR 74-21892 and DCR 75-04060.

July 1476



Computer Architecture and the Cost of Software

Jack B. Dennis
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

617-253-6856

The software problem iIs nearly always discussed in terms of goftware
or administrative solutions, and the nature of the computer hardware is
tacitly regarded ag unchangeeble or irrelevant., T believe such limited views
of the software problem keep us from recognizing the fundamental 1limitations
of the computer systems we must work with today, Important improvements in
the methodology of developing very large programs will not happen in the ah-
séence of important changes in the hardware structure and organization of com-
Puter systems. In this paper I dfscuss the reagoning underlying my belief and
indicate the directions of advance required in computer hardware teo provide 3
better basis for the construction of reliable software.

Improved adminlstrative methods for software projects and improved techni-
cal methodelogies of pProgram construction are the main avenues advocatad for
reducing software cost. Better management practices can have little impact on
the complexity of the product of software development, Therefore, large gains
In software quality will come about only through technical advances that vield
simpler and more transparent program structure, provide confidence that a soft-
ware product performs the intended function, and make the software design and
ilmplementation process more straightforward.

Today the most promising technical improvements in the programming process
are included in a broad interpretation of that much-abused phrase 'structured
programming." The proponents of structured programming argue for the use of a
programming methodology that allows the construction of a large program to be
divided into separately specified parrts: such that the design, programming and
verification of each part involves the fewest possible interactions with the
development of other parts., This is in lact a concept of program modularity --
1t should be possible to build large programs from simpler program parts

(modules) that may be designed and implemented independently. Hawever, it is

17



now appreciated that program modularity is a far deeper concept than was
understood by the early advocates of modular programming. With the develop-
meﬁt of interest in the formal verification of program correctness we now
have a sophisticated criterion for a successful methodology of modular
programming -- if programs are built of parts that can be developed truly
independently, then proofs of program correctness will grow only linearly with
the size of the program.

Achieving the goal of structured programming calls for significant changes
in the characteristics of programming languages. It has been observed that
our popular programming languages have features in conflict with the principles
of modular programming, Moreover, the form of program module supported by a
language, and its treatment of storage have a profound influence on the ability
of a programmer to separate design decisions or Prove that program modules sat-
isfy their specifications. In particular, elimination of: global variables;
unrestricted transfers of control; and blatant use of side effects have all
been recognized as important steps toward better languages for structured pro-
gramming.

Work on the development of structured programming methodology has concen-
trated in two areas: programs expressed in a sequential procedural language;
and the cooperation of multiple sequential processes. The former work has led
to new efforts at programming language design, and has established a number of
principles through which the ideals of structured programming may be approached
in the use of conventional high-level languages. For many applications of
small to moderate scale, such disciplined use of exlsting programming tools
can be a very effective methodology.

The work on structuring cooperating sequential processes has been most
influential in contributing to improved structure of operating sygtems, but the
contribution has been mostly limited to the structuring of control, with lig~
tle attention to the structuring of data in mulbi-process computation,

In the construction of large programs, two phenomena arise that dis-
asterously interfere with the practical use of structured programming meth-
odology. Firstly hardware imposed limits are reached, the most significant
being the amount of directly addressable (main) memory. The programmer is
forced tec use distinet means for referencing information as it resides in main
or auxiliary storage, and use of a uniform convention for passing data between
program modules is no longer possible ~- an immediate conflict with bagic re-

quirerents for medular programming.

18



Secondly, large programs usually require use of computer system facili-
ties supported by:the operating system: manipulation of files; cooperative
multiprocessing; access control; and communication with user terminals. The
programmer must go outside his programming language for these aspects of his
application and deal with all the inconsistencies in daca representation,
4ccess means, storage management, etc. between the operating system and his
programming language.

Twa steps are required to change this situation and make the goals of
structured programming achievable for large software projects. We must first
eliminate the distinctions among physical memory media from the programmer's
view. A uniform mechanigm for accessing program modules and data structuregs
must be built into the compuber system =- a generalization of the virtual mem-
Ory systems now in'user

The second step is to encompass all basic facilities for programming in a
language consistent with the principles of structured programming. (A major
unresolved area is the incorporation of facilitiés for cooperative multipro-
<essing inte a procedural language.) Once this is done, the language may be

taken as the specification for a class of computer systems to he realized

through appropriate combination of hardware, firmware and software.

There is today abundant evidence of the importance of parallel computation,
Many problems of great importance require highly parallel computation to have
feasible solutions -- simulation of the general circulation model of the at-
mosphere, for example, Also, multiple processors in dedicated configurations
have been found to outperform large single-processor systems in many applica-
tions. A principal reéson is the ability of such configurations to achieve
better utilization of relatively expensive main memory,

A powerful but little appreciated argument For paralleliem stems from
the organization of computer memory systems as hierarchies of physical devices
spanning a wide range of speed and capacity -- an essential characrteristic for
economically running very large programs or manipulating large date bases. A
sequential processing unit cannot be kept busy when delays result from refer-
ences to information held in slower levels of the memory system., One can de-
sign memory systems to handle large numbers of access requests concurrently and
with high efficiency, but this is of little interest unless the processing com-
penents are capable of generating large numbers cof concurrent requests. This

is possible only if the processing components are organized and the program

19



representation chosen so many instructions are concurrently available for
processing,

Past efforts to achieve highly parallel computation (the associative,
vector, and array processors) have attempted to exploit local parallelism in
programs and have paid little heed to the isgue of programmability. FEven
the concept of procedure, which is fundamental to the modular construction
of programs, is rendered inapplicable if these machines are programmed to
vield significantly greater perfermance than conventional processors,

- Rather, architectural cancepts are needed that support highly parallel
computation and not only countinue to provide support for programming constructs
of confirmed merir, but are entirely consistent with the demands of structured
programming,

That the architecture of present-day conventional sequential computers is
ill-suited to dupport a good methodology of program congiruction should not be
surprising. when.thé cencept of the stored progfam computer was conceived
three decades back, the cverwhelming need was for the simplest general-purpose
program execution mechanism that could carry out straightforward numerical com-
putations. Such concepts as modular program structure played lictle if any
role,

Nowadays, requirements have drastically changed: The concepts of pro-
cedures and recursion have been accepted; the importance of chosing data types
to match abstract concepts of the application has been recognized. Modularity
in program structure ig appreéciated as a geal with its implications with re-
spect to daca structuring, uniformity of reference, and storage management.

And cooperative multiprocessing has become an egsential part of the programming
art. We should be surprised that the Von Neumann concept of gtored program
computer has survived this revolution in the conceptual basis of programming.

In summary, I believe two major advances in computer architecture are eg-
sential to reap the poténtial benefits of structured programming for very
large programs. Architectures must Support a uniform and device-independent
mechanism for accessing all on-line information -- a generalized virtual
memary ; and architectures must be S0 conceived rthat many instructions are
available for concurrent processing. Moreover, architectures mudt be developed
on the basis of sound language design principles and must meet all requirements

for the modular construction of large programs.

20



