- MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

. - Computation Structures Group Memo 147

Application of Data Flow Computation to the Weather Problem

by

Jack B. Demmig
Xen K.-5. Weng

(A papar to be lished in the Proceedinga of the Symposium
on High Speed puter and Algorithm Organization.)

This research wag Supported in part by the National Science
Foundation under grant DCR75-04060, and in part by the Advanced
Research Projects Agency of che Department of Defenss under
contract NODO14-75-C-0661,

May 1977

APPLICATION GF DATA FLOW COMBOTATION TO THE WEATHER PROBLEM

o R K.-8, Weng
MIT Laboratory for Computer Science

ABSTRACT

: fomputer m o mdmy W oyatame organized to eme-
cule progrem ix data flow forw show promise of ovarcoming the
barrier to highly parallel compuiation without osoncomiirort loes
of programmbility. -The principles and advemtages of datq flow

computation by a data flow computer.

I. INTRODUCTION

Tha pest decade lag witnessed the evolution of data flow
languages fyom primitive concepts of dats driven instyruction
execution [1, 2, 3] w0 fully developed schemes for repre-
senting algorithms in a form that exposes the natural concty-
rency of their parts [4, 5,6, 7]. BRecently, several intex-
esting proposals have been advanced for organizing computer
hardware to interpret data flow prograss in a data driven
mde (8, 9, 10, 11}, ‘Although each of these authors makes A
good case that his proposed system inplemints a well definsd
level of data flow language, their effectiveness as instriments
for performing practical computations has not been demonstrated.

l'.l'h:l.s research was stmport.ed in part by the uationil Science
Foundatien under grant DCR7%-04060, and in part by the Ad-

vanced Remsearch Projects Agency of the Departwant of Defenss
under contract NODQL4-75-C~0661. ’

The aim of the present paper is to help fill the gap by
studying the performance potential of a data flow computer.
In an earlier study [i2] submitted for publication, we evalu-
ated the performance of a limited data flow machine for the

' fast Fourier transform computation. Here we use a more gen-

eral data flow language that includes data structure operations
on arrays, and we describe the atructure of a corresponding ex-
tendad data flow computer. Since data flow computers differ
radically in structure from conventional machines, meaningful
comparisons are only possible through the study of specific ap-
plicaticns. For the present study, we have chosen a global
general circulation model (GCM)} for numerical weather fore-
casting.

In Section IX of the paper we describe the general circu-
lation model; the structure of a corregponding data flow pro-
gram is developed in Section 1II. Section IV presents the
overall structure of a data flow camputer appropriate for the
language used to express the GCM computation. In Section V
the manner in which axray opérations are handled by the machine
is studied in detall because efficient procassing of arrays is
cruclal to realizing high performance in ‘the GCM computation. -
Our performance study is presented in Section VvI: this analy-
gig shows how a one hundred-fold improvesiont in computation
rate for the GCM computation may be achieved by 'a data flow
computer. : .

¥I. ‘THE GENERAL CIRCULATTION MODEL

The Ganeral Circulation Model used in this study is the
GISS fourth order model developed by Kalnay-Rivas, Payliss and
starch [13] in which the atmosplieric state is represented by
the surface pressure, the wind field, temperature, and the water
vapor mixing ratio. These state variables axe governed by a set
of partial differential equations in the spherical coopdinate
system formed by latitude (), longitude {A) and normalized at-
mospheric pressure (U). In this fourth order model, the compu-
tation is carried out on a three-dimensional grid that parti-
tions the atmosphere vertically into X levels and horizontally
fnto M -intervals of longitude and N intervals of latitude of .

size AA and A, respectively. .

We denote a value of a state variabla (the temperature for
example) by T{i, 3. k) where i, } and k index over the ¢, A and
O coordinates, respectively. The model computes each state var-
jable for the next time instant using *leap frog" integration:
Thus the temperature TN(1, j, k) for the next time instant is

computed from the temperature TP, 3, k) for the Preceding time .
instant and the time derivative #/3¢ T, 3, k) evaluated for
the current time instant ' .

™, 3, k) = 2P, §, k) + 24 g-;-r“u. 3, k)

The main computation is the evaluation of the time derivatives
of the state variables from the current atmospheric state using
the physical laws that govern the atmosphayre,

In addition to the main computation, three additional com-~
putations must be performed to make the achems workable:
(1) Polar computation -- computation of State variables at the
poles is treated as a special case; (2) Filtering -- to ensure
stability in spite of the convergance of longitude lines toward
the poles, spatial filtering is used ta suppress high frequency
waves at high latitudes; (3) Bum~of-Neighboxs -~ since the leap
frog intagration rule ig inherently unstable, an averaging com-
putation is performed once every 8c many time ateps. o

The GISS model has been, implemented in Fortran and runs on
an IBM 360,95 machine equippad with 4 megabytes of addressable
core memoxy. ‘Using a grid having nine vertical lavels, 72 in-
tervals of longitude, 45 intervals of latitude, and a time step
of five minutes, this implementation can simulate one day of at-
mogpheric activity in about one hour of computer time. Reliable
long-range forecasts require that the simulation be carried out
on a finer grid for more time steps, and thus demand a much
faster processing rate.

TII. THE DATA FLOW PROGRAM

To present the Structurs of the data flow program for the.
General Circulation Model, we shall use the language of dsta .
flow schemas [5] in terms of which the concurrency of execution
of the computation on a data flow processor can be easily seen.
In practice we envision that programs prepared for execution on
a datsa flow computer will be written in & high-level textual
language. The design of a high lavel lanquage that permits
straightforward translation iinto data flow schemas has been

stodied by Weng [14]. :

To construct a data flow program for the GCM computation,
we represent the atmospheric state by & nested array data
structure; for example, the temparature component T of the state

is of type Al where
txpe Al = arzay 0..M+3| of A2
type A2 = array O..N+3 |of A3
fype A3 = array 0-.xi of real

The South and North poles correspond to latitude indices 1 = 1
and 1 = M¥Z, and the values for longitude indices o
3 € [N-1..N+3] are copies of the values for '3 € {o..4].

The new-values of each state variable are computed for
1€ [2..%1], J € [2..%1], and@ k € [1..K]; the remaining com-
ponents of the data structure provide neighboring values for the
fourth order spacial difference formulas alony the boundaries
of thea horizontal grid.

The ovarall stxucture of the GCM computation, represented
as a data flow schema, is shown in Pig. 1. In this figure, the
notation T(i, j, *) denotes the X+2-element array containing the
temperature values for horizontal grid point (i, 3} T(1, *. *) -
is the array containing all temperature velues on the jth 1ine
of latitude; and T(*, *, *) iz the complete data structure of
temperature values. The figure shows the blocks making up the
data flow computation of the next temparature state TV(*, ¥, *)
from the precediny state wF(e, %, #) and current values of all
state variables including TC(*, #, *). ‘The next state data
‘structure and the current state data structure become the cur~
rent state and preceding state for the next cycls of computa-
tion (the data paths and control for this are omitted in Fig. 1
for asimplicity)- ' :

the data flow schema in Fig. 1 is organizad mo the paral-
lelism of the GCM computation is exposed in two major ways:
First, in the main computation, evaluation of the time deriva-
tive is carxied ocut concurxently for all K atmospheric levels.
This is accomplished by using K copies of the data flow pro-
gram appropriate for a single grid point. Second, the main com~
putation program block is coded so sets of data values for suc-
cessive cells of the horigontal grid are processed concurrently
by the several stages of the program block. Thua the streams of
K+2-e¢lement arrays entering the main computation block are pro-
cessed in pipeline fashion. : . . : '

The Function of each get operator (defined in Fig. 2a} is
" to convert each array arriving at its a-input into a stream of
component values selected from the array hy'sué:cess_ivg alements
of the sequence of integers presented at the s~-input. Each get.
operator in the first rank of Fig. 1 converts the temperature
data structure T{(*, *, *) into a stream of M arrays where each

*19DON UOIRDINOLLD sggﬁhggmég_chng nhmh

_ g _ H A
—1..8..*..-.{ : .
L
o wng

——— e —— —-——--—-—;-u--—--——-—- — e i ity e o
'3

r.-._‘—-.--———-—-.-q.-—_——_'.—p"-.u_—__-.—.“.-.—.__—-—u—

. ...
“lamam™ 4L oamm ™

array holds the temperature values for one latitude line. The
ascond rank of 55_1;.' operatora further converts the state data
structure so sach elemant of the resulting streams is a X+2-
element array of valuas for all grid poi.nts having the same
horizontal ceordinates.

The output of the main computation and time integration is
M streams of N arrays apiece, each containing the EK+2 temperature
values (4, j, *) for one horizontal grid point. The put oper-
ator converts each stream into an a.rray of type array 2..N+l1 of
A3 with components representing TV(i, j, *), for 3 € [2..N¢l],
. the set of new temperature values for the ith latitude line.
The block labelled Set Boundary Valuag adds to the resulting
array the temperature values for the boundary indices
3 € [0, 1, W+1l, N+3], yielding an array of type A2 representing
(i, *, *), A final put operator generates the array con-
taining as components the temperature values {5, », *) for
i €([2,..., m#1]. The full array of temperature valuas
qti(s, &, #) ig obtained by adding boundary values for
i € [0, 1, M2, M+3] using the results of the polar computa-
tion. This array is further averaged and filtared to snsure
) computationsl stability before becom:’mg the next value of the
currant atwospheric state.

Data flow schemas for the get and Eg_opexamrl I.!h showm
in Fig. 2. These schemas are composad of data flow actors [S]
interconnected by links that convey data snd truth values from
one actor to another. In addition to the basic actor types in-
troduced in {5], these schemas use some special actors to im-
plement operations on streams of values [14]: A stream is rep-
resented in a data flow schema by a sequance of value-bearing
tokens followed by a special token called an.end-of-etmeam
token. The actor est generates an end-of-styeam token; the
predicate eos yields tzue if an end-of-—straan token is re-

ceived and f;lu otherwise. '

Iv. TKE DATA FLOW COMPUTER

Now we are ready to explain how our d.ata flow program for
the GCM computation will run on a data flow computer. The ox-
ganization of a computer that implements the appropriate level
of data flow language is shown in Fig., 3. This machine is sim-
ilar in structure to the data flow procassor describad in {12],
but the machine provides, in addition to the hasic scalar op-
erations and control mechanisms, support for data structure op-
erations in its Structure Processor.

Before discussing operation of the Structure Processor,
let us review the basic scheme of operation of the data flow

(o) the gat moduis ; get {ao,s) —wr

r: streamof t

@: arroy u_f t

Fig. 2. The get and put operators as data flow echemas.

Scalor . _
i Pracessors -
distribution operation
pockels packals
. .
Distelbution | . Instruction . Arbitration
Natwork Memory Nealwork
. .
‘—‘-Ennnn:iiun c|||=—
distribution eparod ion
packeis packeis
1 Structurs b
Processor

Pig. 3. Structure of the data flow computer.

i
gavanLe
queue packels
Interprat 1- Traasmit
» Queus - dketriboti
;] ir jen
gpo:a't?n] 3 packets
wd s —cb Pp——=|— command packets
pac €[> retrievol pockats
uid emd eir

Paocket Mamory System

Fig. 4. The Structure Processor.

machine. Each Instruction Cell in the Instruction Memory holds
ohe instruction which corresponds to an actor of a data flow
progran., Once an Instruction Cell has received (via the Distri-
bution Network) all required operand values and the necaessary
number of acknowledge signals, the Cell is enacbled and delivers
its contents to the Arbitration Network for transmission to the
appropriate Processor. The result valua produced by the Pro-
cessor is transmitted through the Distribution Metwork to the
Instruction Cells which require it as an operand, and aclrow-
ladge signals are sent to control the enabling of Cells. Even
though roughly 20 microseconds may be required for an instruc~
tion to be enabled, sent to the Pracessing Section; executad, and

the results transmitted back to other Ingtyruction Cells, the com—

puter is capable of high performance because a large number of
instructions may be in various stages of execution simultane-~
ously.

In this form of data flow processor, congestion of the Dis-
tribution Network is possible if Instyuction Cells are resnabled
repeatedly without waiting for praviously generated results to
ba consumed by other Instruction Cells; this congestion can even
lead to deadlock -~ the complete cessation of computation {see
{121). We awvoid these problers of congestion and deadlock by
requiring that an Instruction Cell not be reenabled until the
data and contrel packets ganaerated by the previous exacution of
the instruction. have been absorbed by their destination cells.
Machine language programs which satisfy this condition are said
to be 8afe. safety is achieved through the use of acknowledge
signals generated by an instruction to control the enabling of
instructions that produce the data required by the instruection.

V. THE STRUCTURE PROCESSOR

The Structure Processar receives cperation packets calling
for the data structure operations creats, select and append.
Earlier concepts for the design of structure processors have
been given by Rumbaugh [10] and by Misunas [15]. As shown in
Pig. 4, the Structura Processor consiste of a Packet Memory
System [16] and three units —- the Interpret, Queue and Trans—
mit units -- which make up the Structure Controller.

The Packet Memozy: The function of the Packet Hemory Sys-
tem is to hold representations of data structures and to provide
the means for atoring and accessing their componente. Each data
structurs value held in the Packet Mewory has a wiique {dentifier
which serves to represent the structure value in all units out-
side the Structure Processor. Within the Packet Memory, a data
struoture value (we consider here only arrays) ie rapressnted by

-10-

an item of the form
(i' (Cm; [] ﬂn} r 1')
_in which

i is the uwnique identifier of the data struc-
ture values. '

cm., ST ELN ara elithaer-all real number representations,
or all unique identifiers of component struc-~
ture values. Some components may ba unde—’
fined, and’ ck is then nil. .

r ' i8 a reference count used to detect when a11

' references to the item have disappeared indi-
cating that the item may be deletad from the
Packet’ uemory.

The state of the Packet Memory 1s fixed by giving the
collection of items held and the set of unigue identifiers
avallablea for creation of new items. The bhehavior of the
Packet Memory is conveniently specified by glving tha state
changen for sach of tha five basic trnnaactims.

Stora Transaction: In response to a $tore command packet
(810, i, k, ¢) at port cnd the item having unicgue
identifier 1 is modified to have a component
cx = c (the previous value of ¢ is lost). If
no item exists with unique identifiexr i, then a new
item is created having ¢, = ¢ as ite sole compo-—
nant, and with its rarersnce comnt sat th ona.

Retrieval Transaction: IYf a retrieval .command packet
{RTR, i, k) arrives at port cmd and an item _
(L, (oms --0r), r) exists whe vwhere m g k< n, theén
a retrieval packet (i, k, ¢} is’ sant at port ztr.

Up and Down Transactions: The command {UF, i) 2dds one to
the reference count of item i; the command (DWN, 1)
decrementa its reference count by one. If the ref-
erence count is reduced to zeroc by a dowm command,
the item is deleted from the collection of items
held by FM and its unique identifier 1 is added to
the set of available unique identifiers, and the
reference count for sach data structure component ig
decremanted. .

Unique Identifier Generation: A unique identifier packet {i})
is sent at port uid, and the unique identifier i is
removed from the set of available unique identifiers.

¥

-11-

In {16] we have shown how the Packet Memory can be struc-
tured to handle many transactions concuxrently at a high
throughput rata. '

The Structure Controller: The function of the Structure

Conttollar is to implement the data structure operations greats,
" a d and sélact in terms of the memory transactions supported

by %Ia Packet Memory System. Tn the GCM data flow program thase
data. structure operations occur only in the blocks labelled Bet
Boundary Valueés and the get and put routines which transform ar-
xays- into streams and vice versa: these routines have been speci-
fied as data flow schemas in Fig. 2.

To achieve the desired level of performance, it is impor-
tant to expléit the capability of the Packet Memory to handle -
many transactlons concurxently, while permitting the memory sys—
tem to be slow in responding to individual retrieval requests.
Thus the get routine as written in Fig. 2a is unsatisfactory be-
cause the selact actox is not reenabled until after the result
of its previous execution has been sent. Consequently, repeated
exacution of the salect actor can ocour only at a rate deter-
mined by the retrieval delay of the Packet Memory, and no over-
lap of retrieval requests ls realized. :

Tha desized overlapped. execution of select operations can
be achisved through the choice of an appropriate machine level
instruction set and careful design of the Structure Controller.
The Interpret unit of the Structure Controller interprets the
data structure operations producing sequences of comsmands that
it sends to the Packet Memory System. The Transwmit uplt gen-
erates result and acknowledge packets for distribution to In-
struction Cells as called for by the instructions in operation
packets. The (ueue unit is the heart of ths Structurs Con-
troller; it holds an entry for each selact oparation that has
been initiatad but not completed. Each sntry includes the
unigue identifier and selector that specify the value to be ob—
tained, and the destipnations to which capiee of the result are
to be sant. Operation of the Structure Processor muast be such -
that the results of selection are sent to the destination cell
exactly in the order of select actor initiation even though
variations in retrieval delay cause retrieval packets to be re—
turned out of sequence from the Packet Memory. Otherwise, the
components of the arrays constructed by the put operators of
the GCM program would be incorrectly indexed. The function

of the Queue module is to ensure that results of sslect opara-
tions are sent by "the Structure Controller in the same order

as the corresponding cperation packets are received. When a .
retrieval packet is received from the Packet Memory, a matching
entry in the Queue is found and the retrieval value appended

-12-

to the entry. Result packets are generated from entries con-
taining retrieved valuss as they reach the end of the queue.

Correct pipelined operation of select actors in the data
flow program requires that after a result packet is ment to
an Instruction Cell by the Structure Processor, no furthar re-
sult packet is sent until an acknowledge signal has been re-
ceived indicating that the Instruction Call is ready to re-
ceive it. This provision requires a machine level get routine
that is wmore elaborate than a direct encoding of the scheme in
Fig. 2a, but the details will not be covered here. Further
discussion of the machina enccding of safe data flow programs
may be found in [22]. S

Tha put routine in Fig. 2b generatas an array by appending
succesaive elements to the empty data atrwcture. If each re-
sult of an append operation is viewed as & digtinct value, as
in the usual data flow sementics, a new OOPY oF the partial ar-
ray must be created in ths Packet Memory each time an append
operation is executed. In most cases, as in the put routine,
each new partial array valvs is used only as input to the aext
instance of append, and it is unnscessary to ‘retain the input
array after execution of append. ‘Therafore the append opera-
tion is implemented by the Structure Controller by adding a
‘component to an existing item in the Packet Mewory System. It
is the rasponsibility of the programming system to ensute that
no attempt is made to reference the old data structure value’
once tha append operation is initiated.

vI. PERFORMANCE

We now turn to the analysis of the processing capacity of
the data flow processor necessary to achieve the desired one
hundred-fold performance ovar IRM 360/95 on which the GISS model
is implemented. The 360 implementation simulates one day of &t~
mogpheric activity in about one hour using a % X 45x 72 grid and
a five-minute time step. ToO increase this performance by two
orders of magnitude implies that our data flow computer must be
able to complete all operations for computing new valuas of the
state variables for one group of K grid points at the same lati~
tude and longitude each 40 microseconds.-

For the data £low computer shown in Fig. 3, the computation
rate will be dstermined by which part of the machine is the bot~
tleneck for the flow of operation and result packets. We pro-
ceed by determining the throughput required of each part of the

machine if the desired performance level is to be achieved.

Analysls of the cotplete data flow program partially
sketched in Fig. 1 rewveals that the machine level program will
occupy about 13,000 Instruction Cells and that computation of
the new state for all grid Points with the same horizontal coor-
dinates requires processing approximately 7000 operation packets,
of which 2700 are multiplications or divisions, 2700 are addi-
tions or subtractions, 900 are data structure vparationg, and
700 are othor miscellaneous. operations. If the data flow com-
butar is to complete this Processing in 40 microseconds, the
Scalar Processors must be able to handle operatiom packets at
150 MHz and the Structure Processor must be capable of handling
data structure operations at 25 MHz. The routing networks muat
be able to perform packet switching at 175 MHz. These rates
may be achieved by using many processors and structuring the
Arbitration -and Distribution Networks for concurrent transmis-~
-sion of many packets.

In addition to these throughput requirements, we must en-
sure that the instruction processing tims (the time interval .
from the ingtant an Instruction Cell becomes enabled to the in-
stant all result and acknowledge packets have been received by
other Instruction Coil_.s') A5 small enough that instructions are
enabled at the necessary rate. If a block of a: data flow prc-
gram i& constructed to make the most effective use of the
pipeline capability of the data flow computer, the pariod of
repeated use of any actor is twice the instruction exescution
delay. This is because ons execution cycle is needed to com-
pute a result value and forward it to the next actor, and a
second cycle is needed to xeturn an acknowladge signal. We
conclude that the two routing networks (the Arbitration and
Diatribution Networks) must ba constructed so the instruction
exacution delay is no more than 20 microseconds.

Finally, the memory. access time for retrieval requests
handled by the Packet Memory must not be s0 large that valuas
of the new atmospheric state are not available when thay are
needed. Since & time step is completed only once every 125
milliseconds, this requirement is easily met. However, the
Queue unit of the Structure Controller must be large enough
to hold all retrieval requests which have not been complated
by the Packet Memory. For the arrival rate of 25 MAz even a
one millisecond retrfeval delay would require a capacity of
25,000 entries in the Queuve, thus the Packet Memory should be
implemented with storage devices having an access time well
undar a millisecond.

-14-

VII. CONCLUSION

Our study of the General Circulation Model as a data flow
computation shows that a very high computation rate can be re-
alized if the units of our proposed data flow computer operate
at the assumed rates. This level of performance results from
exposing and exploiting the inherent concurrency of the compu~
tation on a global basis. In contrast, the "lookahead” machinas
such as the IBM 360/195 attempt to discover parallelism through
‘execution-time analysis of data dependencies in a small frag-
mant of a sequential program. The vector and array machines can
effectively use their highly parallel aperation only to thes ex-
tent that the programmer (or the compiler) can invent ways of
encoding problem data into vectors or arrays that take advantage
of the machine’'s power. Since the high performance of a data
flow computer results from exposing large numbers of operations
for concurrent execution, the speed with which each opsration
is emecuted is not crucial; thus a very powerful machine could
be bulilt using a large number of relatively slow logic devices.
Since our data flow machines are composed of many units of
similar type, these machines are ideal for effective applica-
tion of LSI technology. | :

The open questions concerning the feasibility of practical
. data flow computers are: What physical structiore should the
Structure Controller and the Packet Memory System have? Can .
thesa units, which make up thes Structure Proceasor, achieve the
throughput assumed in our analysis? How difficult will it be
to construct and debug such a large asynchxonous system? How
much will it cost to build data flow computers? The last ques-
tion can be angwered only by developing conmplete logic designs
for the critical components of the machine. Each of these gues-
tions is under study in the Data Flow Project at the MIT Lab—
oratory for Computer Sciance.)

REFERENCES

1. Seeber, R. R., and Lindguist, A. B., “Associative Logic for
Highly Parallel Systems,” Proc. of the AFIPS Conference 24,
489-493 (1963).

2. Shapiro, R. M., Saint, H., and Presberg, D. L., "Repreden—~
tation of Algorithms as Cyclic Partial orderings," Report

CA-7112-2711, Applied Data Research, Wakefield, Mass., 1971. .

3. Miller, R. E., and Cocke, J., "Configurable Computers: A
New Class of General Purpose Machines,” Report RC 3897,
IBM Regea.rch Center, Yorktown Heights, N. Y., June 1972.

10.

11,

12.

13.

14.

1s.

16.

-15-

Rodriguez, J. E., "A Graph Model for Parallel Computation,"®
Technical Report MAC TR-64, Laboratory for Computer Science,
Mass. Inst. of Technology, Cawmbridge, Mass., 1969, '

Dennis, J. B., "Pirst Version of a Data Flow Procedura Lan-
guage,” Lecture Notes in Computer Science 19, 362-376,

Springer-Verlag, New York, 1974.

Kosinski, P. R., "A Data Flow Language for Operating Sys-
tems ngra._rming," SIGPLAN Notices 8, 89-94 (1973).

Béhrs, A., "Operation Patterns," Lecture Notes in Computer
Science 5§, 217-246, Springer-Verlag, New York, 1974.

Dennis, J. B., and Misunas, B. P., "a Computer Architecture
for Highly Parallel Signal Processing," Proc. of the ACM
1974 National Conference, 402-409 {1974).

Dennig, J. B., and Misunas, D. P., "A Preliminary Archi-
tecture for a Basic Data-Flow Processor,” Proc. of the
Second Annual Symposium on Computer Architecture, IREE,
126~132 {1975).

Rumbaugh, J. E., "A Data Flow Multiprocessor,” IEEE Trans.
on Computers C-26, 138-146 (February 1977).

Arvind, and Gostelow, K., "A New Interpreter for Data FPlow
Schemas and Its ¥mplications for Computer ‘Architecture,”
Technical Report 72, Department of Information and Com-~
puter Science, University of California, Irvine, 1975.

Dennis, J. B., Misunas D. P., and Leung, C. K., "A Highly
Parallel FProcessor Using a Data Flow Machine Language,”
submitted for publication.

Kalnay-Rivas, E., Bayliss, A., and Storch, J., "Experimenis
with the 4th Order GISS Model of the Global Atmosphere, ™

Proc. of the Conference on Simulation of Large-Scale Atmos-
pheric Processes, Hamburg, Germany (1976), to be publighed.

‘Weng, K.-8., "Stream-Oriented Computation in Recursive Data
Flow Schemas," Technical Memo 63, Laboratory for Computer
Scienca, Mass. Inst. of Technology, Cambridge, Mass., 1975.

/Misunasg, D. P., "Structure Processing in a Datd-Flow
Computer,” Proc. of the 1975 Sagamore Computer Confar—
ence on Parallel Computation, IEEE, 230-234 (August 1975).

Dennis, J. B., "Packet Communicaticn Architecture,” Proc.
of the 1975 Sagamore Computer Conference on Parallel Proc-
essing, IEEE, 224-229 (August 1975),

