MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

Computation Structures Group Memo 150

Programning Methodology Group
Progress Report 1975-76

This reaearch was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contract NOO014-75-C-0661, and

in part by the National Science Foundation under grant DER74*21892.

July 1977

1. Introduction

The goal of the research of the Programming Methodology Group is the development of
tools and techniques that ease the production of quality software, software that is reliable and
relatively easy to understand, modify, and maintain. Our work is based on a programming
methodology in which the recognition of abstractions i3 the key to problem dmpositlon. A
program s constructed in many stages. At each stage, the problem to be solved is how to
implement some abstraction (the initial problem is to implement the abstract behavior required of
the entire program). This is done by performing the following four steps:

L Problem Decomposition. The programmer envisions a number of

subsidiary abstractions that are useful in the problem dormain.

2. Specification. The behavior of each abstraction is specified precisely.

3. Implementation. Once the behavior of the subsidiary abstractions is

understood and specified, they can be used in a program to implement the

original abstraction.

4. Verification. The programmer verifies that the implementation is

correct, assuming that the subsidiary abstractions are implemented

correctly.
As soon as step (2) has been perfarmed, new problems exist concerning how to implement the
abstractions defined in step (2). The programmer can chonse to work on one of these problems
immediately, before steps (3) and (4) have been crried ou.t for the current stage. The process
terminates when all abstractions generated during design are realized either by programs or by the
programming language in use.

To make effective use of this methodology, it is necessary to understand the nature of the

abstractions that are useful in constructing programs; this includes what is being abstracted. and

what form the abstraction takes. In studying this question, we identified three kinds of useful

-3.

abstractions: procedural, control and especially data abstractions. While the procedural abstraction,
which performs a computation on a set of input ob jects, and produces a set of output objects, has
fong been recognized as useful, control and data abstractions have been neglected in discussions of
programming methodology. |

A control abstraction defines a method of sequencing arbitrary actions. All languages
provide built-in control abstractions; examples are the If statement and the while statement. In
addition, however, it is helpful to allow user definitions of a simple kind of control abstraction,
which is a generalization of the repetition methods (in particutar, the for statement) available in
many programming languages. Frequently the programmer desires to perform the same action for
all the ob jects in a coflection, sach as aR the characters in a string or all items in a set. The simple
control abstraction permits the action to be described separately from the method of obtaining the
ob jects in the collection.

A data abstraction is used to introduce a new type of data object that is deemed usefut in
the domain of the problem being solved. At the levet of use, the programmer fs concerned with the
bekavior of these data objects, what kinds of information can be stored in them and obtained from
them. The programmer Is not concerned with how the data objects are represented in storage, nor
with the algorithms used to store and access information in them. In fact, a data abstraction is
often Introduced to delay such implementation decisions until a later stage of design.

The behavior of the data objects is expressed most maturally in terms of a set of
operations that are meaningful for those objects. This set will include operations to create ob jects,
to obtain information from them, and possibly to modify them. For example, push and pop are
among the meaningful operations for stacks, while meaningful operations for integers include the
usual arithmetic operations.

Thus, a data abstraction consists of 1 set of objects and a set of operations that

-4

characterize the behavior of the objects To ensure that a data abstraction can be understood at an
abstract level, we require that the set of operations completely determine the behaviar of the data
objects. This property can be achieved by making the operations the only direct means of creating
and manipulating the ob jects.

The Programming Methodology Group is Involved in two main areas of research that
support the above methodology: |

1. We are developing the programming language, CLU, which provides
linguistic support for programming with abstractions. Data and control

abstractions are not supported well by conventional languages.

2. We are developing techniques for specifying the meaning of
abstractions, and for verifying the correctness of programs written in terms
of abstractions.

In the following sections we discuss some of our accomplishments of the past year. In the
next section, we describe how CLU supports the use of control abstractions. (A comprehensive
treatment of the abstraction mechanisms in CLU can be found in [I7)) In Section 3, we discuss
how a language like CLU can be extended to incorporate an access control fadlity. ~ Section 4

contains a discussion of optimization techniques for a CLUHike language. In Section 5, our work

on specification of data abstractions i3 described.

3. Iterators

The purpose of many loops is to perform some action on all of the ob jects in a collection.
For such loops, it Is often useful to separate the szlection of the next object from the action
performed on that object. CLU provides a control abstraction mechanism that permits a complete
decompasition of the two activities. The for statement available in many programming languages
provides 2 limited ability in this direction: it allows iteration over ranges of integers. The CLU
for statement allows iteration over collections of any type of object. The selection of the next |
ob ject in the collection is done by a user-defined ftsrator. The iterator produces the ob jects in the
coflection one at a time {the entire collection neul- not physially exist), the objects are then
consumed by the for statement.

We iltustrate the use of iterators by means of a simple example. Figure | shows an iterator

called string_chars, which produces the characters in a string in the order in which they appear.

Figure 1. Use and definition of a simpla iterator.

count_numeric = proc (s: string) raturms (inl);
count: int := 0;
for ¢ char in string_chars (s) do
If ¢har_is_numeric {c)
then count := count » I;
end
end,
return count;
and count_numeric;

string_chars = (s: string) yiealds (char);
index: int := I;
limit: int = string$size (s),
while index <= limit do
yleld string#fetch (s, index);
index :» index + I;

end;
ond string_chars;

This iterator uses string operations size (s), which tells how many characters are in the string s, and
feteh (s, n), which returns the ath character in the string s (provided the integer n is greater than
zero and does not exceed the size of the string).

The general form of the CLU for statement s

for declarations in iterator-invocation

do body end;
An example of the use of the for statement occurs in the count_numeric procedure (sce Figure 1,
‘which contains a foop that counts the number of numeric characters in a string. Note that the
detalls of how the characters are obtained from the nﬂng are entirely contained in the definition
of the iterator.

Iterators work as follows: A for statement initially invokes an iterator, passing it some
arguments. Each time a yield statement is executed in the iterator, the ob jects yieldedl are
assigned to the variables declared in the for statement (following the reserved word for). Then
the loop body is executed. Next the iterator is resumed at the statement following the yleld
statement, in the same environment as when tﬁe ob jects were ylelded. When the iterator terminates,
either by an. explicit return statement (which must not return any ob jects) or by completing the
execution of the body, then the invoking for statement terminates. |

For example, suppose that string chars Is invoked by count_numeric with the string “a3”.
The first character yielded is %", At this poim within string_chars, index =1 and limit = 2. Next
the body of the for statement is performed. Since the character 2’ is not numeric, count remains at

0. Next string chars Is resumed at the statement after the yield statement, and when resumed,

1. One or mare objects may be yielled, but the number and types of objects ylelded each time by
an terator must agres with the number and types of variablés in a for statement using the iterator.

.-

{ndex =1 and limit = 2. Then index is assighed 2, and the character 9" is selected from the string
and yielded. Since 9" is numeric, count becomes . Then string.chars is resumed, with index = 2
and limit « 2, and index is incremented, which causes the while loop to terminate, and the iterator
to terminate. This terminates the for statement, with control resuming at the statement after the
for statement, and count = 1.

While iterators are useful in general, they are especially valuable in conjunction with data
abstractions that are collections of objects (such as sets and arrays). Iterators afford um; of such
abstractions access to all objects in the collection, while exposing a minimum of detail. Several
iterators may be included in a data abstraction. Where the order of obtaining the objects is

important, different iterators may provide different orders.

8. Access Control

One of the most important attributes of a programming language Is the way the scope
rules of the language define how data is to be shared among the Individual program units
{procsdures, blocks, modules) out of which a program is constructed. Ordinarily, access to data Is
provided on an all-or-nothing basis: if a module has access to some data base, then every
component of the data base is accessible, and every possible type of access (usually just reading and
writing) may be performed. Experience in building large applications, or applications involving
sensitive data, has indicated that sharing of data is enhanced if finer control than all-or-nothing
access I3 provided. For example, manipulation of the information In a data base is much more
controlled if not every program that reads the data base is also permitted to write it. In addition, if
some of the information in a data base i3 sensitive, then control over which programs can read
which information is also desired. |

Current programming languages are deficient in providing mechaﬁlsms for controlling the
sharing of information among program units. For example, passing a data base "by value® ensures
that the called procedure may not modify the data base. However, this mechanism does not
provide control over what parts of a data base may be read; in addition, it is so expensive for large
data bases that other parameter passing mechanisms (for example, call by reference) are used
instead. Proposals for avoiding the overhead of call by value while retaining the benefit that the
data base cannot be modified (for example, call by reference, but permitting only read access to the
formal parameter) solve the efficiency problem, but still do not provide for selective reading of the
data base. In addition, such prﬁponls do not provide for the control of selective akeration of the

data base.

B. Liskov and A. Jones! have investigated a programming language extension that
provides for controlled sharing of data [I21 The approach taken borrows heavily from work in
operating systems, where access control mechanisms have long been one of the tools useful for
realizing controlled sharing of data. In particular, our mechanism is modeled after the capabitity
protection mechanisms provided by some operitlng systems [24, 26]

To incorporate an access control mechanism in & programming language, we have chosen

an approach that permits programmers t0 express access control restrictions in terms that are

meaningful to their application domains. We assume that all data are contained in obfects for
which there exists a set of accesses. Ob jects are those entities, such as data bases, libraries, stacks or
files, that are of interest to programmers. Accesses are limited to those that are meaningful
manipulations of the objects; accesses are the only means for altering an object or extracting
information from it. In some cases, meaningful accesses are the familiar read, write, and, possibly,
execute access. In other cases, the accesses themseives are user-defined, tailored to the abstract |
notion the user intends to capture. For example, a flle system may distinguish between write access
and append access. In contrast to a write access, m‘nppand access is assumed to modify the file,
but not to alter existing content. This permits & user to share a file with others, allowing them to
augment the file by appending to it, but not allowing them the ability to rewrite any portion of it.
Thus, to discuss access control we require a language that permits the writing of programs
in terms of data objects and the accesses that are meaningful for them. In particular, languages in
which a datum is viewed as an aggregate of memory cells are not suitable, because of the difficulty
of expressing access control on anything but a cefl basis. One class of languages, including the

languages SIMULA 87 (8, 4), CLU 7], and Alphard [28), provides a natural environment in which

1. Computer Science Department, Carnegie-Melion Univensity, Pittsburgh, Pa.

~10-

1o embed an access control facility. In these languages, a data type is viewed as a set of ob jects and
2 set of operations. The operations of a data type correspond very closely (though not identically,
as we shall show) to our notlon of access, and access control corresponds to the ability to control the
use of the operations.

To accommodate access control, we will add one more component to a type: In addition to
objects and operations, a type also specifies & set of rights. A right Is a name that represents a
meaningful manipulation of ob jects of the type; often a right corresponds to the use of one of the
type's operations. The basic idea behind rights is: to legally apply one of the type's operations, 2
user must hold appropriate rights to the ob ja:u passed to that operation as parameters.
| An uarﬁph is given in Figure 2 for the type, AssociativeMemory. Operations for this type
include an operation to create an empty AssocativeMemory object of a particular size (makemem), an
operation to add a mame-value pair to an AssocistiveMemory (insert), an operation to change the
vatue associated with a given name (change), an operation to fetch the value Matéd with a
given name (getpal), and an operation to remove a name-value pair (delete). In order for insert,
change, getval, or delete to be invoked, the invoker must present a right to apply the operation to
the AssociariveMemory object passed in as a parameter; in this particular example, the name of the
required right is the same as the name of the operation. The makemsm operation returns all these
rights for the AssociatiseMemory object it creates. The AssaclariveMemory operations also use
ob jects of type integer; for simplicity ue have chosen to omit information about required rights for
all integer objects. In general, we can expect some rights to correspond to the use of a single
operation, some to a group of operations and some to a single parameter of an operation taking
more than one object of the type.

Embedding an actess control facility in a programming language permits expression of

access restrictions as an integral part of a program. In addttion, the question of whether a program

Figure 2. The AssociativeMemory type.

type: AssociativeMemory

rights: "insert”, "change”, “getval”, "delete”

operations:

makemem
input:
output:

insert
input:

effect:

change
input:

effect:
getval

input:

output:
delete

input:

effect:

integer; (desired AssociativeMemory size)
AssociativeMemory; "mer:'.'chlrge'_.'gutnl'. “delete” rights are given

AssociativeMemory; "insert” right required
integer; {the name)

integer; (the value)

(insert modifies Its AssociativeMemary parameter)

AssociativeMemory; "change” right required
integer; {the name)

integer; (the new value

{change modifies its AssaciativeMemory parameter)

AssociativeMemory; “getval® right required
integer; {the name}
integer; {the value)

AssoctativeMemory; “delete” right required
integer; {the name)
{delete modifies ity AssociativeMemory parameter)

obeys access control restrictions, and is thus sccesscorrect, can be answered at compile time. This

can lead to benefits similar to those derived from compile-time type checking: confidence that the

program is access-correct, and enhanced efficiency over the dynamic mechanisms currently

provided by operating systems.

8.1 Basic Model

Our approach to access control is based on a semantic model in which objects are shared
among varigbles. Each object has a fype, which determines the legal accesses to the object. Our
notation for access control involves a declaration for each variable of the type of object that
variable may refer to, and the rights that are available for that object when it is used via the
variable. These two pieces of information are captured in the notion of a qualified rype. A

qualified type iz written
Ti{rl,...rn}

where T i3 the name of some type, and {rl,..rn} is a non-empty subset of the rights of 7. We
refer lothetwbpamaf:qualif_ledtypeuthebnnmnndtherlghu;lfQi.s:qualified type.
then base(Q) is the base type and rights(Q) is the rights. For ;example. the following are some of the

qualified types derived from AssociativeMemory

AssociativeMemory {getval}
AssociativeMemory {insert, change)
AssociativeMemory (insert, change, getval, delete}

The final example specifies all the AssociativeMemory rights; a speciat notation
T{all})

may be usad instead of listing alf the rights.
Qualified types are used in variable declarations and in formal parameter specifications in

procedure headings. An example of a variable declaration Is:

v: AssoclativeMemory {insert, change}

The meaning of this declaration is: v is a varlable that can be used to refer to AssociativeMemory

ob jects, but only the "insert” and “change” rights may be exercised in con junction with 2.

We view a variable as a pair

{ob ject id, qualified type}

The object id is a unique name that is interpreted by the underlying addressing mechanism.to
select an object. When a variable is created, its quatified type is defined once and for all and can
never be altered. However, the object named by a variable (via the object id) can change by
application of the binding operation. Binding causes 2 variable to refer to an cbjeat by storing
that ob ject’s id in the variable. Note that is is possible for sharing of ob jects to take place, because
two variables may contain the same object id. In this case, the qualified type in the two variables
may differ, but the binding rule (discussed in the next section) ensures that the base type is
necessarily the same. |

A variable contains a capabllity in the operating system sense [5, 141 The capability
provides the basis for restricting the kinds of manipulation that can be performed on the ob ject
specified by the object id. Intuitively, the restrictions on how an object can be used are expressed
along the path to the object (the path through the object id in the variable). Thus, using one path

rather than another to name an object changes the way the object can be manipulated. For

example, suppose

a: AssociativeMemory{getval, insert}
b: AssoclativeMemory(getval}
both name the same object Using b it is impossible to modify this object, since only the gerval
operation can be used; using g, the object may be modified by application of the inserr operation.
Our notions of variable, object and binding are different from the refated notiohs of

value and assignment that underlie block-structured languages. This difference is illustrated in

-i4-

Figure 3. Figure 3a shows the traditional view of variables and values, in which the value resides
in the variable and a new value can be copied into a variable by means of assignment. Figure 3b
iThustrates our semantics: a variable is bound to an object, and a value is contained in an ob ject.
This value may be accessed or modified only by means of one of the operations of the ob ject’s
type. Our rule of binding differs From assignment in that it causes sharing of the object involved,
rather than the copying of the value in the abject. Furthermore, this sharing is significant since,
for some types of objects, operations exist to change the value inside of the object. For example,
the AssociativeMemory operations fnserf, change and delets modify the value Inside of am
AssociativsMemory object.

Our notion of binding corresponds to assignment involving variables holding (ryped)
references to ob jects. Some programeming languages are based on a semantic model like ours. The
most widely known of these languages Is LISP [18); LISP liats are ob jects (with operations car, cdr,
and cons) and LISP setq i3 similar to our binding. Our model is also used in SIMULA 67 and
CLU.

We belleve that our semantics models very well what is going on in systems where

Figure 3. Comparison of Semantic Models

variable

value

Figure 3a. Traditional view of variables and values.

variable object

qualified type | object ldv

Figure 3b. Model used in this paper.

controlled sharing is of Interest. Note that sharing of objects is a fundamental fact in these
systems; the sharing of actual ob Jects (rather than just copies of the values of objects) leads both to
Interesting behavior {eg., many programs working with the same data base), and the need o
exercise some control over exactly how the object should be shared. Protection schemes exist to

provide this control.
8.3 Binding Rule

A single rule, governing the legality of binding of objects to variables, is sufficient to
provide the required access control and i3 the basis for determining whether a program is
access-correct (obeys the access control restrictions). Binding is the operation that causes a variable
to Mﬂ to an ob ject (by changing the ob ject id). The effect of binding is creation of a new access
path for the ob _|ecr_l Therefore, to ensure that 2 program is access-correct, we must guarantee that
no new access rights to the object are obtained from this new access path. For example, suppose
that x and y are variables, and that x is to be bound to the ob ject currently bound t0 9. This new
binding should be allowed only if the qualified types of x and y both arise from the same base
type, and if the rights obtainable by referring to the object via variable x do not exceed the rights
obtainable by referring to the object vin y.

We can formalize this rule as follows. First, we define what it means for one qualified
type to be greater than or equal to another. If Qf and Q2 are qualified types, then Qf is greaser

than or equal to 2, written
Q»>Q2
if base(Q1) » base(Q2) and rights(QD) > rights(Q2). Now the rule of binding can be defined:

véEe

-18-
where o i3 a variable and ¢ is an expression and

T, = qualified type of variable v
Tq = qualified type of expression ¢

is tega! pravided that

Te2Ty
Thus a binding is legal only if the mew access path provides at most a subset of the rights
obtainable via the original access path.. Note that this rule ensures that a variable will always refer
" to an object whose type is the base type of the qualified type of the variable.

An expression is either a variable, in which case its qualified type is the same as the
quaiified type of the variable, or it is a procedure invocation. In the former case, we have now
defined the rule of binding (since T, is the qualified type of this variable). For example, suppose

a: AssoclativéMemoryigetval, insert}

b: AssociativeMemory[getval}
'i"hen b+« a is legal, but ¢ « 5 is not. This Is illustrated in Figure 4. In Figure 4a, an initial
configuration is shown in which ¢ refers to an AssociativeMemory ob ject a, and b refers to an
AssociativeMemory object §. Figure 4b shows the reault of b.'- a. Both band @ now referto . A
new access path (from & to &) has been created as a result of this binding, but no new rights to &
are obtained by it; tn fact, the new access path via b has fewer rights to & than the old access path.
Figure 4c illustrates what would be the resukt of @ ¢ b. IF this binding were allowed, the new
access path from ¢ to § would aflow more rights than the old one, and therefore the binding must
not be permitted.

In order to understand binding when the right-hand side is a procedure invocation, we

Figure 4. Binding.

a | AssociativeMemory

{getval, insert} .-——~.O

a
b | AssociativeMemory 8
«

| {getval] (-'—ﬁO

Figure 4a. The tnitial state.

a | AssociativeMemory
(getval, insert} |

b | AssociativeMemory f

[getval) O

Figure 4b. Resultof b ¢ a,

a | AssociativeMemoary a
{getval, insert) O

b | AssociativeMemory g
{getval} s

Figure 4c. Result of a + b (disallowed).

must examine the semantics of parameter passing. Our notion of parameter passing is defined in
terms of binding. A procedure definition has the form
procedure <procname> {<formals specifications)
returns <result specification>
<body>
end <procname>

where <ormals specification> specifies the name and qualified type for each formal parameter,

and <result specification> specifies the qualified type returned by the procedure. Each formal

parameter is considered to be a flocal variable of the procedure; this variable is created at
invocation, and the actual parameter is bound to it. The procedure invocation is legal only if the
bindings of actual to formal parameters are legal. The qualified type of the invocation expression
is then the type specified in the <result specification>.

For example, suppose a procedure P has type requirements

procedure P (x: THI2)) returns T2{zl)
and declarations

a: TII254)

b: T2fgl}
occur i the invoker of P, Then the statement b'-_P(u} is legal because the invocation P(c}_ls
legal (x + a is legal), and the object reurned by P has qualified type T2{gl) and therefore may be
legally bound to b. However, b — P(c), whete ¢: TI{f1£7), is not legal because the invocation P(c)
is not legal {x + ¢ is not legal).

The question of whether a procedure definition is accesscorrect can be answered
independently of any invocation of that procedure. A procedure is access-correct provided that ail

bindings within it are legal, and that for every return statement:
return <expr>

the qualified type of <expr> i greater than or equal to the qualified type in the procedure
<result specifications. |

Procedure invocation is the mechanism whersby objects are created in the first place.
There exist 2 number of primitive data types (for example infeger, boolean, array). The creation

operations of these types provide objects of the type whenever they are invoked, and these ob jects

are returned with full rights. For the non-primitive, user-defined types the situation is analogous.
This has already been illusirated in the AssociativeMemory example shown in Figure §; whenever
the makemem operation for AssociativeMemory is invoked, it returns a new .AssmrImMcmy ob ject
with full rights. Thus the creator of an object obtains alt rights to it As the object is ﬁassed from
one access-correct procedure to another, certain rights may be removed, but rights are never gained.

This Is true because binding is the only method provided for sharing ob jects between procedures.
8.3 Discussion

The access control mechanism described above i3 sufficient to control the sharing of many
of the kinds of objects of interest In programming. For example, suppose we define a type

employee-record, with operations (and rights) to read-job-category, write-fobcategory, read-salary, and
write-1alary, among others. Using the rules defined so far, we can define a procedure

procedure P (x: employee-record{read- job-category, write-satary})

which computes a new salary based on the employee’s job category, but is unable to change the job
qategory, or to read the old salary.
The abave discussion is intended ta introduce the reader to the access control facility. A

complete description of this facility, which includes the following additional topics, is given in [12}

L. The use of ampification [10} in the program module defining a new
type. :

2. An extension of the binding rule to control sharing of objects passed
Indirectly — through the medium of another ob ject.

8. A comparison of the access control facility with the dynamic mechanism
present in the Hydra system [26,]

One objection raised to the adoption of structured programming methods is that they
produce inefficient programs. While we believe that the ma jor cost of software s its construction
and verification, the cost of executing programs can not be ignored. Both costs can be reduced by
the use of program optimization techniques. The rationale for program optimization is nicely
stated by W. Wulf, et. al. [27, p. 181}

The reason that compiler optimization is important is that program;mr
efficiency and execution efficiency need not be a choice we must make.
Optimization is a technological device to let us have our cake and eat it, too - to
have botA convenient and welt-structured programming and efficient programs.

R. Atkinson has investigated an 'app'rdachl to aptimization that is especially applicable to
tanguages like CLU @Il First a program is transformed by 2 technique known as inline
substitution, which substitutes the bodies of procedures for certaln invocations of those procedures.
This transformation tends to increase the size of the transformed program, but tends to decrease
the execution time by eliminating procedure cafl overhead, and by enabling more global
optimizations. Then the data and control flow of the transformed program is obtained using
symbotic interpretation. Finally, standard optimization techniques, such as constant propagation,
are performed, making use of the data and control flow information and, in addition, information
about properties of procedures and about the interaction among the operations of a data

abstraction.

4.1 Inline Substitution

Intine substitution reduces execution time by eliminating the overhead involved in using
the procedure call mechanism. The size change resulting from a substitution is simply the
difference between the size of the expanded invocation and the size of that part of the calf
mechanism ariginally present in the code. Coupled with these "direct” effects on space and time are
corresponding “indirect” effects. Placing a procedure body in a specific context én present new
opportunities for optimization using other techniques. These optimizations will generally reduce
execution time even further, but their effect on program size will depend on the technique.

When pmcédum bodies are small, as they are in CLU programs, many optimization
techniques are ineffective, simply because they require the presence of a substantial context. Thus,
performing inline substitution before using other techniques may be the key to successful
optimization of structured programs.

R. Scheifler has studied inline substitution as an independent optimization technique [23]
This study involved the analysis of the following problem: Given a program and constraints on the
finat program size, find a sequence of substitutions that minimizes the expected execution time,
considering only “direct” effects.

A key phrase In this problem statement is "expected execution time". Some method Is
neecded to determine the number of times an invocation is expected to execute. We believe a good
method is to run the program using data selected by the programmer, and to count the number of
times each invocation executes. These statistics can then be used as the initial expected numbers.
They are “initial” nombers for two reasons:

1) Inline substitution can create new Invocations, each of which must be
assigned an expected number.

-92-

9) When the body of a procedure P is substituted for an invocation, Pis
no ftonger called as often, implying that new expected numbers must be
assigned to invocations contained in P.

To completely determine how expectad numbers change, the control flow history must be
retained in the statistics, necessitating many counters for each invocation. However, a single
counter wilt suffice if a simplifying assumption is made about control flow: For any procedure
body and any invocation wﬁnined therein, the expected number of executions of the invocation
per execution of the body is constant. From this assumption 2 set of equations has been developed
for calculating new expected numbers. The equations work when substituting for recursive as well
as hon-recursive invocations.

Using these equations, an algorithm to perform infine substituion can be formulated.
However, as 2 practical matter, the problem of finding a set of substitutions that minimizes
execution time is intractable. R. Scheifler has shown this problen to be NP-hard, meaning there is
no known algorithm that will always solve the problem in polynomiai time, and the existence of
such an algorithm would imply polynomial-time algorithms for many classic hard problems 231

An approximate solution to the problem has been developed, and is implemented for the
current CLU system. The algorithm is built on a very simple heuristic: substitute for invocations
that execute often but call small procedures. More precisely, at each step choose the invocation that
will yiekd the greatest time savings per unit space increase. Contlnﬁe until the maximum program
size is reached. Lastly, while there is an invocation that is the sole remaining invocation of a
non-recursive procedure, substitute for the invocation. This allows the procedure itself to be
discarded, Qnd so does not increase the program size.

Preliminary results using this algorithm indicate that, in programs with a low degree of

recursion, over 90 percent of all procedure calls an be eliminated with little Increase {-1 to 25

-~ L

percent) in the size of compiled code, and with moderate savings (10 1o 30 percent) in execution

time,
4.2 Program Analysis

Following inline substitution, two kinds of program analysis are carried out. First, the
program Is analyzed to obtain information about its control flow and data flow. Then the flow
Information is analyzed to identify potential optimizations.

R. Atkinson has investigated a non-standard method for obtaining contro! and data flow
information (I1 He has adapted the technique of symbolic interpretation [13], in which a program is
executed using symbolic ob jects rather than actual ob jects. Symbolic interpretation can be used to
obtain both data and control flow information.

As an exampie of obtaining data flow information, suppose we have the procedure:

square = proc (x: int) roturns (Int);
return x » x;
end square;
The symbolic interpretation would start by assodiating a symbolic ob ject {s1) with the variable x.
Then the integer multiply operation would be interpreted to obtain another symbolic ob ject
(o2 = intSmuKel, o1)). The object returned by the procedure Is #2. The symbolic interpretation
removes our dependence on variables, so that we are only concerned with the symbolic ob jects.

After performing symbolic interpretation on the program, the optimizer searches for
transformations that will make the program less costly to execute. One such transformation {s the
replacement of redundant expressions by variables that hold previously cakulated objects. The
rmethod used i3 to search the set of symbolic objects created by the symbofic interpretation for

equivalent symbolic objects; then the control flow information provided by the symboalic

-2¢-

interpretation is used to discover whether the clculation of one of the ob jects precedes the other.

For example,

u = ali)

vim ali)
where a is an arrayit], for some type t, and { is an integer, can be transformed into

u = afi]

Veou

provided thai in the intervening code there are no assignments to variables , ¢ and #, and there
are no side-effects that affect the equivalence of the objects in variables v and #. If % and » are
found to contain equivalent symbolic objects, this guarantees that none of %, ¢ and ¢ have been
assigned to in the intervening code. To determine whether a side effect has occurred, the optimizer
requires information about the properties of the data and procedural abstractions used in the
program being optimized. For example, the only side effect that couki lnvalldiu the substitution
shown above Is to update the ith element of the array object referred to by a. Thus, the
information that use of the array update operations can affect the later use of the array fetch

operation aff] constitutes a property of arrays that is of interest to the optimizer

1. In CLU, ¢ff] is not considered to be a varlable, but rather syntactic sugar for an invocation of
an array operation. If alt] appears on the right hand side of the assignment symbol, it stands for a
call on the array fetch operation; if It appears on the left hand side, it stands for a call on the array
store operation. The reader is referred to (071 for an explanation of CLU semantics.

- 25 -
4.3 Determining Properties of Abstractions

Some properties of data and procedural abstractions that we have found useful for
optimization follow:

(1) mutabtliry: An ob ject is mutable if the information in it can change over

time, and immutable if all of its information is constant over time. A data

abstraction is immutable if all of its objects are; otherwise the data

abstraction is mutable. Integers and strings are immutable in CLU, while

arrays and records are mutable.

(2) Lsolated ropresentation: A data abstraction has an Isolated representation

if the objects of that data abstraction can only be modified through

operations of the abstraction.

(%) obscuring: Procedure P obscures procedure Q if the execution of P
modifles an object and Q uses the modified component.

(1) stde-effect free: A procedure P i side-effect free if executing P does not
modify any objects existing prior to its execution. All procedures that
implement mathematical functions are side-effect free, as well as many
procedures that examine mutable ob jects.

. The optimizer design we have proposed can use properties about abstractions. We assume
these properties are computed prior to optimization and are stored in a data base, In general,
however, it is costly (and sometimes impossible) to determine such properties. Therefore, R.
Atkinson {I] has developed techniques that provide conservative approximations to the desired
properties. Where the properties cannot be determined, worst-case assumptions are made (for
example, If a data type cannot be shown to have immutable ob jects, the optimizer must assume that
the objects are mutable).

In making these approximations, we depend on the notion of reachability for CLU ob jects,

The only objects reachable are those in some basis set (such as the parameters passed to a

procedure), or those objects that are reachable from other reachable objects. We call the set of

=% -

ob jects that are reachable from some ob ect X the reachabliry closure of X.

Unfortunately, the reachability closures for mutable objects are dynamic, and cannot
generally be detefmined prior to execution. We can approximate reachability closures, hawever, by
noting that CLU data types partition the set of all CLU objects in such a way that objects in
different partitions can never be reached from one ancther. Furthermore, a static structure does
exist for CLU data types (once implementations have been selected for these types). We therefore
define a type closure of an abstract type T to be the set containing T and all types in the type
closure of the representation type of T (the type chosen to represent ob jects of type T, and referred
to within a cluster implementing T as the rep — see (I7] for more information). The type closure
of a basic type B {such as tnteger, boolean, string, crray[..].'gnd r@d[...]} is fhe union of the type
closures of the type parameters to B and the set contzining only B. As an example, the type closure
of arraylinteger] is {arraylinteger), integer}. As a second example, suppose that arraylinteger] is the
representation type of the abstract type stack[integerl Then the typ? closure of stacklinteger] is
{stacklinteger), array{integer), integer).

Given an object X of type T, then the type of every ob ject in the reachability closure of X
is in the type closure of T. For example, from any object of type arraylinteger] only objects of type
integer or arraylinteger] can be reached, while from a stackinteger] object, only objects of type
stack{integer), integer or arraylinteger] can be reached. |

The use of type closures ﬁuy be illustrated by returning to our rlifr example. Suppose
the actual code segment was

u := afi)

pix. p)
v = afi)

where x: § and 3 R. If the union of the type closures of § and R does not include arraylt], then

-

we can be certain that ¢ is notl modified in , since 2 cannot be reached from either x or 9.

Other closures can be constructed in much the same way as type closures. Two closures
defined on procedures are the musability closure and the access closure. The mutability closure of
procedure P is the set of alf types with mutable ob jects that can be changed during an execution of
P. The access closure of procedure Q fs the set of all types examined during an execution of Q.
As with the type closure, these closures are ultimately derived from known properties of the basic
CLU types. The mutabiiity and access closures can be used to approximate the obscuring property
for P and Q. We assume that P obscures Q if the intersection of the mutability closure of P with
the access closure of Q is not the empty set.

Use of the obscuring property may permit optimizations that would be forbidden if only
type closures were considered. In the example above, if the mutability closure of procedure p does
not contain arraylrl then p does mot obscure the first array feich operation and therefore the
second array fetch operation can be eliminated. This maf occur even i arraylt) were contained in
the union of the type closures of S and R.

Not all properties useful to the optimizer can be approximated with closures. For example,

using the above methods, we may be able to determine that the data abstraction, stackt], with

operations push, pop, lop, size and equal, has the following properties:

stack{t] ob jects are mutable

stack(t] has an isclated repressntation
top, size, and equal are side-effect free
push obscures top, size

pop obscures top, size

One additional property of interest would express the fact that push (or pop) only obscures tap (or

-28 -

size) If the same stack object is given to both push and top. A further property expresses
information about equivalence of symbolic objects. For example, after push(s, »), we know that
v = fop(s). Information of this sort coukd be used during program transformation to avoid the
top(s) computation, and use a previcusly computed ob ject.

Although closures cannot be used to approximate every property of interest, a considerable
amount of information can be obtained from their use. Such information is needed for optimizing
tanguages, like CLU, that provide data abstractions. The information would also be useful For

optimizing programs with pointers.

- 29 -
5. Bpecifications for Data Abstractions

There are three methods for specifying data abstractions [I5, 16} axiomatic, state machine,
and abstract madel,

The most promising form of axiomatic spu:iﬁcnum; is the algebraic technique, developed
by Zitles at M. 1. T. {29), using some resuits in ajgebra [2] The technique was investigated further
by Guttag at the University of Toronto [8], who worked out ‘a criterion for recognizing a
“suffictently complete” axiomatization of a data type. Further work on verification of data types
using this technique is in progress at IS] [7, 81

The state machine approach was first propased by Parnas [201. The approach as
ariginally proposed was informal. Work on Formalization of this technique is underway {21, 22).

The abstract model approach has been used informally in [9). During the past year, we
have been studying the formalization of this technique. Some wark in this area has also been done
by Wulf et al. [26]

In (5], we developed some criteria for jdging the desirability of a specification technique
for data abstractions. Among the criteria were the ease of construction and understandability of
the specifications. We believe that the abstract model specification technique is best with respect to
these criteria; this is the motivation for our work on this technique.

In the remainder of this section, we discuss the work of V. Bertins on the abstract model
technique. He has worked out the theoretical justification for this technique {which is also
algebraic in nature). He has investigated the structure of the speclflcat;ons, and has arrived at a
form that, we believe, makes it easier to build specifications. He has also developed criteria for
establishing consistency and completeness of abstract model specifications (analogous to those

developed by Guttag (6] for algebraic specifications). These criteria are helpful in evaluating the

-3~

specification of an abstraction, since a specification that is not well formed cannot define any

behavior, let alone the intended behavior.
8.1 Abstraoct Model Specifioations

A sample specification using the abstract model technique is shown in Figure 5. A

sequential file data type is defined, which cin be written in a restricted way: records can only be

Figura 5. Sampie Absiract Model Spacification
Type FILE{RECORD] is

interface:
create{) — FILE, _
append(FILE, RECORD) —> FILE U {error(append-in-middie}},
reset{FILE) — FILE U [error{file-empty)},
skip(FILE, int) —» FILE U {error(skip-past-eof), error{reverse-skip)},
read(FILE) —> RECORD U {error{file-empty)},
eof (FILE) ~> bool,

Representation: tuplefptr: Int, s: sequence[RECORDI],

invariant: Faor all : FILE;
0 < F.ptr S length(f.1) & (lengthif.s) > 0 ==> f.ptr > 0),

Equivalence: For all (fl, £2) FILE;
£1 = £2 ® (FLptr = F2.ptr & fls = £2),

Operations: For all (f, f1, £2) FILE, r: RECORD, n: int;
create() = tuplelpts: 0, s: emptyseq{)],
append(F,) = If f.ptr = lengthif.s) then wplelptr: £.ptr « I, 5: addiast(r, {.5)]
else error(append-in-middte),
reset{f) = if length(f.s} > 0 then wplelptr: |, 5: £.3]
eise error(file-empty),
skip{f, n) = if n < 0 then error{reverse-skip)
olsa If £ ptr + n > length(f s} then error{skip-past-eof)
else tuple[ptr: f.ptr « n, s: f3),
read(f) = if f.ptr « 0 then error(file-smpty)
else nth{f ptr, f.4),
eof (f) m f.ptr = length{f.s),
end type.

-9

appended to a file, but not deleted or updated. The files are sequential because they can only be
scanned by starting at the beginning and spacing forward.

An abstract model specification has three major parts, describing the interface, the #bstract
representation, and the operations of the data type.

The interface of a data type consists of the names, domains, and ranges of its operations.
This information I3 singled out because the operations provide the sole access to the abstract
ob jects of the type. Thus a program, & proof, ot even the rest of the specification can be checked
for type correctness using only the information contained in the interface specifications of the data
types that are used. (This is precisely the information that must be provided whenever abstractions
are added to the CLU system, and the CLU compiler checks afl uses and implementations of an
abstraction for consistency with this information.)

The abstract representation iz introduced into the specification solely to provide a
framework in which to define the behavior of the operations of the type, and does nof constrain
the class of representations that may be used in the implementation. The types used in the abstract
representation are chosen for simplicity rather than for efficiency. The primary use of
specifications is for communication, and (perhaps) in proofs of program properties; how well they
run a3 programs is of secondary interest Therefore simplicity and clarity are important, while
hypothetical time and space requirements are not.

The sbstract representstion has three subcomponents in its specification: the
representation type, the abstract inverient, and the absract aquivalence refation. The
representation type must be composed from previously defined types. We favor using finite sets,
sequences, and tuples to put together known types into new ones. (Akhough we have not included
them in this report, formal, axiomatic definitions of these families of types have been developed.)

Every meaningful abstract object should have a unique abstract representation, and

-92.

conversely. The invarient describes a restriction on the representation type which excludes those
elements that do not represent any meaningful abstract ob ject (1t is similar in this respect to the
invariant of the concrete representation [9] used in proving the correctness of an implementation of
a data abstraction) The squivalence is a refation stating which pairs of the representation type
represent the same abstract object. If there are multiple meaningful representations for each
abstract object, we can take the entire set (equivalence class) of elements representing an abstract
object to be its unique abstract representation. ﬂe abstract equivalence is important because it
specifies precisely which properties of the representation are being used to model the abstract type.

In the example, the state of a file is represented by a sequence of records, and a pointer
into that sequence to indicate which record is currently being scanned. Note that the pointer is a
natural number, which by definition cannot be negative, akhough it can be zero. The invariant
says that the pointer can never get past the end of the sequence, and that provided the File is not
empty, the pointer will always point at some reoofd of the sequenca (the first record has index 1.
The equivalence tells us that each object of the representation type satisfying the invariant
represents a unique flle ob ject |

The operations are defined as functions on the representation type, in as simple and clear
a way as possible (efficiency does not matter). Any formal method for defining functions is
acceptable. We will use both McCarthy's recursive conditional expressions {IS), and input/output
constraints expressed in the predicate calculus, as we find most convenient.

In the example, ali of the operations except for eof are defined using conditional
expressions, none of whicﬁ need be recdnlve because of the simplicity of the data abstraction. Eof
is defined as a predicate on the representation type, which happens not to require conditionals or

quantifiers.

-9
8.2 Conslstency and Completeness of Abstract Model Specifications

A specification describes the behavior of some abstraction, and it is importamt that it
describe that behavior correctly,. While it is clearly not possible to prove that the specification is
correct, it is possible, by analyzing properties of the specification, to identify problems, or
alternatively to gain confidence in the correctness of the specification. Guttag (6] has done some
work along these lines for algebraic specifications. We discuss below some criteria for abstract
mode) specifications that we have developed for this purpose.

A well formed abstract model specification must satisfy the following requirements:

L. Type Correctness. The definitions of the operations must be consistent
with the interface specifications, and all expressions of previously defined
types must be consistent with the interface specifications of those types.

2. Representation consistency.

A. The invariant must be a well formed unary predicate on the
representation type. L
B. The equivalence must be a well formed binary predicate on the
representation type, and it must define an equivalence relation (it must be
reflexive, symmetric, and transitive).

3. Totality. Every operation mentioned in the interface specification must
be uniquely defined for all elements of the Tepresentation type satisfying
the invariant refation. '

4. Closure. Every element in the intersection of the range of an operation
with the representation type must satisfy the invariant relation.

5. Congruence. Every operation must be consistent with the representation
cquivalence, which means that equivalent inputs must result in equivalent
outputs.

Some of these requirements are easier to check than others. The bulk of the type correctness check

can be performed by a fairly simple algorithm, such as the one used by the CLU compiler.

(Showing that no error values are produced, except for those described In the interface

-9% -

specifications, may require some program amalysis) At the other extreme, deciding whether a
recursive function is total is undecidable in the general cuse, aithough there are well known
techniques for proving termination, which apply to most programs that are desighed to terminate
[25}. A moderately powerful theorem proving facility is needed to demonstrate that all the
requirements are met, comparable to the faclity required for verifying that programs meet their

specifications.

REFERENCES

1]

{2]

(33

(4]

5]

{6}

(8]

(8]

{o]

a1

02)

0s)

i1

Atkinson, R. R. Optimization Techniques for a Structured Programming Language. S.M.
Thesis, Dept. of Electrical Engineering and Computer Science, M. 1. T, Cambridge, Mass.,
June 197%.

Birkhoff, G. and Lipson, J. D. Heterogeneous algebras. fournal of Combinatorial Theory 8
(1970), 115-133.

Dahl, O. J, Myhrhaug, B., and Nygaard, K. The SIMULA 67 Common Base Language.
Publication $-22, Norweglan Computing Center, Oslo, 1970.

Dahl, O.], and Hoare, C. A. R. Hierarchical program structures. Structured Programming
(Dahl, Di jkstra, Hoare, Eds), Academic Press, 1972,

Dennis, . B, and van Homn, E. C. Programming for multiprogrammed computations.
Comm. of the ACM 9, (March 1966), 143-155.

Guttag,]. V. The Specification and Application ta Programming of Abstract Data Types. Ph.
D. Thesis, University of Toronto Report CSRG-53, Toronto, Canada, 1975.

Cuttag, J. V. Abstract data types and the development of data structures. Supplement fo the
Proceedings of the SIGFLAN|SIGMOD Conference on Data: Abstraction, Definition, and
Structure, 1976, 37-46.

Guttag,]. V., Horowitz, E. and Musser, D. R. Abstract Data Types and Software Validation.
Report ISI/RR-78-48, University of Southern California, Los Angeles, Calif., 1976.

Hoare, C. A. R. Proof of correctness of data representations. dcla Informatica 1, 4 (1972),
271-281.

Jones, A K. Protection in Programming Systems. Ph. D. Thesis, Department of Computer
Science, Carnegie-Mellon University, Pitsburg, Pa., 197

Jones, A. K., and Wulf, W. A. Toward the design of a secure system. Software Practice and
Experience 5, 1975, 321-336.

Jones, A. K, and Liskov, B. H. An Access Control Facility for Programming Languages.
Computation Structures Group Memo 137, Laboratory for Computer Science, M. L T. ,
Cambridge, Mass., April 1976.

King,]. C. Symbolic Execution and Program Testing. Report RC 5082, IBM Thomas J.
Watson Research Center, Yorktown Heights, N. Y., October 1973,

Lampson, B. W. Protection. Proc. of tAs Fifth Annual Princeton Conference on Information

s}

08)
(1))

[20]

(23]

[24)

[25]

(25)

§

g

Sciences and Systems, 1971, 437-443.

Liskov, B. H, and Zilles, S. N. Specification techniques for daa abstractions. 1EEE Trans.
on Software Enginesring, SE-1, 1075, T-19.

Liskov, B. H., and Berzins, V. An Appraisal of Program Specifications. Computation
Structures Group Memo 141, Laboratory for Computer Science, M. 1. T, Cambridge, Mass.,
July 1976,

Liskav, B. H, Snyder, A, Atkinson, R. R. and Schaffert, J. C. Abstraction Mechanisms in
CLU. Computation Structures Group Memo 144, Laboratory for Computer Science, M. 1. T,
Cambridge, Mass, October 1976

McCarthy, ., et al. LISP L5 Programmer's Manual. MIT Press, Cambridge, Mass., 1962.

McCarthy,]. A basis for a mathematical theory of computation. Computer Programming
and Formal Systems, (Braffor, Hirchberg, Eds), North Holland Publishing Co.
Amsterdam-London 1963, 33-70. :

Parnas, D. L. A technique for software specification with examples. Comm. of the ACM 13
(1972), 330-8%.

Parnas, D. L., and Handzel, G. More on Specification Techniques for Software Modules.
Fachbereich Informatik Technische Hochschule Darmstadt, 1975.

Robinson, L., Levitt, K., Neumann, P. G. and Saxena, A. R. On attaining reliable software
for a secure operating system. Proc. of the Interntional Conference an Rellable Software, 1975,
267-2, 267-284.

Scheifler, R. W. An Analysis of Inline Substitution for the CLU Programming Language.
Comgputation Structures Group Memo 139, Laboratory for Computer Sclence, M. 1. T,
Cambridge, Mass, June 1976.

Sturgis, H. E. A Postmortem for ¢ Time-Sharing System. Ph. D. Thesis, University of
Californta, Berkeley, Calif,, 19M.

Sites, R. L. Proving That Computer Programs Terminate Cleanly. Report STAN-CS-74-418,
Stanford University, Computer Science Department, Stanfard, Calif., 1974.

Wulf, W. A, Cohen, E, Corwin, W, Jones, A, Levin, R, Pierson, C., and Pollack. R.
HYDRA: The kemnel of a multiprocessing operating system. Comm. of the ACM 17 {June
1974), 387-345.

Wulf, W, Johnsson, R. K, Weinstock, C. B, Hobbs, 5. O., and Geschke, C. M. TAe Design
of an Optimizing Compiler. American Elsevier Publishing Co., New York, 1975.

Wulf, W. A London, R, and Shaw, M. An introduction to the construction and verification

-7-

of Alphard programs. /EEE Trans. on Softmare Engineering SE-2 (December 1976), 253-265.

(28] Zilles, S. Algebraic Specification of Dats Types. Progress Report XI, Laboratory for
Computer Science, M. L T., Cambridge, Mais, 1974, 52-58.

