Massachusetts Institute of Technology

Laboratory for Computer Science

Computation Structures Group Memo 157

A Straightforward Denotational Semantics for
Non-Determinate Data Flow Programs

Paui R. Kosinaks

[This paper is to be published in the Proceedings of the 5th Annual Symposium on
Principles of Programming Languages, Sponsored by ACM/SIGAC Y/SIGPLAN.]

This research was supporte¢ by the Compuier Sciences Department of the 1BM Research
Division, the National Science Foundation under gramt DCR75-04060, and the Advanced
Research Projects Agency of the Department of Defense under contracit NOOOL14-75-C-0661.

December 1977

A Straightforward Denotational Semantics

for Non-Determinate Data Flow Programs

Paul R. Kosinski

IBM Thomas J. Watson Research Center
P.O. Box 218, Yorktown Heights, New York 10598
&
Labaratory for Computer Science
Massachusetts lnstitule of Technology

Cambridge, Massachusetts 02139

Keywords

Data Flow Programming
Denotational Semantics

Non-determinacy

Abstract

Data flow programming languages are especially amenable to mathematization of
their semantics in the denotational style of Scott and Strachey. However, many real
world programming problems, such as operating systems and data base inquiry systems,
require a programming language capable of non-determinacy because of the non-
determinate behavior of their physical environment. To date, there has been no satisfac-
tory denotational semantics of programming languages with non-determinacy. This
paper presents a straightforward denotational treatment of non-determinate data flow
“programs as functions irom sets of lagged sequences to sets of tagged sequences. A
simple complete partial order on such sets exists, in which the data flow primitives are

continuous functions, so that any data flow program computes a well defined function.

Introduction

In recent years a new class of programming languages, called data flow languages, has
evolved [1,2). Unlike most programs, the execuiion of data flow programs is poverned solely
by the availability of data, both input and compuoted, rather than by the movement of one or
more absteact locnses of control. (ne of the virtues of data flow programming is that it allows
parallelism to be expressed in a aatural fashion. Furthermore, the parallelism can be guaran-
teed determinate, if desired. The expression of parallelism is one of the early reasons research-
ers were attracted to data flow. However, data flow is now known to have other advanlLages
as well. The two most important are locality of effect and appiicative behavior. Applicative
behavior means that data flow operators can be characterized as mathematical fuactions.
Locality of effect means that the mathematical equations for a data flow program can be
derived simply by conjoining the equations for the various parts of the program in an
“additive” manner. Therefore, data flow languages can be analyzed inathematically almost as
easily as “‘toy” applicative languages (eg. pure LISP} bul arc more powerful in that they

provide parallelism and memeory,

Concucrent with the rise of data flow programming has been the development of mathe-
matical approaches to the semantics of programs. The success of syntax theory in making
precise the syntax of programs led investigators to attempt to describe the semantic behavior
programs with equal precision. There are three main approaches to precise semantics: the
operational, the axiomatic, and lhe_denﬁtational or functional semantics. The operalional
approach, based on the notion of an abstract interpreter, is the most intuitive of the three.
The denotational approach of Scoti and Strachey [3.4] treats the semantic behavior of a
program as 2 function from inpuls to outputs, a well known kind of mathematical object. The
axiomatic approach of Floyd [5] and Hoare [6], views a program as relating (in the mathemaii-

cal sense) the “'before” state of the abstract machine to its “after” state.

In the denotational approach, each primitive operation in the janguage is described by
associating with it a “semantic function™ which it computes. Thus, a sequence of operations
computes the function which is the composition of the component operations’ functions. If the
operations are performed repeatedly, as in a WHILE loop, the composite function is not so
easily determined. Such equations can he solved in certain circumstances by means of the Y,
or fixed-point. operator. Scott’s contribution has been ta show that there exist lattices called
reflexive domains in which the Y operator can always apply 1o give the unique minimal

fixed-point solution of such equations, and that such domains characterize programming

[Non-Determinate DFPL Samaniical -y~

languages reasonably well. This approach can be vsed on applicative languages with relative

ease since such languages are based on the ideas of functions and their composition.

A program is said to be non-determinate if it does not always yield the same output when
given the same input. Non-determinate program behavior is necessary in order to deal with
certaln real worid sitvations. This classic example of this is the airline reservations system.
The last seat on a given flight may be given to different persons, depending on the arrival Lime
of the reservation requests and not merely on the data representing those requests, which is the

same whether or not person A gets the seat.

Non-dsterminate programs are difficull to mathematize in the denotational framework.
This is because one must deal with sets of program states rather than the individual states.
which adequately characterize determinate programs, and it iz difficult to construct a domain
whose elements are such sets. Past attempts [7,8] at constructing domains for non-determinate

programs have been rather unsatisfactory due to their complexity.

Overview of Data Flow Programming Langnages

DFPL, a Data Flow Programming Language [1,9], has the basic mathematical simplicity of
applicative languages without most of their drawbacks. Operators in DFPL functionally
transform their inputs to their outputs without ever affecting the state of the rest of the
program. Since there is no control flow, there is no GOTO; in spile of this, iteration may be
programmed as well as recursion. Most significant though, is the fact that unlike ordinary
applicative languages, programs may exhibii memory behavior, that is, the curreat output may
depend on past inputs as well as the current input. Memaory in DFPL is not primitive but is
programmed like other nonprimitive operators. [Its effects are local like those of other

operators and it does not permeate the semantics of programs.

A DFPL program is a directed graph whose nodes are operators and whose arcs are data
paths. Data in’ DFFL are pure values, either simple like numbers or compound like arrays or
records. An operator “fires” when its required inputs are available on its incoming paths.
After a unspecified amount of time, it sends its outpuls on its cutgoing paths. It is nol

necessary that all inputs be presemt before an operator fires, it depends on the particular

~ operator. Similarly, not all outpots may be produced by a given firing. Many operators fire

only when all their inputs are present, and produce their outputs all at once, they are analo-

gous to subroutines. Some operators produce a time sequence of output values [rom one input

-£- _ | | * [Non-Determinate DF PL Semantics)

value or conversely, they are analogous to corontines. The operators in a DFPL program thus

operate in parallel with one another subject only to the availability of data on the paths.

An operator may either be primitive or defined. An operator is defined as network of
other operators which are connected by data paths such that certain paths are connected an
one end only. These paths are the parameters of the defined operator. A defined operator
operates as if its node were Ireplaccd by the network which defines it and the parameter paths
spliced to the paths which were connected to that node. Recursive operators may be defined.

A defined operator for adding complex numbers is given in the appendix.

There are three classes of operators in DFPL: Simple operators, including the usuai
arithmetic, logical and aggregale operators {eg. construct and select), Stream operators,
including the primitive Switch operators (for conditionals and other data routing) and primitive
Hold operator (for memory and iteration); and Non-determinate operators, including the
primitive Arbiter (for coping with the non-determinate physical world). Simple operators all
have the property that they demand all their inputs to fire, whereupon they produce all their
putpuls. Furthermore, each firing is independent of any past history, that is, the operator is a

function from current input to current outpur.

Stream operators somelimes do not accept/prosduce all their inputs/outputs, or their
current output may depend on past inputs. Thus we can not describe their functional behavior
as simply aslbeft-)re {not producing an ontput is not the same as producing a aull output). But
we can describe their behavior if we view them as functions from streams (sequences over
time) of inputs to streams of outputs. Not all computable functions from sequences to
sequences describe Stream operators however; the function must be causal, that is, the

operator may never retract some output upon receiving further input.

Non-determinate operalors produce any one of a set of output values {according to whim,
or in a real implemenlation, timing considerations) when presented with specified input values.
The primitive Arbiter operator, upon which other Non-determinate operators may be based,
takes as input two or more streams and produces as output a stream which is the result of
merging the input streams in some arbitrary way. Non-determinate operators may be viewed
as relations from sequences Lo sequences, of more profitably, as we shall soon see, as funclions

from setls of sequences to scts of sequences,

Another approach to the denotational semantics of non-determinate data flow programs.

involving partially ordered events instead of sets of sequences (where an event is either the

[Non-Determinate DF PL Semantics) -3

production or consumption of a datum), has been reported by Keller [10]. However, this

report does not provide a complete semantics.

A Brief Mathematical Background

A partially ordered set (poset) is a set with a relation which is reflexive (AL A), transitive
(ACB & B C implies ACC) and antisymmetric (ACB & BLA implies A=B). The relation
may not be total, that is, neither ACB nor BLA may hold. A quasi-ordered set is the same as
a poset without antisymmetry. A chain is a subset of a poset on which the relation is total.
that is, either ACB or BCA. An upper bound of a subset is an element (in the poset, not
necessarily in the subset) which every element of the subset is T to. A least upper bound
{Sup) is an upper bound which is T all other upper bounds. A chain complete poset {cpo) is
one in which each chain has a Sup. Since the empty set is. a trivial chain, its Sup (called 1™
or “'bottom”) must exist in a ¢po and is [all elements of the poset.

A function F on a poset is called isotone (or less precisely, monotone) iff for all X and Y,
XEY implies F(X)CF(Y). A function F on a cpo is chain continuous (henceforth simply
continuous) iff for all chains C in the poset, F(Sup C) = Sup F(C). It may be shown that any
continuous function is also isotone. The theorem which results from all this is: any continuous
function on a cpo has a minimal fixed-point, that is, there exists an X such that F(X)=X and
for all Y such that F(Y)=Y, XCY; Furthermore, X can be found by taking Sup {i, F(1).
F(F(1)), F(F(F(4))), ...} which is a chain because 1L CF(1) by definition, and F is isolone

gince it is continuous.

A Partial Ovder Suitable for Data Flow

Since determinate operators are adequately characterized as functions from sequences to
sequences, the well known partial order on sequences, namely the “prefix” relation is relevaat.
If the infinite sequences are included, the poset characterized by the prefix relation is chain
complete. Ali the determinate operators of DFPL, if viewed as functions from sequences to
sequences, are continuous and therefore isotome in this poset. Therefore, the fixed-point
equations resulting from a determinate data flow program can be solved in the cpo of se-
quences {(where t is the empty sequence)} [11]. In operational terms, an operator is isotone iff
it Is causal, and an aperator is continuous iff it never waits for an infinite sequence of input
data before it starts producing output.

” . [Non-Determinate DF PL Semantics)

Unfortunately, non-determinate oOperators aré best viewed as functions from sets of
sequences Lo sets of sequences. This demands that determinate operators be treated the same
so that the domains and codomains of all operators are compatible. Imposing a partial order
on sets of sequences has been a frustrating task. For example, Milner's ordering [7] is really
nnly a quasi-arder, which means that the Fixed-point equations can only be solved to yield a
congruence class of sets of sequences. For DFPL at least, such congruence classes have the
counter-iniuitive property that one class contains iwo sets which are totally disjoint. This
means that certuin fixed-point equations can be solved only to the point of saying “you either

gel this set or that set, and they have no elements in comman”’!

It is possible lo obtain a straightforward partial order by considering sets of tagged
sequences of data. Each datum in each sequence in the set has associatéd with it Zero or more
tags, each of which identifies the sequence of arbitrary decisions made by a non-determinate
operator which contributed to the existence of thal datum in that sequence. A lag is &
sequence of an Arbiler name followed by numbers which denote the decisions made by that
Arbiter. Sets of tagged sequences are constrained in the following two ways. First, the tag set
of a later datum in a given sequence must be an extension of a tag set of an earlier datum in
that sequence, where a tag set T, is said to extend T, if there is a injection from T, 1o T, such
that each sequence in T, is a prefix of its image. This says that a later datum may never be
the rtesult of fewer non-determinate decisions than an eariier datum. Second, no tagged
sequence in the sci may be a prefix of another in that set (where the prefix demands equalily
of corresponding lag sets as well as data). This says that no sequence is merely an approxima-

tion to anather.

Two sets arc compared by matching each seguence in the first set with a sequence in the
second set such that the first sequence is a prefix of the second sequence. This relation,
denoted “C”, may be shown to be a true partial ordering of sets of tagged sequences, and the

resulting poset is chain complete if infinite sequences and sets are admitted.

To prove that “G” is a partial order on Tagged-sequence-sets, we must prove that it is
reflexive, transitive and antisymmetric. Reflexivity is ohvions: take the identity map as the

injection of Tss, to Tss,. Since any Tagged-sequence is a prefix of itself. we have Tes, € Tss,.

Transitivity is almost as simple. Given an injective map M, from Tss, 10 Tss,, and an
injective map M, from Tss, to Tss,, we know that the composition M,sM, is an injection {rom
Tas, lo Tax,: Then, since the prefix relation is transitive, we know that every element in Tss,

is a prefix of its image (under M,oM,) in Tss;. Thus “g* is Lransitive.

[Non-Determinate DFPL Semantics) -§-

s

Antisymmelry is the most difficult property to prove; it is the property which the alleged
partial orders discussed earlier lack. Let M, be an injection from Tss, to Tss, and M, be an
injection from Tas, to Tss,. We can immediately conclude that Tss, and Tss; have the same
cardinality and that M,>M, is a bijection from Tss, to itself. Each element of Tss, must be a
prefix of its image in Tss, under M,oM,, but due to the constraint on Tagged-sequence-sels,
no element can be a prefix of another. Hence the image must be the element itself so M,oM,
ust be the identity. Now we observe that cach element of Tss, is a prefix of its image in Tss;
under M,, and that elemeat in Tss, is a prefix of its image in Tss, under M,. But the image
under M, is the original element in Tss,, so the element in Tss, is equal o the element in 1's5,
by antisymmetry of the prefix relation. Therefore. Tss, i8 equal to Tss,, and "C” is antisym-

metric. [J

To show that the partial order “C" is (couniable) chain complete, we must show that any
countable chain has a Sup. Let Tss, Tss, G Tss, [... be such a countable chain, and let
M, M, .. be the associated sequence of injective maps which specify the relations (M,: Tss,
~+ Tss;, M,: Tss, » Tss,, ...). Let S be an element of Tssy, then the set {S, My(5),
[M, °My,](5), ..} forms a chain under the prefix order and since sequences are chain
complete, this set has a Sup which we call Ssup. Call the set of all such Sup’s Tss-sup. Since
all the M’s are injective, each element 5 of a Tss belongs to exactly one such chain. For each
Tssy, define Msup,, to map each element S into Ssnp, the Sup of its chain. Then we have that
Msup,: Tss, - Tss-sup is an injective map which establishes that Tss,, C Tss-sup. But N was

arbitrary, 5o Tss-sup is an upper bound for the chain of Tss’s.

If there were another upper bound, call it Tss-ub, for the chain of Tss’s which was strictly
less than Tss-sup, then there would be an element S-ub in Tss-ub which was a sirict prefix of
an element S-sup of Tss-sup, or there wonid be an element in Tss-sup which had no prefix in
Tss-ub. In the first case, S-ub would be an upper bound of some chain, but then S-ub is' a
strict prefix of S-sup, contradicting the fact that S-sup was the Sup of that chain. In the
second case, there would be a chain of elements from the Tss’s which had no Sup in Tss-ub,
hence Tss-ub couid not even be an upper bound. Therefore, we may conclude that Tss-sup is

indeed the Sup of the Tus's. O

it remains to be shown that Tss-sup satisfies the extra conditions on Tagged-sequence-
sets: namely, that no Tagged-sequence is a strict prefix of another, and that within an Tagged-
sequence, the Tag-set on a later item in the Tagged-sequence must extend the Tag-set on an

earlier item. We prove these additional properties by contradiction.

" o e [Non-Determinate DFPL Semantics)

If one Tagged-sequence, Ts,, were a strict prefix of another, Ts,, then all the elements of

the chain of which Tsl was the Sup would be in the chain of Ts,, hence Ts, could not be their
Sup. OO

If the Tag-sct extension praperty were not obeyed, then there would cxist a Tagged-
sequence Ts-sup in Tss-sup such that Tag-set(Ts-sup,) did not extend Tag-set{Ts-sup,), where
§<K. But, since Tss-sup is the Sup of its chain of Tss’s, there would exist some Tss, which
contained a Tagged-sequence Ts a prefix of Ts-sup such that Ts; = Ts-supy and Tsy =

Ts-supy contradicting the Tag-set extension property assumed for the Tss's. £

Thercfore the Tss-sup is a proper Tagged-sequence-set and is the Sup of the Tss's, which

means that the set of Tagged-sequence-sets is a complete poset.

Behavior of Determinate Operators

Any determinate operator, whose functional hehavior on simple data sequences is known,
may be extended to a function on sets of lagged sequences, but aof in the obvious way of
applying lhe operator to all possible tuples of sequences in the Cartesian product of the input
sets and producing an ouput set whose size is that of that Cartesian product. The problem
with this obvions approach is that the operator may be applied to data which could never
coexist during actual execution because they were the result of contradictory decisions of the

same Arhiler.

‘The proper extension is as follows: wexecute" the operator on each tuple of input
sequences in the Cartesian prodoct of the input sets, letling it consume an input datum
whenever it wishes and produce an output datum whenever it wishes. However, while doing
this. join the tag set associated with the input datum with an accumulating tag set (initially the
empty set), where joining two tag sets is done by taking their union and deleting any lags
which are prefizes of other tags. Furthermore, whenever an output datum is produced, it is
tagged with the current value of the accumulating tag set. The execution of the operator is
stopped, before producing any further ontput, whenever an inconsistent lag set is accumulated.
An inconsistent tag set is one which has two tags with the same Arbiter name but with
contradictory decisions. This rule assures that the operaiot’s function is never applied to inpn
data which could never co-exist because they arose from different decision sequences of some
non-determinate operator. After each tuple is processed in this way. the output sequence is

put into the output set, and prefixes eliminated.

{Non-Determinate DFPL Semantice] -7

Behavior of Nen-daterminate Operators

The only primitive non-determinate operator is the Arbiter which, viewed as # function
from sequences to seta of sequences, produces the set of sl possible ways af merging the input
sequences such that ezch datum is tagged by the unique name of the Arbiter (which just tells
which Arbiter in the program it is) and the sequence of decisions made so far. For example, if
the input sequences (4.5) and {C,D) were merged by the Arbiter named “a™, the output set
would be:

[{Ad'BM'cml'Duﬂml}' (AuO’caOi'BnMO'DaOIOI)'
{Ad'cﬂl'pwll'aﬂlloj' (CGI'AGID'BﬂM’DnINI)'
(cnl'Aelmpnlol’Bnlmu)I {CGI‘DGII'AIUO'BR‘HW} }'

Viewed as a function from sets of tagged sequences to sets ;)f tagged sequences, the
Arbiter is exiended like any determinate operator, except that the accomulating tag set always
has a generated tag in it which tells the sequence of decisions made so far by the Arbiter (it is
initially just the Arbiter's name), and all possible merges are generated in parallel.

Proof of Continnity

To prove that the extended determinate operators are 'isntone. we first prove a lemma
concerning such exiensions in general. Let F be a function which maps Tagged-sequences x
Tagged-sequences ~ Tagged-sequences, and call its extension F*. Then define F* as follows

{where Tss, is a Tagged-sequence-set, and Tsa, and Tsb, are Tagged-sequences):

F*(Tss, Tss,,...) =
{ F(Tsa,,Tsa,,...) nor-a-prefix-of F(Tsh,,Tsh,,...} |
Tsa,, Tsb,¢ Tss, & Tsa,,Tsb,eTss, & ... }

We now show that if Tss, £ Tsex,, then F*(Tss,,Tss,,...) & F‘(Tésx,.Tssz,...). Pick an
arbitrary Ts€F*(Tss,,Tss,,...), then there exist Ts,eTss, and Ts,<Tss, such that Ts =
F(Ts.Ts,,...). Since Tss, L Tssx,, there exists Téx,eTssxl such that Ts, is a prefix of Tsx,,
which implies that Ts is a prefix of F(Tsx,,Téz,...) since F is isotone. But either
F(Tsx,.Ts,,...) e F*(Tssx,,Tss;,...) or F(Tsx,,Ts,,...) was discarded by the “not-a-prefix-of”” and
there exists TsxeF*(Tssx,,Tss,,...) such that F(Tsx,,Ts,....) is 2 prefix'nf Tsx. Therefore Ts is
a prefix of Tsx, but Ts was arbitrary, so for all TseF'(Tss,,Tss,....} there exists
Tsxe F*(Tssx,,Tss,,...) such that Ts is & prefix of Tsx, and hence (since the sets are prefix-

-§- ' [Non-Determinate DFPL Semantics)

reduced) F*{Tss, Tss,,...) & F*(Tssx,,Tss,,..). O

Now we may prove that such isotone exiensions are also continuous. Let Tssy, be a chain
whose Sup is Tss. Let F be a function on Tagg_ed—seque_noes which i5 continuous and thus
isotone. Consider the sequence of image sets F(Tss), F(Tss,), ... F(Tss); note that this is not
the extension of F as above, just the normal application of a funclion to a set of arguments. If
X_K. X1 - X (where X eTss,) is a chain with Sup X, then F(X,), F(Xg,). ... FIX) is a
chain whose Sup is F(X). But, although F(X,)eF(Tss;), it is not necessarily the case that
F(X)eF*{Tss,). However, if F(X,)eF*(Tss,), then F(XJH)EF‘(TSSJH) because
F(X,)e F*(Tss,) means that for all F(Y,)eF*(Tss;}: F(X,) is not a prefix of F(Y,) and vice
versa, and also that: X, is a prefix of X,,, and Y, is a prefix of Y,,, imply that F(X.)) is a
prefix of F(X,,,) and that F(Y;) is a prefix of F(Y,,). Thus F(X,,,) is not a prefix of
F(Y,,,) nor vice versa, by the properties of the poset of sequences. Therefore, every chain of
F(X,) (an element of F(Tss;)) has a closed-above subchain F(X,,,) (an element of
F‘(Tss,zj')), 50 F*(Tss,). F*(Tsg,), ... F*(Tss) is a chaip and F*(Tss) is ita Sup. 3

The detailed proofs of the isotonicity of the determinate operators on Tagged-sequences
are loo long to be included here. Furthermore, the proof of isotonicity and continuity of the
Arbifer requires a somewhat different approach, since it is not merely an extension of a
determinate operator: in fact, it is a different recorsion schema. The appendix contains the
recursive definition of the Arbiter, and also a representative determinate operator, the
Qutbound Switch (Oswitch}). The other definitions and the complete proofs are presented in
[12].

Results

Since the determinate operators are isotome and continuous in the poset of data se-
quences, they are isotome and continuous in the poset of sets of tagged data sequences.
Similarly, the Arbiter is isotone and continuous in the poset of tagged sequences. Therefore,
any recursive system of equations involving these operators has a unique minimal (first order)
fixed-paint in that poset. This means that any DFPL pregram, with or without iteration
{cycles in the directed graph}, but without recursion, corresponds to a well defined function
from sets of tagged sequences to same, and all such functions are themselves isotone and

comtinuous.

Furthermore, since the set of continuous functions from complete posets to same, is itself

a2 complete poset, and since composition and the first order fixed-point finding functional are

[Non-Determinate DF PL Semantics] : -89-

continuous in this poset, any system of recursive functionsl equations has a unigue minimal
{second order) fixed-point which is a first order continuous function. This means that DFPL
programs with recursive operators correspond to well defined functiona from scts of tagged
sequences 1o same. Hence, ali DFPL programs correspond 1o well definod lunclions.

Conclusions

Data ﬂow programming languages have cleaner mathematical semantics than ordinary
programing languages. This is because they are basically applicative in pature and local in
effect so the functions act solely on the data without states, continuations or other complica-
tions. The tags-anociated with the data sequences do complicate matters of course, but this
complexity ia for the purpose of dealing with non-determinacy, which is not addressed by
states, continuations etc. Furthermore, the tags serve double duty. First, they allow the
construction of a straightforward partial order. Second, they are necessary to the specification
of how operators functionally transform input sets of sequences to output ones. Hence they
are leag onerous than they might seem at first.

It seems reasonable to assume that the approach outlined above, namely the use of tagged
sets of objects, is applicable to the mathematization of the semantics of non-determinate
progtamiy in conventional languages. However, the details remain to be worked out.

References

1. LB. Dennis, “First Version of a Data Flow Procedure Language”. MIT Project MAC,
Computation Structures Group, Memo 93 (1973).

2. P.R. Kosinski, “A Data Flow Programming Language”. IBM Research Report RC-4264
(March 1973).

3. D. Scatt, “Outline of a Mathematical Theory of Computation™. Proceedings of the Fourth
Annual Princeton Conference on Information Sciences and Systems, pp 169-176 {(1970).

4. R.D. Tennent, “The Denotational Semantics of Programming Languages”. Communica-
vions of the ACM, Vol. 19, No. 8 {August 1976) pp 437-6f.

-10- _ . [Non-Determinate DFPL Semantics]

10.

11.

12,

R.W. Floyd, “Assigning Meanings to Programs”. Proceedings of Symposium in Applied
Mathematics, American Mathematical Society, vol. XI1X (1967) pp 19-32.

C.A.R. Hoare, “An Axiomatic Basis for Computer Programming™”. Communications of the
ACM, Vol. 12, No. 10 (October 1969) pp 576-583.

G.D. Plotkin, *A Power-domain Construction”. SIAM Journal on Camputing, Vol. §, No.
3 (September 1976). '

M.B. Smyth, “Power Domains’’. Conference on Mathematical Foundations of Computer
Science, Gdansk, Poland (September 1976).

P.R. Kosinski, “Mathematical Semantics and Data Flow Programming”. ACM Third

Symposium on Principles of Programming Languages (January 1976).

R.M. Keller, “Denotational Models With Indeterminate Operators”. IFIP Working

Conference on Formal Description of Programming Concepts (August 1977).

G. Kahn, “A Preliminary Theory for Parallel Programs™. IRIA Laboratory Report 6
(January 1973).

P.R. Kosinski, “Denotational Semantics of Determinate and Non-Determinate Data Flow

Programs™. PhD Thesis, MIT Laboratory for Computer Science (in preparation).

[Non-Determinate DFPL Semantics] : -11-

[_(—:OMPLE):.—I

LJMUEHPEY

| | X ¥ U =Y ¥V X %V +Y %U
| | |

l COMPLEX

[| _Lz*w

Finure 1

