MASSACHUSETTS INSTITUTE OF TECHNOLDGY

lLaboratory for Computer Science

Computation Structures Group Memo 152

Opening Remarks

(To the IFIP Working Conference on Formal
Description of Programming Concepts)

Jack Dennis

(To be published in the Proceedings of the IFIP Working Con-
fereace on Formal Description of Programmiqg Concepts, held
at Saint Andrews, New Brunswick 31 July - 5 Auguat 1977.)

September 1977



- OPENING RIEMARKS

Jack Dennis
MIT Laboratory Ffor Computer Science
Cambridge, Massachusetts, USA

Welcome to the IFIP Working Ccnférence on Formal Description of Programming
Concepts, Thirteen years have passed since the previous werking conference un
Semantics. 1In 1964 rhe experience with BNF, Algol 60, and ambiguity brought an
over-emphasis on the problems of concrete syntax; this even crept into the chioice
of tiele

Formal Language Description languages

which would challenge the most intrepid parsing program. Francis Duncan, the bhan-
quet szpeaker, pointed ocut how apt this ambiguity was since the working conforence
had hrought together a large number of people who might appear at firsk sight to
have but one thing in common: they all use the word 'language’ to mean souething
diEferent, |

Now our title is certainly not ambiguous :
Formal Description of Programming Concepts

Or is it? At least it can he parsed. However, what is formal description? and

what are programming concepts? and where is the emphasis to be placed? This morn-

ing T hope to convince you it is the programming concepts that are most significant.
Speaking of ambiguous meaning, it appears that our conference logo lias iearly

everyone confused:




-2-

I claim it does illustrate the power of abstraction -~ the ability of a creative
designer to abstract away irrelevant details until what ig left has no meaning
whatsosver! We may restore some meaning by applying a2 few simple transformations.

First we separate the symbols & bit like go:

P ESENI  oQ1p

Perhaps it is batter not to have explained it -- for thers is an admittedly unfop-
tunate bias toward the Scott-Strachey schaol of semantic formalism.
Those of you who have studied the program brochure may have noriced another

interesting problem of semantice, To me there is nothing at all ambiguous about
12:00 a,m,

It certainly meang the twelfth hour of the morning. And any computer scivntist

would grant that these are synonyms :

12:00 a,.m,
noon
0:00 p.m,

But only after sevaral eyeball to eyeball confrontations with my designer did she
consent to my desires (about the program booklet). Nevertheless, T can assure you
that the morning sessions end at noon! : o

We have about 75 participants from eighteen.ccuntries, in contrast to 51 people
from twelve pations in 1964. It is good to see at least eight people herc who were
at the Vienna conference -- We are assured of a lively discussion by the presence of
twe of the most vocal participants in 1964. Welcome Edsger;_we1¢0me Saul.

We are fortunate in having financial support from IEM World Headquartcrs, and
from rhe Xerox Pale Alto Research Center; which makes possible the many ammenities
of the conference, but especially.provides for publishing the informal technical

discussions which made the 1964 proceedings such a fascinating document.



The MIT Laboratory for Computer_Science not only provided the pecple power for
correspondence, printing and financial matters, but contributed a significant sum to
cover the costs of printing the ﬁages and pages of high gquality manuscripts sent in
by our authors.

1 am very much indebted to our Arrangements Chairman, David Oakes, and his
helpers, Brenda Oakes, Jackie Kennedy and.Paddy Couper, for getting things under way
soe smoothly, '

I wish to thank the members of the Program Committee for their invaluable help
in assembling an impressive collectiomn of papers. Those present at the confercace
are: | .
- Jaco de Bakker
Shigeru Igarashi

Claude Pair
Manfred Paul

Andrei Frshov will arrive this evening. The others are:

Hans Bekic

“Michael Hammer

Tony Hoare

Robin Milner
All gave gignificant help in choosing participants and refefeeing contributiens for
the program.

My most important acknowledgement is to Erich Neuheld who instigated this
meeting by reincarnéting Working Group 2.2 and focussing it’'s effort on issues at
the frontier of semantics research: concurrenéy, operating systems, data bases.

As his reward, the Program Conmittee unanimously consented that he be editor of the
oroceedings of this Working Conference -- the best of luck, Erich.

Thirteen years! That's a long time -- almost half of the age of stored pro-
gram computers. Let us look at what has hapﬁend in this interval to sec what we
can learn about the fukbure of our field.

" what were the issues in 19647 The big question was how to go about constructing
a complete, mathematically precise description of a programming langnage. The woti-~
vation was clear to nost partlcipants -- agrecment was needead between language de-
sicener and language implementer, language definer and language user. The solution:
a universal metalanguage. The set of proposed language definition methods was char-
acterized by Peter Landin as in Figure 1. Llandin intended the shading in the boxes
to indicate the extent to which each approach had been expressed with wmathematical

rigor. Note the prominent role played by the lamwhda calculus as a defimitional lan-

guage.



Garwick, Nivat/Nolin, van Wijngaarden

imperative-

concrete

oriented computer-
subger TRANS oriented
//////_ﬂ- language
TRANS

concrete

INTERP expressions

McCar thy

- abstract
E\mjm; “:P§§ *1 objects

(vie abstract ALGOL)

U

A-caleculus

Landin with
: imperatives

NN [ NN abEE?;?t“j
TRANS . >+ M INTER P abiects
NN\ NSES Plect

(via abstract ALGOL)

e

Strachex
P\EE abstract .
INTERP : objects

(via M-calculus)

i

Bohm ' Aecaleulus

TRANS

expressions
NS ;

. Figure 1.



5.

Of this, what has survived? Certainly the McCarthy/Landin idea of abstracting
away from concrete syntax to confront the semantic aspects of languages directly.
Also, the concept of split;ing a definition into tramslation into a simpler language
and execution by a formal interpreter., And McCarthy's state vector approach evolved
into the Vieunna. Definitjon Language {VHL) and other operatiomal definition schewmes.

In our present wisdom, most of the work reported im 1964 looks rather primitive.

Indeed, one of our authors gives a rare acknowledgement with the sentence:

Some early attempts to devise formal specification methods are

presented in [Formal Language Description Languages].

Nevertheless, the ideas discussed at Vienma have had an extraordinary evolution
since that time. But the maln objective of the earlier working conferencc has not
vet been achieved: Thirteen yeara later there is still no practical programming
language in wide use that is officially defined using one of ocur formal definition
methods., I grant that there have been some close calls: For a time the VDL
description of PL/1 was to be the afficial definition ¢f the language., Yet no
soener had the final polish been applied to the VDL tour de forece -- puft! -- the
language changed! It seems that PLf1l is such a complex language that thc only

~ feasible reference for its semantics is:

"a machine language version of a compiler ... together with
a citation of the explicit machine[s] on which the compiler

fand the object programs are] expected ko function'

This quote is Tom Steel's characterization of the only feasible complete definition
method in 1964 -- a method which gives little solace to the programmer who expects
a high level language to engure program portability, or to the compiler writer at-
tempting to duplicate PL/]1 semantics on a new machine. :
I suspect the project clasest to producing a formal definition accepted as an
official language definition is the description of Jovial (J3) written in the meta-
programming language Semanol. Yet this definition fits Steel's characterization in
that it consists of a formal translator and a formal interpreter, which rogether
mimic the intended behavior ef & production coppiler and target machine. One can
legitimately inquire whether such a definition could satisfy the 196% goals -~
How docs one establish that an implementation of Joviél (J3} is correct? or that
two implementations are congistent? Since program proof techniques are not up Lo
the task, the only rocourse is to a set of test prograws -- which we all know can

locate some errors but not prove their absemce.



s

Of course, there have been new languages, notably Pascal, for which a formal
definition approach was adopted early in the design phase. Nevertheless, the axio-
matic dafinition of Pascal is still less than & complete, unambiguous characteri-
zation of the language. |

If we have failed to achieve the most prominent goal of 1964, what has the
flurry of work in semantics really accomplished? Let's look at the contributions
to the present conference for insight (Figure 2). The rows correspond to the vari-
ous formal approaches, the columms to the goals or motivation of each contribution.
Each author should be able to find him/herself in his/her cell in this picture.

My apologies to Carl MHewitt: he seems to be scattered over so many cells as to defy
my meagér artistic talent,

Obviously much has happened. There is no serious consideration of lambda cal-
culus variants as defining languages. And the McCarthy/Landin concept of abstract
syntax has been accepted, pushing consideration of concrete syntax entirely out of
the semantic picture. The operational, denotational and axiomatic styles of for-
mal specfficatiaﬁ have emerged as essential complementary approaches. And we have
reached a mature understanding of the nature of the mathematical foundations
required to support very general levels of expression in the defined languages.

Yet the most important achievement of semantic theory has been the development
oF formal tools and criteria for a very creative apptohch to cthe design of pro-
gramming languages: methods for ﬁroving functinnal equivalence; meaning-preserving
program transformations; principles for combining parts into wholes. These tools

"have allowed us to enter a new era of rational thinking about language design
gﬁided by sound criteria of goodness: simplicity of proof rules; completeness;
modularity of composition; support for data abstractions.

Thus, the most important contribution of seﬁantics has been to help us discover
what structureg programs should have; what features and properties of programming -

languages are good. Let me express this lesson as a wmotto:

Let us not formalize what exists;

rather, let us discover what should exist.

1f I were to give one suggestion to someome aspiring to make a fundamental contri-
bution in our field it would be this: 1If your study of an issue leads to inardinate
complexity -- stop and think, Why doea the trouble arisec? Is there another vicw

af the world that can yield a eimpler and more elegant picture?



-z 2mf1d

uapwy uBAl :5268BY BITQ aoysag| : Lro9yl as11dwos
pUTAXY
F1| KA1xag Jane] { :
Ieutd wng TruoT IR 1D
. M
1dy
noadt]
LB
jo8no)d
- STATTH - RuliH
191194 asaa0d mm_ o112tV aayved 3p {eua1lvlounaq
uandod 21829331V
gra1nH
THOTAD - e3uTRR0d DFIEWOTXY
ewi [ ®ER
: 2P I3BMSUET UTA
uwoid _ 12893 91301
jl‘l\l e ——
wEMumam £Loauaianzuod UQTIEDEITIBA uo1l}oBiIsqy u2183( aousTBAINDY vogjaeduo)
2IB] afsndur]




-8~

Let me illustrate. We all know that global variables and program modules with
side ¢ffuets reap havﬁc with program correctness;prﬁbfﬁﬁﬁv{_am_éonvihced that we
will Find program structures and language constructs.that will make this problem
disappear: The key is o structure certain programs using modules that accept and

transmit streams of values:

{0192 "] . -]
X X
IQLQZ- .1 - -]

Then the meaning of a module is simply a mapping of input streams into output
Streams -- a2 functional relationship if the module is determingte. And the semantic
cbmposition rule is straightforward and preserves determinacy, Furthermore, one

can provide for expressing nondeterminate programs by introducing a single nondeter-

minate operation on streams -- the merge operation.

. ) T

(o & @
(o @000 - -1

e

merge
2 @ - - -] .

The same open view should be raken when we apply our formal tools to operating
systems and data hase systems, Please, let us not try to construct formal descrip-
tions of current operating systems! They were not rationally designed in the first
place. Operating systems should be regarded as extensions of computer hardware to
provide the programmer with essantial means for expressing large programs involving
data bases and concurrency. Once we learn what should exfst as desirable program
struckures, we may be able to detefmine pPrecigely what capabilities computer hard-
ware, extended by an operating system, should provide for the programmetr. We may
even, for the first time, be able to'rationally face the question "What should a
computer system be?"; for, in egsence, a computer syatem is an operating scheme For
carrying out the intent of programs.

Let me close by borrowing the motto given to the 1964 conference by Professor

Zamenek. Today it will serve as an admonition to the lecturers:

Let all that can be said be said cleariy;

whereaf one cannot speak, thereof one must be silent,

-~ Wittgenstein



