MASSACHUSETTS

LABORATORY FOR INSTLUTE DG
COMPUTER SCIENCE TECHNOLOGY

’ A Portable Compiler

~ Compuiatfon Structures Group Memo 149

H June 1977

Alan Snyder

—__—__—__J

345 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSEITS 02139

ABSTRACT

mmda-mcwhmmmmmw target machines is
presented. mmm»mmumhwmudm. including the
tbm:nmhnappmdnmdwwkmmm&mmofgenmumphnu The
Mtnﬂ!nd.whkhhhsdmmudamummmmwmmcmmu
sunwnarized. mmummuwuummmmwﬂnm

TMs work Aas been reported in an wepanded form in [20]. Work reported herein was
mmmmbthwrdqfhu&m. Inc, the National Science
Foundatton Ressarch Grent G]-34671, 1BM Sunds for research in Computer Seience, and
mmmmmumw» Department of Defense, monitered by the
Office of Naval Research under contrect e, NODDI4-75-C-D661,

CS0 Memo 149 June 1977

Introduction -4- A Portale Compiler

L. Introduction

tanguages
wﬂhondegmﬂmprﬁnlﬂtu,mhu!‘&l.[&l Mlppmchukmhnhismklsthepmuhk

compiler, a compiler for a particular source language that can produce code for many target
machines,

There are two basic approaches toward the design of portable compilers, the machine
dascription approach and the abstraer machine approach. With the machine description approach,
Oone attempls to express code generation a3 3 target-machine-independent process that uses
Information about the target machine in order to correctly generate code for that machine. The
information about a target machine is called a masAtng descrigeton. If a code generation algorithm

With the abstract machine approach, one attempts o split the process of compilation into two
Separate phases such that the target machine dependencies are confined to the second phase. If

Programs into programs for some abstract maching; the second phase transhtes abstract machine
Programs into the target language. The choice of the abstract machine determines the ease with
which transiators from the abstract machine language to target machine fanguages can be written

1. The initiel o of the Produced cuds for the HIB-4000 91 An on for the DEC PDP-10
(4] e inplonantet compilor campuier [9] inplomonintion

June 1977 CSG Memo 149

A Portable Comptter 5. Insroduction

mdthtchuofnrgumhmuforwhkhmmblyomdmtmdcm be easily produced.

Tothebutofwrknwhdgu.nﬂpreﬂumlyuuﬂngmbhmmmhnhnnbunbuedm
tlulbﬂrutmhhnlppmch.'Inmutﬂmmnpllu's[z&.&.lolthe:bmnuchlne_
hnmummnymmlmmmmmhmﬂwamiyﬂamdgmmtm
phases in conventional comptlers. Crum:w&_rwammgamhmmmrequlra. In
mﬂn!ﬂtﬁginmmﬂom.tmlfmldﬁn In the case of the BCPL
compiler, for example, modifying the mmmmdofwammnuchlmmy
require only three to four weeks under mdluon:.bntoﬂmlumyuqulreupmﬂve

mwmwm:mmmwa-mmm-hnmemgmmllyh
performed via a set of simple macro definitions. An example of an abstract machine family

designed for use in portable compilers is decrthed in (S} portable compiiers using abstract
mmmwmnymmbuymdmumuﬂmﬁm

The major difficulty with the abstract machine approach is determining the appropriate
abstract machine. Ahlglurhvelabmamchﬂalbmthmdmefﬂdmtwde,but
requires that a non-trivial transhator be written for each target machine. A lower-level abstract
nnchhualhw:ﬂmphmmmmhunnwdnmgsw However, uniess the abstrace
mnmmwmmmmmmm;pm will be inefficient or
thi dmplementation will be complicated by optimization code (eg., code for register allocation (3,
] :

Anohumtotlmdiffmn,nwbyrmhaMWmﬂﬂhtodeﬂmasqucnaof
lhtnctmchha.nngingfmuhlghtnnlwlwd. For any particular target machine, one need
write only & transtator from the lowest-level abstract machine language to the target machine
language. However, where more efficient code is desired, higher-level abstract machine instructions

from the abstract machine tanguage to the target machine language becomes simpler (eg., simple
MALTO expansion), and more efficient coda is produced.

The C compiler can be viewed as using the machine description approach in that the
definition of a particular abstract machine, tlong with the macro definitions, is {at some level) a
description of the target machine. The definition of the abstract machine contains such
lnformﬂnnuaducﬂpthndthelbmccmmmmthe sizes and alignments of the
various C data typs, and descriptions of the behavior of the abstract machine inatructions in terms
of their operand and result locations (in Mamory or in particular registers).

L NMM.M“.“MMUM&MBM.

CSG Memo 140 | ' June 1977

Introduetion -6- A Portable Compiter

0 be a good compromise between the dexire to mintmize per-arget-machine coding and the
difficuky of mathematicatly defining a machine and utilizing such a definition in generating code.
The previous work on the machine apptoach by Sibley [19] and by Miller [10] can be
Yiewed as using this solution. [n Sibley’s SLANG system, the machine description contained

June 1977 CSG Memo 149

A Portable Compiler -7- Modzeling the Target Machine

2. Modeling the Target Machine

Awemmmmﬁhhmhwtﬁmhmmhmq requires
& machine model with which to work. The C compiler’s model is an abstract C machine, a machine .
whose instructions perform the primitive operations of the C language. The data types of this
abmmchhnmmepﬂmluncm:yps(chmhqmand single- and double-
precision floating point), supplemented by one or more pointer classes, distinguished by their abilicy
to resolve addresses. The basic addressable unit of the abstract machine memory s the byte, which

hokds a single character vate (characters are the smallest C data type). Values of the other
abstract machine data types Occupy an integral number of bytes, possibly aligned in larger units of

“
+«d double-precision floating-point addition

+p0 addtﬁonofaninmgutonpolnmwabne-ﬂlgned ob ject
+pl addition of an lnteguwlpdnurmam-allgnedubp

In addition, there are AMOPs for dam movenwnt, data type conversion, and conditional Jumps.

The minimum number of AMOPs that must be defined in the machine description is about 60,
depending upon the number of pointer classes defined.

CS0 Memo 149 June 1977

TAs Abstract Mackine Languagy -8- A Portable Comgpiler

It has been found usefut to have some AMOPs whase definition in the machine description
is optional. #f themndudapamhauopmuupmIntermsornoumpmluonof
more basic AMOPs, then that AMOP can be left undefined in the machine description; the
compiler can use the equivalent composition of AMOPs Instead. Akernatively, the implementer can
give an explicit definition, if that definktion will resul in better object code. Examples of optional
AMOPs include assignment operators {eg. add-to-memory), increment/decrement operators, testing
rununmmmwmmm:mm«mmnm:m with the finest
resolution. '

memory. Thepudbhchuuﬂmuynfmmcwbhurmiommnngachms
(aumuunumme.mmuMuMhmmmmm (see
Table I).

22 Defining the Abstract Machine

mmmwua«mna»ma&-emdumdmnpum First, a set of
ddhklmumudﬁmutheregmandnmmdthenbm machine. Second, the
behavior of the AMOPs & elaborated via the specification of the possible locations of their
opa:nd;nndmuhlntheabltnammmmdmnq.

Figure | presents some definition statements from the HIS-6000 machine description. First,
the regnames statement defines the eight abstract machine registers used in the HIS-6000
implementation. The registers X0 through X4 correspond to the first five of eight HIS-6000 index
registers, the A and Q correspond to the accumulators, and the F register is a fictitious floating-
point accumulator that corresponds to the combined A, Q, and E (exponent) registers on the
HIS-6000. The fact ﬂmthel-'rq-lmounﬂkulnthemgetmchmewith the A and Q registers Is |

Table | Abstract Machine References (REFs)
AREFspe:mumnftlnan'muve
register - a specified abstract tmachine register :

ato * A0 automatic or temporary variable, specified by its offset in the
stack frame

oxtern - an extermaf variable, specified by an internal identifier number

static - A static (internal) variable, specified by an intermal static variable
number

parm ~ R parameter, specified by the offset of the variable or its address in
the parameter hst

label = & label, spacified by an interna! label number

Inthit * an integer literal, spacified by its vake

Aoatiit - & Floating-point literal, specified by an internat litera) number

stringlit - a character string literal, specified by an internal string number
indirect - a reference indirect through a pointer in a specified register: an
offset (displacement} can also be specified

June 1977 CSG Memo 149

A Portadis Comptier -9 ' Deftning the Abstract Machine

class x(x0X1Lx2x3.x4), riagk

pointer p0(t), p4)

size Mchar), Hint loat), ¥double)

align Kchar), H{int.float), Hdouble); -

type int(r), char(r), float(), double(f), poir), px);

specified by the conflict statement. Of the remaining HIS-8000 index registers, two are used to
hold 'envummpdnm'andmhwuamuhugm. These registers are not included
in the machine description becauss they are not avallable for use in evalkiating expressions.

pointers. Hutphmmuummmmm that are not byte-addressed, since
mmwwmunummammymmmmmmugmwm
InthumhthpdﬂwwwhmﬂnmmdbmmmmdthechssPlof

whlleﬁhhdd?lhﬂnfMﬂﬂu‘?bﬁthed:um In this example, word
-m:mhﬁhmmm(&nx),whmbyupdmmanheldin the general

__TThe definition of the abstract machine is completed in the OPLOC section of the machine
mmmmmwwmmmvmwmmmmmm
mnfmormwmn.oam !nrmnph.th-mqﬂum '

od: Mg |

specifies that the AMOP "4’ (double-pracision floating-point addition) can take iz first operand in

CSG Memo 149 June 1977

Defining the Abstract Machine 18- A Portable Comptler

rqmmumewmmngdanmydmmuuptthud integer literals. An
OPLOC may specify that the resukt is placed in the first or second operand location. For example,
the location definition '

+i: r.M.L:

lpadﬂathattllemov’#(wmm)miufwwmamqumnmd its
mmmmmmmmmemwmmﬂmqmnmmmm
the first operand. This location definition Is equivalent to

ok LMa; qMg

which explicitly liszs the two akternatives. An OPLOC may also specify that the contents of certain
registers are destroyed during the execution of an AMOP. For example, the location definition

ok: qMq [xk
specifies that an integer mukiplication destrays the contents of the A register.

23 Defining the Tuarget Langnage

mylholncnlderefmwﬂwmlmmdthemun,ﬂnbedded macra calls, and
strings whose inclusion in an expansion of the macro is conditional upon the locationsof an
AMOP's operands and/or resuk.

A macro definition for an abstract machine instruction is closely related to the location
definition for the corresponding AMOP. The macro definition can assume thap the actual
operand/result locations appearing in an abstract machine instruction satisfy the constraints
specified In the lomtion definition. Mﬂnmtﬁm,themcrodefhiﬂonmustprodmmrrect
code for all (meaningful) combinations of operand/resuk locations allowed by the location
definition, ‘

A3 an example, consider the HIS-8000 macro definition for " (integer addition):
sk " ADeR o$"

(The #R and S are examples of special character sequences used to refer to symbaolic
representations of the operation and/or operand/result locations of an abstract machine instruction.
These character sequences, «O {operation), oF (first operand), «5 (second operand), and sR (result),
are abbreviations for calls to an implementer-defined macro that converts an AMOP opcode or a
REF into the desired target lnguage representation) The location definition for "o,

June 1977 CSG Memo 149

A Portaile Compiler -i- Defining the Target Language

mmmmwmumamtm.mmmmmm.md that
the resuk is left in the location of the first operand. Thus, in the instructions generated by the "+i*
mo.thc'ﬂl'ﬂllnuphmlbyddur'&'w'q,'.andtho'ns'mllberq:hcndbymelegal
mamory reference expression. Examples of instructions that could be produced by this definition
are -

ADA X (sdd external veriable X to A)

ADQ 08 (sdd parameter 0 to Q)
ADA 127 (edd sxtomatic variable to A)
ADQ 00 (add vig index register 0)
ADA SDL (edd literal 3 to A)

A macro may aho be defined by & C routirie. C routine macro definitions are used when
ptomslngllneeddthmmdmmhmxm”fﬂdmtbed.
In the HIS-6000 implementation, C routine macro definitions are used to transtate REFs into
mamnmmmwmdwmmnmdfmwmm
mmmm&mu«nmmmuumwmcmms

CSG Memo 149 June 1977

Generating Cods for an Abstract Mockine “12- : A Portable Comptler

3. Generating Code for an Abstract Machine

Themmmdﬂuw&nﬂwm:ummnm“hkemmemnmm '
which produce.code for a fixed target language, the code generator of the C compiler is designed
o produce code for a class of abstract machines. The code generator must generate a correct
mdammhmmmmmy«ndnmﬂommdmmthemru
program. mwmmtmnwmmmmuumhmmmmsmu
conform to the location definitions provided in the machine description. Moreover, the code
mmheptmkufthehnﬂuunfﬂlmmmmuhmdmmﬂyuclmtnuterthe
wmhmmmmmnpwaqm

mmndmibaﬂ:emhodwwmmrwexpm(lmhdmg conditional
Jumps). Code generation for expresions is performed by a set of recursive routines. Fach routine
muvuupmmmefmofmwhmanMumAMOPsmdwhoselearnodu
are idemtifiers and literaks. Thul.mexpmmmbemmwmnunofa'mp-level'
operator along with zero or more operand expressions. At this point in compilation, type checking
m:hdybmpﬁmd.p&ummmhaubmwwmmmmd
any optionsl mommd«mmﬂunﬂhiﬂdeMhnebmnphmdbythe
corresponding sequences of more basic operationa.

3.1 Specifying Desired Locations

Theqnuﬁonufthcmdegm;thnmﬂnukbamnymp-dm. When a calf is made to
gmmmdemevﬁmanexpmortwbuprm,autofdmm locations for the resuk
of that evalsation is aho specified. This specification, called a LOC, is described in Table 11,
mm.mmmmumwuummmmma,mum
hmmwmbmmmmmu

Table L. Desired Location Specifications {LOCs)
A LOC specifies one of the following alkternatives:

label the “resukt” is a specified internal tabet (used only for conditional jump
AMOPs)

register the result is to be placed in one of a specified set of registers

memory themuhhtobaphnedinmr;lmufaccepmblemry
reference classes is specified {used only to select registers for pointers in

indirect references)

By the resuk may be left in any location acceptable for values of the
particular data type

June 1977 CSG Memo 149

A Portable Compiler -1- ' Specifying Desived Locations

For convenience, if the LOC passed to the top-leve! code generation routine specifies that the
result is desired in a register, then all registers not capable of holding the result value are removed
from the LOC (these are registers that have been defined in the type statement of the machine
description as being unable to hok values of the result data type). Similarly, if the LOC specifies
Memory reference classes, then for each pointer register unable to hold a pointer to the resuk vatue,
the corresponding indirect memory reference ciass i3 remaved from the LOC. This removal of
“impossible” locations aliows code generstion routines to spacify “any register” or "any memory
ctass”™ without concern about data type restrictions. _

Thermuulof'impouible‘mglmfm:LOClsnotplrfmedwhen such action would
leave no remaining acceptable regimers. This situation can actually occur In certain special cases,
mthunhlnmu,whmavnhemyhrmhuharegmmnmny used to hold
values of that type.

32 High-Level Description

The function of the top-level code generation routine Is to generate a sequence of abstract
machine instructions that will evaluate a given expression and leave the resuk in an acceptable
location, as specified by a LOC paramwter. This function is performed in three steps: First, the
“Impossible” cases are removed from the LOC parameter, a3 described zbove. Second, code is
generatad for the expression, using the LOC parameter as a nan-binding indication of preference.
Finally, abstract machine instructions are emitted, necessary, to move the result to an acceptable

Tmmmmmmmﬁmfw:mﬁmlammd then performing the
appropriate action. Here, the LOC parameter is used only where a choice exists. The first special
case is where the expression node Is shared and the expression has already been evaluated; in this
Case, no action need be taken. Another special case is where the top-level operator is a conditionat
AMOP and a value is desired {as opposed to a jump, the usuz! case); In this case, a routine is
called to emit the desired code. The other special cases invoive particular top-level operators
(indirection, assignment, conditional expression, and function call) and the leaves of the expression

'tree(ldmuﬂersandhmh);foruchduumnpedﬂwdemdm routine is called. In

all other cases, the "basic” code generation aigorithm, described below, is performed.
33 The Basic Algorithm
The task of the basic code generation algorithm is to generate code for an expression whose

: tup-lwelq:u:mruanarnhrrmc.lnglul.ormdtﬂmnlpmpm(u,mtmoftheapedal

cases dexcribed above). As before, a LOC argument indicates a non-binding preference for the
location of the result of the expression evalustion.

The aigorithm consists of six steps. First, an OPLOC is sebected from the top-level operator’s
location definition in the machine description (location definitions and OPLOCs are described in

- section 2.2). Second, desired locations for the operands of the top-level operator are determined.

Third, recursive calls are made to the top-levet code generation routine to emit code to evaluate the
operands into the desired jocations. Fourth, code is emitted to save Any registers specified in the
machine description a3 being “clobbered” by the execution of the top-level operator. Fifth, the

CS0 Memo 149 June 1977

TAe Basic Algoritim -14- ' A Portable Compiler

exact location of the resuk of the expression i3 determined. Sixth, the abstract machine instruction
for the top-level operator is emitted.

lpedflutlntﬂnrmtnleﬂhtlnﬂuormdwbndnn.thmtheexacthuﬂonorlhe
result of the expression i3 fixed. Otherwise, & particular register must be chosen from the set of
registers specified in the resuk field of the OPLOC (the compiler Is currently unable to handle
OPLOCs that specify a set of memory refarences classes a3 the location of the result). In the
search for a resuk register, the priorities are as follows: firse, free registers that are preferred result
locations; second, busy registers that are preferred resukt locations; third, free registers that are not
preferred resuk locations; and fourth, busy registers that are not preferred result locations. If a

Mymhnw,mmmmmavdinmmqhaumsunmm
Fmﬂupurpmudfhdmgamtrqim.angmmninhganopcrandlsmnsldered
frutndarqimwnnmmgapdnmmlnmndupm A register containing a pointer
t0 an operand s protected because the implementation of an AMOP may aker the contents of the
rmtnegmb-fmrﬁnmgmwmmy. An example is the following HIS-6000
MerwﬂnAMOP'-ﬂ'MdﬁmdeNlpmmm:m-awwm

LXLO | (load register x0 from 1)
ADLX0 P (edd P io register x0)

nucodehds'mwommmlmzmmmmmgmomepmmr. ir
the code generated rwpumpmmwmmmmo,-mmoum
protected, the following incorrect code could be produced:

LXLo 1 (Load register x0 from I)
ADLX0 09 (add to x0 indexed via x0)

&

numummwmmmm'mbuu'mowmpummm
add instruction. Hm.ﬂmdurqimoupm.mrqmlmubechmmtnmdm
holdlheruul.produdn'gﬂnfdlwlumm

LXL | {toad register x! from 1)
ADLX1 0p {add 1o x1 indexed wa x0)

After an OPLOC has been selected, recursive calls are made on the top-level code generation
mutimnogmumderutheopennd:dthemp-mabmamchlm operator. The LOC
arguments passed in these calls are taken from the operand fiekds of the selected OPLOC and, in
the case of operators that place their result in an operand location, the desired locations for the
result of the top-level operator. If there are two operands, the compiler makes sure that the iwo

June 1977 CSG Memo 149

A Portable Compaler | 15 The Bastc Algorithm

restoring operations generated. In the course of generating code to evaluate an operand of a
Mnuyabmunndtmw.umyhnmywmthnrengntmngthealreadr
computed vnheoftheutheropemdwlpﬂnurundtuufmlr.in which case code s
:mudtuundnmunuofmurqmtnambnm After generating code to
WMMWBWNMMaMWmmw@mluﬂM.

34 OPLOC Selection

The purpose of OPLOC selection is 10 select & set of operand/result focations for the top-level
operator of an expression by choosing one of the OPLOCs from the operator’s location definition
tn the machine description. The choice of operand/resu’t locations can affect the amount of code
produced, both because of different code sequences that may be produced by the macro definition

ptefmhdhwdbyﬂul.oc”um. mmndmhtluutorpmuhbhmumsfor
unmndnhqwhnhmutmvmvely)dmmbyumnm;mw%m
in the operand subexpressions. For example, if an operand is an identifier, then its location is

~ —Mmulmph.mmm1+U!Kl'{chhﬂty.mmhnpageop;raw
snnhhmmmmhuumhwwtﬂnmmpmdingimahmumchine
operations) Assume the following location definitions {the OPLOCs ase numbered for reference).

. rri:. (1
rML (2)
Mr2 {3)
I L [r2k (4}
r2ri [} (5}
x4k (6)
M. 2} {7)
r2M1 {rsk {8)
M1 [r4} (9)

operator, only tmmnmmmwumumwbe'med' by the
exectition of the operator. OPLOC (3) is expressing the commutativity of the addition operator.

CSC Memo 149 June 1977

An Example ~8- A Portable Compiler

The generation of code for the exprassion “1+(] / K)" begins with the selection of an
OPLOC from the location definition of the ' operator. In this case, all of the OPLOECS specify
the same set of resukt locations (the genenal registers); thus, the desired location for the resoikt of the
expression dost not affect the choice of OPLOC. Instead, the choice is made on the basis of the
possible locations for the operands of ™. In this ase, the first operand is a variable 1, which |s
kmwntobeammrd‘md:ptmhrchu. The second operand is the resukt of a
division operator, which is known to leave its resuks in either r1, 72, or r7. On this basis, OPLOC
(2) 13 chosen, beause no extra operations are needed to move the operands into acceptable
locations, whereas both OPLOCs (Z) and (2) do require such extra operations,

Next, a recursive call is made to gonerate code to evaluate the subexpression "] / K" The
desired locations for the result of this expression are those specified by the chosen = OPLOC for
its second operand, namely r, the set of general registers. However, since the *+* OPLOC specifies
that its second operand location is also the tocation of its result, the intersection of that location set

Assume that the desired locations originally specified for the result of the *»* operator were
registers r2 and r3, and that registers rl and r4 are busy. Then, the desired locations Specified for
the result of the */" operator will abso be registers 72 and r3. Under these conditions, OPLOC (8)
will be selected, because it is the only one that implies ne extra load and store operations. Thus,
the resulting code (for this hypothetical machine) will be:

LOAD R2j
DIV R2K
ADD R2I

3.6 OPLOC Selection Revisited

by which the code generator can make that value Into 2 memory reference is by saving it In a
Rewly allocated temporary location. (Recall that a specific memory location is not provided for the
result, only a set of acveptable memary reference classes) Simifarly, if the result will be in memory
and is desired in memory, then that OPLOC will be rejectad if there are one or more possible
result memory reference classes that are mot acceptable result Jocations. The OPLOGC is rejected

June 1977 CSG Memo 149

A Portadls Compiler -1- OPLOG Selection Revisited

phulurmbhmmbbmumqhmﬂm,w!f!tmph«ihrewl:in:reglster but
temporary locations are not acoeptable. Thﬂrllﬂcuuulﬂwahumndeﬂnmontomntaln _
extra OPLOCs that apply only in special cases. Such OPLOCs wikk be chasen only when the
special cases hold,

An example of how the OPLOC selection method can be utitized in the writing of a machine
description is the possible definition of the wpl' AMOP (addition of a integer to a pointer to a
word-aligned ob ject) for the HIS-6000 presented in Fig. 2. This definition contains three dif Ferent

in the location definition for “«pf’. In particular, it guarantees that the third OPLOC will be
Mmyrmmwnmmm

Fig 2 Anmmmm

pk MMx; xrl xindick

MMx)x * LXLsR «$ (load integer into index register)
ADLXeR oF" (add poinser to index register)

(x.r.x) * sSLS 18 (shift tnteger into left Aalf of register)
STeS TEMP (store tnteger from register into TEMP)
ADLXeR TEMP* (edd TEMP ¢ pointer in index register)

(xinthitx) * EAXeR Lole'S)eR" (effective address to index register)

CSG Memo 149 | June 1977

Discusston and Conclusions -8

4, Diicnss.ion and Conclusions

A Portadle Compiler

which involves processing 37469 characters on I619 lines. The portable C compiler produced
PDP-0 assembly language; the UNIX C compiier produced PDP-ii assembly language. The
indicated CPU usage includes time spent in the operating system (approximately 10% of the toral

Table M. Portable C Compiler Statistics

1.
2 Not included i code cominen ts

Compiler Phossy:'
CC: contrel ond wrver mossge nilting
LP: pragrecosser, lavicsl snd eyntactic onalysis
C: code ganersiion
M: mpcre sxpansinn
Phaoe: < Le c L.
sourcy cade (ehore/linse)
[oo Mo tprarasgen i IBIBASO00 99180/6291 742983410 11044597
maching dewcription teblps 4] 181217 38861178 72813k
C rovtine mecree 4] 1] 0 48627137
manery usags (werds)
[*5 5 29K 11.8K 10.9% 33K
dele & 217 13.3% 70K
slaek 0. 0.7% 07 o
tatal : -l 3380 208K 108K
CPU veage feoc) ' 29 138 .Y 192

Total saurce code: 229507 chars, 10887 Wnpe
Tolel ssures code {comprasend?): 122157 chors, $580 lines

M&ﬁlFoﬁthuh“Mh“hnﬁmmm&

a w»mumumm

I. In erder te compde the pertsble

ore for this enlergad compiler.

June 1977

mhuhwﬁhﬂﬂ?“:%m 1011 Fnan

cm.u--wumm-rn.uum-. tables. The given atetistice

CSG Memao 149

A Portable Compiler -9- . The Compiler

Table V. UNIX C Compiler Statistics

Compilar Phosss:
BE: e=w] oo promscernesy
O loziesl omd symiscti snolynio
C1: code geneeniion

Pt —ts i~ I [H]
source code (chara/lines)
C osuren 13984/812 sZaia/3iss SozSar240
[Ee v Sl o sbiime]] 17047158 1198171340
newery yeate (wordy)
code 3 2K 73K
duts A1 7K 45K
afloul 20K o 07K
fatal L2 13.% 124K
CPL! uaage {eec) L} [1; i

Total nouree code: 129357 chare, 5297 linge
r.umaa.(ummlomma-
mucmmzuom.ulmm

These statistics indicate that the portable C compiler is about 2.2 times as slow as the UNIX
C compiler. This slowness i3 due aimost entirely to the use of & macro expansion phase (a phase
not likely to be present in ordinary compilers), as the compiler spends nearly half of its time (or

~ In terms of source code, after removal of comments and formatting characters, the portable C
compiler is about 40t hrgu-huchammdabmtewal in lines, compared to the UNIX C

. _comptler. lnmnfm,unge.mﬂngthcmdegmlm and macro phases of the
portable C compiler to the code gensration phase of the UNTX compiler, we find that the portable
lehuabmmumuhmmmdemmmurﬂmuhrgein data as the UNIX

C compiler. However, comparing the analysis portions of the compilers (which are mastly target-
machine independent), we find ratios nearly as great. Thus, although some of the size difference is
undoubtedly an inherent property of the chosen method of writing portable compilers, most
appears to be due to ather Factors, such as functiona differences (eg. larger table sizes, better ersor

messages, different symbol table strategies) and programening differences (eg. different parsing
methods).

In summary, the portable C compiler does involve a substantial speed and size vverhead,
akthough K is efficient gh for day-to-day use where computing resottrces are not at a premium.
Funhmthﬂwethummpmrdwmhmlnvmnmw to implement C
on another machine, these problems would be outweighed by the relative speed with which one
could bring up a working imp! . One could then concentrate on making it more
efficient, having the advantages of a C compiier to work with and the ability to program in C. As
an example, the Initial machine description and macro definitions for the PDP-10 implementation
were written and debugged bythe:uthorlnapﬂndoftwodap. Of course, this is an ideal case;
someone not familiar with C and the compifer would require a onger time.

C5G Memo 149 June 1977

The Compiler -2 A Portable Compiler

Moving the compiler and the associated machine description processor to new host machines
can be accomplished using standard methods of portable software. An unparameterized abstract
machine, called CMAC, has been deveioped for this purpose. A C compiler producing CMAC
output has been constructed using the method described in this paper. This compiler can be used
to produce CMAC versions of itself and the associated programs. To get these programs running
an a new hnumhﬁu.mwﬂmmnphmdd‘muhmfurﬂnOMACmand implements
A few, simple [/O routines. Thnununwrhtmhhud&ﬂpum for the machine and
construct a compiler that directly produces code for it.

42 The Machine Model

Aside from the restriction to register-oriented machines, there are additional assumptions in
the C machine model that could make generating desired code inconvenient or even impossible
without modifying the code generator. The most Important such assumption is the addressing
model, which assumes that all C data can be referenced via the operand fields of machine
instructions. Wmmhwﬂmdmnuhoﬂ.memyhﬂetommmpmm macro
definitions. Furthermore, the compiler has no mechanism for keeping track of “intermediate
results” computed by a macro definition In the course of making an operand addressable.

Anmhefﬂmmumivmablummmusw. Because a full
mchmeaddrmun-ddmlﬂdmmumlmhbb,mmﬁmhdupointertothe
variable into some register before the variable can be accessed. The easiest way for an
implementer to handle this problem mldbemdefhemAMOPsubdngumbletoaccept
arguments of external storage chss, thus causing all external operands to be toaded into registers
befare use.' Better code would be generated if each AMOP macro loaded the necessary pointers
for exmlopu'mda.uthlnnmqmm of .external operands into registers weuld be
eliminated. Hmver.ﬂ!mmmldkmmthhgofthmpo&ntmmd thus would be
m&mammfwthmwmmhaumspruﬁbbm The best
mmthhwwhnmuhwﬂdhmmwamudﬁautmmfmmauymemory
&nmhﬂmwuymm:wmmﬂmd:mmmﬁm. This
coercion woukd hmhmmmmmbm. register to register, and
register to temporary, which are used to move operand values to acceptable locations. This solution
would produce the best code, would not require extra tnstructions in every AMOP definition, and
mnpmvmahndkfuopunﬂuqtbeundthmpohm '

Another area where the addressing mode assumption causes inconvenience is the use of
immediate addressing. On the HIS-5000, immediate addressing is one of the machine addressing
modes. Thus, the C routine macro that convers REF; to symbolic addresses can easily check for
integer literals in the proper range and produce the appropriate form of address specification.
mPDPﬂmmmm,wiuMhuﬁdeymlmm opcodes.
Thuhwdumuuﬁmndhbeaddru&gmﬂn?b?-lﬁ.mmnmemdmoml macro
EXpansion in the relevant AMOP definitions. _

1. mmwuum-um-dhmhdmwm

June 1977 CSG Memo 149

A Portable Compuler -2 The Compiled Code

4.3 The Compiled Code

Although there are weak spots, the code produced by the comptler is good considering that
almost no optimization is attempted by the comptler (not even reusing values in registers). It is

would not be able to take advantage of the HIS-6000 two accmulators or the multiple index
ngi.nn.normunrewgnmunfmthubympdnmanmfnmthemdu registers,

One of the weak spots in the complled code concerns Floating-point operations. The code _

generator “performs” all floating-point operations in double-precision, issuing single-to-double
conversion operations befors using single-precision operands. It is unable to utilize the HIS-5000

single-precision operand into the F reglister, very poor code is produced for single-precision
Floating-point expressions (as Opposed o very good code for double-precision expressions). One
way to handle this situation would be to implement a general subtree-matching faclity for
optimization. With such a facility, the implementer specifies in the machine description that a
pamcuhrmbmaumdabmmmdumm(spumdmﬂnhmdam)utobe
replaced byﬂncodegmmmrwnhtmabmamhinenpmmr;thenmm is defined
by the implementer in the machine description just like any of the buik-in operators. In the
floating-point case, one would spexify that a subtree of the form (using a LISP-like notation)

* (double-prec-add sl {single-to-double »2))
would be replaced by .

) Tnngle—prec-add ol 2)

where single-prec-add is a new abstract machine operator which would be defined to be the "FAD"
instruction. This method of subtree-matching is similar to the sequence of abstract machines
method {n that the new abstract machine operators can be considered instructions of a higher-level
abatract machine. However, using the subtree-matching method, the definition of higher-level
operators ik optional (thus there is no multistage transtation when optimization i3 not desired or
needed), and the implementer defines the higher-levet operators to suit his needs. The subtree-
matching approach to machine-dependent code optimization has been investigated by Wasilew [22].

of fset of an array element into an index register and performing an indexed memory reference, the
code generator adds the offset to a painter to the base of the array, producing a pointer (in an
index register) which is then used to reference the array element. Thus, the code generator regards
index registers only as base registers to hold pointers, and not as index registers to hold of fsets,
One reason for not implementing the capability of using index registers for subscripting is that the
benefits are small on machines Hke the HIS-§000 with single-indexed instructions, where this
method can beusedonlyforexumalmdmuctmys. AN other arrays require the use of an

CSG Memo 148, Jume 1977

The Comptled Code -2- A Portable Compiler

Index register just to reference the base of the array.! The capability of using index registers for
subscripting could be implemented using the subtree-matching facility described above; one would
test for subtrees of the form , '

(puinur-;dd (addresy-of <externjstatic>) any>)

Atl:hdmhulntlnwnpdﬁmdoiﬂheuad‘lwm. The code generator onty

mmmmmmuumnmummmmmnm
(except through a specific location that implements an abstract machine register). Again, a better

Mhmnmwwmdbythepmtmlh.mbmueuumnpih
structure pmlduafnmtmwhthmy rachine-dependent optimizations can be expressed
in 2 machine-independent manner. Wcretwﬂumdumam:hembmeuﬂroran

The advantages of the technique presentad In this paper over rewriting some or all of the
generation phase are (1) that the implementer can construct 2 compiler that produces code for a new
machine with less effort and in fess time, and {2) that the implementer can be more confiden} in the
correctness of the new compiler. Almost the entire code of the generation phase, already tested in
the initial Implementation, is unchanged in the new implementation. This code includes the code

of the individual abstract machine instructions The interaction among these instructions, in terms
of their correct ordering and the use of registers and temporary locations, is handled by the code
generation akwlthmandnudnubedmnmmennphnmur. It ts this reduction in the
complexity of the problem that leads to tie Incrensed confidence in the resylts.

The advantage of the presented technique over techniques that use a single abstract machine
is that improved object code efficlency can be obeained over a wider range of target machines
without complicating the macro definitions. However, in order to realize this advantage, the
implementer must learn to write machine descriptions.

1. m.mmmmnhmnmnwmm,mmmmmu time
the complier was writion

June to? _ CSG Memo 149

- A Portable Compiier - ;2! - o : References

References ' -

L. Aho, A. V. and Johnson, 5. C. LR pansing. Computing Surseys 6, 2 (June 1974), 99-124.

2 Basili, V. R. and Turner, A. J. A transportable extendabile compiler. ‘Rep. TR-269, Computer
Sclence Center, University of Maryland, 1078, |

3. Coleman, S. S, Poole, P. C., and Waite, W. M. The mobife programming system, JANUS,
Software Practice and Experience 4, | (Jan. 1974), 5-28.

; Digital Equipment Corp. DecSystemi0 Assembly Language Handbook. Maynard, Mass., 1978,

compller. Comm. ACA 9, | (Jan. 1966), $-9,

7. Feldman, J. and Gries, D. Transhator writing systems. Comm. ACM 11, 2 (Feb. 1968), 77-118.

8. Halstead, M. H. MeckineIndspendent Computer Programming. Spartan Books, Washington,
1962 '

8. Honeywell Information Systems, Inc. Sertar 6000 Macro Assembler Program. Waltham, Mass.,
1972, -

LO. Miller, P. L. Automatic creation of 3 code generator from a machine description. Rep. TR-85,
Project MAC, M.IT, Cambridge, Mass, 1971,

11. Newcomer,). M. Machine-independent generstion of optimai local code, Ph.D. Thesis, Dept.
of Computer Science, Carnegie-Mellon University, Pitaburgh, Pa., 1975,

12 Pasko, H. J. A pseude-machine for code generation. Rep. CSRG-30, Computer Systems
Research Group, Univ. of Toronto, 1979, :

13. Pocle, P. C, and Waits, W. M. Machine independent software. Proc. ACM Second
Symposium on Operating Systems Principles, 197, 19-24.

14. Poole, P. C. and Waite, W. M. Portability and adaptability. In Advanced Course on Softnvare
Engineering. Springer-Verlag, Berlin, 1973, 188-277.

15. Richards, M. BCPL: a tool for compiler writing and spstem programming. Proc. S JCC 1969,
557-568. .
16. Richards, M. The portability of the BCPL compiler. Seftware Practice and Experience 1, 2
(April 197), 195-146. -

17. Ritchie, D. M., Kernighan, B. W., and Lesk, M. E. The C Programming Language.
Computing Science Technical Report No. 81, Bell Laboratories, Murray Hill, N. J., 1975,

18 Richmond, G. H, ed. Pascal Newsletter. Sigpian Notices 11, 2 (Feb, 1976), 41-42.

189. Sibley. R. A. The SLANG iystem. Comm. ACM 4, (Jan. 1961), 75-84.

20, Snyder, A. A portable comptler for the language C. Rep. TR-149, Project MAC, MIT,
Cambridge, Mass, 1975,

21. Strong, J. et. al The problem of programming communication with changing machines — a
proposed solution. Comm. ACM 1, 8 (Aug. 1958) 12-18, 9 (Sepr. 1958) 9-18.

CSG Memo 149 o June 1977

