LABORATORY FOR MASSACHUSETTS
INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

r

~

Data Flow Computer Performance
for the GISS Weather Model

Computation Structures Group Memo 159
March 1978

David R. Nadler

Submitted to the Department of Electrical Engineering and Computer Science at MIT in
partial fulfillment of the requirements for the degree of Bachelor of Science.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense under contract NOO014-75-C-0661.

J

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSEFTS 02139



DATA FLOW COMPUTER PERFORMANCE
FOR
THE GISS WEATHER MODEL

by
David Randolph Nadler

Submitted to the department of electrical engineeriﬁg and computer science
on January 20, 1978 in partial fulfiliment of the requirements for the
degree of Bachelor of Science at the Massachusetts Institute of Technology

ABSTRACT

The concepl of data flow program representation and & data flow
computer architecture are described A summary of the Goddard Institute for
Space Studies Global Circulation Model for numerical weather forecasting is
presented. An algorithm for the implementation of the weather model on a data
flow computer is described, and the prablems of pipelining and secondary memory
handling encountered sre analyzed. Finally, specifications for a data flow
computer capable of a hundred-fold speed improvement over the existing weather
program are derived.

THESIS SUPERVISOR: Jack B. Dennis
TITLE: Professor of Computer Science and Engineering



Table of Contents

0 Introduction
1 Data Fiow Compuling
1.1 The Data Flow Concept
1.2 A Data Flow Architecture
1.3 Structure Processing in Data Flow
1.4 Implementation of a Structure Memory
1.5 Performance Analysis of Data Flow Computers
2 The Goddard Institute for Space Studies Globat Circulation Mode
2.1 Introduction to the GISS GCM
2.2 The GISS GCM Equations
2.3 Performance of the Existing Madel
3 Implementation of the GISS GCM on a Data Flow Computer
3.1 A Data Flow Algorithm for the GISS GCM
3.2 Performance Analysis of the Data Flow GCM Program
3.3 Structure Manipulation in a Data Flow Computer
3.4 Structure Memory Requirements
3.5 Pipelining in Data Flow -
3.6 Instruction Cell and Operation Unit Requirements
4 Conclusions and Suggestions for Future Research
5 References

List of Figures

A Sample Data Flow Program
A Data Flow Architecture
Operation of select and append Actors

A
2

3 .

.4 Simple Tree and Linked List Data Vector Representations
5

6

Mustration of the Copy Rule

Structure Memory with Multipie MM and SC Units
2.1 The Sigma Coordinate Scheme

3.1 lMustration of the Data Flow GISS GCM Algorithm
3.2 Point Forecast Computation Map

3.3 Special Surface Computation Map

3.4 Instruction Requirements for Point Forecast

3.5 Additional Instruction Requirements at Surface

3.6 MM Operaticn Casts for Simple Tree and Linked List Methods
3.7 A Pipelineable Data Flow Program

3.8 A Pipelined Data Flow Program

1
1
1
1
i
1

T

10
12
18
20

e 22

22
25
31

. 32

32
35
40

42

45
51

.. B3
.. 54

14
t5
16
19

. 25
. 34

37
38
39
39
42
45



0 ' ) intraduction

A dala flow c;or_nputer is @ major departure from existing computer
architectures thal directly realizes the parallelism inherent in most computations.
It can achieve qnormpus increases in speed over conventional machines by
perfarming many operations concurrently, offering a possible solution to
computations (such as the GISS weather model) which are severely handicapped
by the speed of contemporary computers.

This thesis is an attempt to look at the data flow computer in
perspeclive; to look at the entire machine as applied to a real-life problerﬁ.
Prior to this, no detailed implementation anéiysis of 8 Iar_ge scale program on a
data flow computer has been performed By exﬂidtly taking inlo account the
'p?oposed architecture it is haped that this thesis will illuminate any hereto
undiscovered problems with the architecture as well as provide concrete
performance resuits and demonstrate the feasibility of constructing such a
machine, |

' The concept of data flaw programing' and the architecture proposed
to execute a program expressed in data flow representation are developed in the
first chapter. The second ;:hapter describes the Goddard Institute for Space
Studies Global Weather Model for numerical weather simulation and forecasting.

The third chapter explores problems encountered in trying to implement the



weather model, and derives specificstions for a data flow computer capable of
achieving a hundred-fold speed increase over the existing model implementation.
The implementation analysis includes discussions of the pipelining and structure
nﬁanipulation prablems as well as presentation of an algorithm for simulation of the

GISS model.



1.1 ' The Data Flow Concept

Until recently attempts at high speed computing have stayed within the
realm of simple'sequential prqgramming, with emphasis on Increased speed via
pipeline or veclor processing techniques. In a pipelined processor the execution
of sequential inst'ructions' may be overlapped, but whal speed may be gained is
had ai the expense of very complex logic necessary to insure that instructions
executed c.oncw-rently are independent. Vector or array processors get very hugh
execution rates by applying the same instruction to a vector of data items
concurrently, but few problems are easily expressabl; in terms of such vector or
array operations. Attempts at loosely coupléd multi-processor computer systems
havel tended to show that the cost- of mech.anisms needed to coordinate the
separate processors outweighs the advantage§ to be gained for any mare than a
few processors.

The central concept of data flow is the representation of a program as
a data-driven rather than instruction-driven. Rather than a sequential list of
instructions Qpplied to a set of data, the program is represented as a set of
instructions, mach ;:t which may be performed when all the necessary input data is
available. Because any instructions whose input data are available may be
concurrently executed, extremély high processing retes are theoretically possibie.

A program may be shown as a directed graph, the nodes representing instructions



and the links or arcs paths along which data flows. Data flow instructions are
- referred to as actors, data items as tokens. A link may contain na more than one
token at any time. When all necessary inputs to a data-flow actor sre available
and no tokens are present on any of its output arcs, it is enabled and may be
performed or fire,

Typical actors might perform an arithmetic funqtion, or perform a test
and yield a boolean result (a true or false token). Te¢ handie decisions, special
actors are required in addition to simple arithmetic and comparison tfpea. An
example of such operatilbmj: are the merge and true or faise gating sctors.

A merge actor has two data inputs 'T" and *F”, and a cantrol input. The
r;asuit is taken from the input specified by the l;oolean control token, the token on
the third'input remains available, and in fact neéd not be preQenl for the merge
actor to fire. Thus unlike other actors, a merge may fire when a token is not
present on one of the input arcs.

A true or false (T or F) actor has a data input and a control input. If
the value of the boolean control token malches the gate type the result is taken
from the data input,.otherwise the‘data token is discarded and no output is
praduced.

A constant actor has no inputs, and generates a stream af constant
tokens as fast as they are absorbed by succeeding instructions, subjéct to the

usual restriction that no more than one token may ever be present on its output



arc.

An example data flow program to compute the nth power of a number

is shown in figure 1.1, along with its high level representation:

/#* initialize the arc variables i,j to 1 #/

. for k=], ji=1
/x if finished, yield j as the result «/
if i=n then |

/* else iterate, replacing i with i+1, | with j x input +/
else iter i+l, j x inpul;

iteration control

Figure 1.1 - A Sample Dsta Flow Program

Note that the tokens shown represent initial values. The merge and

gating operators are used to control the iteration. The variables | and j exist only



- 10

a§ tokens on links, the iteration being performed by replacing i with i+1 end j with
j x input. After performing the cnrnputation the program will once again be in the
state illustrated, ready for use. As shown two merge actors are free to absarb
the initial value "True’ control tokens and yield constant ane as a result. Because
only one token may be present on a link at any one time and an actor may not fire
until no tokens are present on any of its output arcs, the camparison operator wil
not fire until the'.input has‘ been received and the merge actor fires, as this will

remove the last token from the output arcs of the comparison actor.
1.2 "~ A Data Flow Computer Architecture

A data flow computer is a computer suitable for executing programs

expressed in a dala flow represeniation. The design of such a computer has been
studied by Dennis et al [6.1. 2). This architecture is an example of a packet
communication architecture, in which each module is a separate unit communicating
by transmission of asynchronous, fixed length data streams referred to as packets
[5] Such a machine is functionally independent of the speedl of any of its
component units, and any unit which causes a botlieneck may be upgraded.

The computer consists of a set of instruction cells, an arbitration

network, a set of gperation units, and a distribution network (figure 1.2). Each

instruction cell contains one operation to be performed and an address (or list of



11

addresses) where the result should be sent, plus a storage register .for each of
the operands. When all of the required operands are present and no tokens are
present on any of the output links, the instruction cell is enabled and may fire, and

an operation packet consisting of the operands, the operstion to be performed,

and the destination address(es) for the resull is presented to the arbitration
network. The arbitration network routes the operation packet to an appropriste
operation unit (for example, a floating-point multiplication unit) which performs the

operation and presents the resuit packet(s) to the distribution network. The

distribution-network forwards the results of the operstion ta the instruction celi(s}

specified in the result packet, to be used as operands of subsaquent instructions.

Operation
‘[ Units

Distribution Instruction Arbitration
Netwark Cells ' Network

Figure 1.2 - A Data Flow Architecture

The machine described provides no mechanism for ensuring that no
tokens are present on any output arc of an instruction cell prior to its firing. This

probiem is easily solved [11] by requiring acknowledge packets to be sent

‘backwards’ along each arc to signal when the destination actors are ready to

receive new data tokens. An actor may fire only when it has received an



12

ackﬁowledge along each of its output arcs. Each time an instruction cell fires, it
'sends an aperation packét (as before} and additionally acknowledge packels to
cells at the other ends of its input arcs. The acknowledge packets are routed
simii.arly to operation packets, through the arbitration network, identity operators,
and finally the distribution network to the destination cells.

The cycle time of a data flow machine is the average ltime delay from
the firing of an instruction cell to the time a subsequént cell receives the result
and may fire. In a machine with the above mechanism, the cycle time remains
constant but tBe minimum time between succesive firings of an instruction cell
doubles, as it may not refire until its operation packet has been processed,

received, and acknowledged (requiring two con;plete cycles).
1.3 Structure Processing in Data Flow

So far, data items have existed only as tokens along data arcé, or
carrespondingly in the proposed architecture, as operands In storage in instruction
cells or packets in transit. In processing large volumes of data, as is the case in

the weather problem, this would require huge numbers of instruction cells just to

buffer all the data. What is needed is a secondary memory or structure memory
syst'em which can be accessed via special actors, and an additional data type

’structure pointer’. In the GISS GCM, all global state variables will be stored in



13

such a secandary memory. -

The simplest fully general siructure representation allowing for
dynamic size change is the binary tree, well known for its use in the programiming
language. ISP [10] A structure is a pair of entries, each either a simple value, a
pointer to another structure, or the nulf structure pointer nil. Operations that may
be performed on a structure are selection of one half of the ‘structure, referred to
as a selecl, and modifying one half of a structure, referred to as an append. The
inputs to these instructions are a structure and a selector which indicates which
halt of the structure is to be selecled or replaced. Append also requires the
replacement value, which in turn may be a simple value, a structure pointer, or nil.
The result of a select operation may be a simple value or a structure pointer, the
result of an append is always a pointer to a new structure. For the purpose of
iltustration define a zero selector to mean the left half of a structure and a one to
indicate the right half.

Extending the definition of a selector from & single bit to an arbitrary

length bit string gives compound selectors, which will simply be defined as the

concatenation of simple select op_erations:
select] <structure>, ab ] = select] select[<structure>,a], b ]

F igurg 1.3 illustrates the operation of select and append:



14

S J
L' | ? - 9

f-LL 4| nil . 9.45 P _j@

2 3 | | T 5

select[S, 010]) = 2
selectfS, 11] = nil
append[S, 00, 3.45] = J

o
5,

o

Figure 1.3 - Operation of select and append Actors

Structures can be created by appending to the null structure pointer
nil. Deletion is accomplished by destroying the last pointer to 8 st_ructure or‘
substructure, either- by dqstroying Q token of type ‘srtructure pointer® in the data
flow program or by replacing a pointer to a substructure with nil in a structure.

A simple linear date array or vector of size 29 can be represented as
a simple tree of depth d-1, requiring d simple . select operations to retrieve an
arbitrary simple value, or as a Iinked list of 29t! structure elements, requiring n
simple select operations to retrieve the nth value. The simple tree method is
suitable for randam access structures, though the cost of waiting for several
selections may be quite high as will be discussed later. The tinked list
répresentation is well suited for sequential access structures, as the next value is

always accessible in a single select. Figure 1.4 illustrates the two



i5

representations:

simple tree linked list
-0 [ 1 9

4 nil

Figure 1.4 - Simple Tree and Linked List Data Vector Representations.

The above description of the secandary memory has assumed that the
number of pointers to a structun_a and its substructure to be indefinite, implying
that the structure and ifs substructures may be shared as in LISP. Unfortunately
this can lead to rather severe problems due to the inherently parallel. nature of
-data flow ﬁrograms.

Suppose two pointers to a struclure 'exist, and in separate and
indefinitely ordered portions of a data flow program a select and an append
operation are attempted. The results are indeterminate, as the order of the two
operations is uncertain, and the select operation may be performed before or
-after modification of the structure. Requiring that a data fiow program be
determinate puls a severe constraint on the ability to modify data structures: No
structure or substructure to which more than one pointer exists may be modified,

It has been proposed by Ackerman and Misunas [1,13] that in & case where more



16

than one pointer exists an attempt to modify a stru€ture should return a modified
copy of the structure and leave the original unchanged, this is referred to as the
copy ruie. Figure 1.5 gives an example of an append operation under the copy

rule:
Given that more than one pointer exists to structure S,

S
1 2 713 4
the operation append[S, 0, nil] yields the structure S

S
1— ? s o |

Figure 1.5 - lllustration of the Copy Rule.

e

in the implementation, the secondary memory must have a mechanism

for recording the number of pointers that exist to {or reference count of) each

structure element. Any actor that might make copies of or delete a structure
pointer; (such as a merge actor with multiple output ércs, or a gating actor that
absorbs tokens) must-inform the structure memory so that the reference count

may be adjusted accordingly. Nole theat in the case of creating copies of the only



17

copy of a structure, the structure memory must acknowledge that the reference
count has been updated before the copies are distributed, lest the structure be
modified while the reference count is still one. An attractive feature of the

reference count scheme is tha ease of implementation of garbage collection, any

structure element whose reference count drops to zerec may be made available

for reuse,

If a series of modifications are to be applied to some substructure, a
logical course of optimization would seem to be to attempt to save selection
aperations by obtaining a painter to this substructure and applying the
modifications to -this substructure pointer, thereby eliminating tﬁa redundant
selections necessary to specify the substructure in each modification operation.
Unfortunately, if the principal structure is lefl intact and a pointer is obtaeined to
the substructure, the reference count of the substructure becomes greater than
one and any attempt to modify the-s_ubstructure using this pointer will cause the
copy rule to be invoked and the principal structure will remain unmodified. Two
courées qu action are possible to achieve the desired modification: use the
redundant ioﬁg selects for each modification eperatior; or dismantie the structure,
modify the desired component substructure, and reassemble the structure. in the
implementation, .d_ismantling, modifying, and reassembling the structure requires
many instruct_iun cycles, while a compound select can be performed within the

secondary memory system in the course of one instruction cycle. For these



18

efficiency reasons the secondary memory shouid support compound selectors.

1.4 ' Implementation of & Structure Memory

in this discussion all secoridary memory will be. a-ssumed te be of a
simple randam access type. Implementation of,é structure memary with rotating
access devices has been studied by Ackerman [1], but is net appropriate for the
amount of secondary storage required in the weather computation. The simple
random access memary unit will be referred to as MM.

The simplest form of structure memlory would consist of a single

operation unit called a structure controller (SC) and a singte MM unit, to which ail -

operation packets dealing with the structure memory would be sent. It is
required to process append and select operatians with compound sslectors,
implement the copying rule, and correctly handle reference counts and garbage
collection. Such a system would be relatively simple to implement and would
function correctly, but would not yield the bandwidth required for effective
realization of parallel processing as required in the weather program o

A more general solution is the use of multiple SC operation units,

muitiple memary units MM, and an interconnection network IN to route requests

‘and replies between the two sets of modules, as illustrated in figure 1.6. The

large address space of the singie MM unit is now partitioned into many pages,



19

each contained in an MM unit and all accessible concurrently to yield the required
bandwidth. Elements of a structure might typically be scattered amongst several
MM units. IN would resemble an MM unit with tljie full address space to sach
structure controller. The structure controller presents a read request to the IN,
the request is passed to the apprapriate MM unit, and after some retrieval delay

the MM unit returns the result to the SC unit through IN.

structure operation packeté structure result packets
from the arbiiliftion network to the distribution network
sC SC sC SC
. :
; ' —ir
- MM - MM MM| MMI

Figure 1.6 - Structure Memory with Multiple MM and SC Units.

As described each structure controller wil remain idle while waiting for
a response to a request passed to IN. A more efticient design for the SC would
allow muitiple transactions to be processed ooncurrently. such a unit has been

* described in detail by Ackerman [1,2] The bandwidth of the structure memory

can be increased by using more complicated SC units (or simply increasing the '

number of units), but the bandwidth of the system is also limited by the number

and speed of MM units used. -



20

The discussion of the GISS GCM will assume that the implementation of
the structure controller operation unit supports compound selectors for both
select and append operations. . When a structure node is accessed, both halves
are available for use in the SC unit. it will be assumed that a single select
operation can return both haives aiong different resuit arcs, as this simplifies
processing of linked lists (this makes it possible to get the next value and s

-pointer to the remainder of the linked list in one operation).
1.5 Perfarmance Analysis of Data Flow Computers

in orde; to assess the performance of a data flow computer, one must
determine the effective bandwidth of each g:béyatm of the machine and pinpeint
the ";r'rost limiting areas or bottlenecks. In a well designed data flow computer all
‘subsystems should be matc};ed, so0 that in all but pathological cases ali components
are operating at or near their maximum bandwidth. The fundamental reason that a
data flow computer can achieve high speed lie_s in its inherently paraliel nature
and not in extremely low cycle time, in fact the cycle time of a data fiow
computer might be quite long when compared to many of today’s conventional
macl';ines.

in analyzing the weather problem, the program size (and hence number

of instruction cells required) will be determined. From analysls of the program



21

structure, the required bandwidth of the structure memory and arithmetic
operation unils necéssary to achieve the desired level of performance will be
determined. By making reasonable assurﬁptions al:;out the speed of each
component the number of each lype of operation unit and structure memory

component will be determined.



22

2.1 Introduction to the GISS GCM

The Goddard Ins-titute for Space Studies fourth order general
circulation madel is a finite difference model of the earth’s atmosphere for
numerical wgather forecasting, similar to the earlier GISS ﬁecund order model and
the UCLA model [3,9,14]. The modell partitions the earth’s atmosphere into a
three dimensional grid, of which each point has state values far the wind vector
W, temperature T, and moisture Q. An additional iwo dimensional grid cantains
state values for the normalized surface pressure I. The Gi§$ GCM grid is
partitioned by letitude (), longitude ()), and sigma'(c) coordinates. The current
implementation uses .a uniform grid (constantldg, A), Ac), with N intervals of
latitude, M intervals of longitude, a.nd K vertical levels. The northern- and
southern- mést grid lines represent the poles.

The forecast compulation is performed using "leaptrog” integration, in
which the next s_tate N is computed from the previous state P and the current
slate C for each state value S. The state cl!ange aS/y is cemputad using only
the current state, with the next state value computed by:

| SNk = SPGk) + 2t/ 5SS K.
for each point i,j,k, where the indices specify longitude, latitude, and sigma

coordinates respectively.



23

in addition to state variable forecasts, the model requires periodic
application of damping computation te minimize instability. Fourier filtering is used
to dampen high frequency oscillations which tend to occur as a result bf
convergence of longitude lines near the poles, and an averaging computation is
applied to compensate for the inherent instability of the leapfrog integratian
scheme. Also, calculation of evaporation, condensation, radiation, and solar heating
terms (E, C, R, Q) are performed infrequently ta minimize compulation time.

There are four principal forecast equﬁtidris that must be evatuated for
each point i,jk on the grid, these are the computations of the change rate (d/g,)
for IIT, NQ, Y, and TIV, where U and V are the tweo components of the wind
vector W and the state variables are expresed as products with lhé surface
pressure II. The Iést principal forecast equstion is for computing d/g¢ Tl at each
sdrface point i,j.

Each forecast equation is alfinite difference approximation to the
cont.inuous field laws which describe the atmosphere. Each of these field laws is
expressed in differential form, and the operations d/d’ and d/dx are
approximated by 4/ Ap 8d a; AN Second order differencing uses the immediate
or second order neighbors on the ¢ and ) axis (i,j). Fourth order differencing
uses fourth order (two grid units away on the ¢ or A axis) neighbors as well as
secand order neighbors. to get a better approximation to the infinitesimal

derivative. In the GISS GCM the second order terms are weighted 8 times as



24

heavily as the fourth order terms, and in no case are the diagonal neizhbérs used.
In the horizontal plane the forecast equations far _IIT,. e, nt, and NV
use foun"th order differencing, using differences in state values one and twa grid
points away along a latitude or longitude line to approximate the infinitesimal
derivative. In the veftical direction each equation depends on the second arder
neighbors, that is the grid points one unit above or below the point i,jk. The
forecast equation for Il depends on the fourth order horizontal neighbors of each
paint in the column i,j. -
The forecast equations for IIT, [0, IV, and MV depend not only on

the state values at the points illustrated, but also on certain derived quantities

computed by the diagnostic equations. These -quantitles, the geopotential @ and

the vertical velocity ¢, are computed using vertical stepwise integration. This
involves taking a boundary value (at the earth’s surface, vertical level K) and
using a relation between the values at the points i,jk and i,jk+1 repeatedly to
compute the vaiues for all K vertical tevels. Furthermore, each of these require a
summation of quantities computed for each of the_ points in. tiﬁe column i,j to
determine the boundary value. -

The forecast computations performed at the poles are treated as a
special case, utilizing -a different coordinate schéme to overcome difficulties
caused by convergence of the longitude lines. This is a relati\_'ﬁly ingignificant

part of the total computation and will be ignored in this thesis,



25

22 | : The GISS GCM Equetions
The ¢ vertical coordinate of some point .i,jk is de’ﬁned as the
dimensionless fraction of the time and location dependent surface prassure minus

the canstant pressure at the top of the model Ptbp' as illustrated in figure 2.1:

- Pijk - Ptog

surface ~ Ptop

Piop

Psurface

Figure 2.1 - The Sigma Coordinate Scheme.

The KM level denotes the surface layer (o = 1) and the 15 level (¢ = 0)

denotes the top of the model. The nermalized surface pressure is defined as:

T =Py ytace - Ptop



26

The fourth order horizantal divergence of a state variable g at the point ijk is:

D, = o [ + (1/3ANMY, 41V, 8,8 05
eosej - - (1’sﬁ"}‘num"nui:131:)(311&*314”)

= (L/28AMKTIU +TIUV

sV B 8 p )

+ (1/28AN(IV, 4TIV, (g, ,.+31-m5

+ (1/3pXMIV,  cosp +TIV, , cosp,, HE, \ ¥E, ;01))
- (IISA.w}(Iqu.,COsvd*H Vu-uc“sﬁ-1’(giju+g'ls-u)
- (1/24Ap)11V ,  cosp sV 0080 1 HE L 48, 400l

+ (1/20890IV, jcosp MUV, con0, Mg, 8, ,.,,)]

The eight coefficients of the sums of g wiil be refered to as the divergence
coefficients. The term D, (1} will refer 1o the value obteined by replacing each
sum of g by 1 in the above equation « is defined as the radius of the earth, and

¢, is the degree of (atitude specified by index j.
The forecast equation for surface pressure is;

K
dii,; = - 4¢ 2 B, ;1)
dt =0



27

The stepwise vér_tical diagnostic equation for the vertical velocity is:

Ty = & yseer ™ ufnu)[dﬂ,jfdt - D”k(l’] ,
subject to the surface level boundary condition:
75K = 0.

The pressure at paint i,j,k is defined as:
Pijk =a, Il + P top'
The term PK,,, is defined as:

+1 *1
F'K”_k = ‘P'ijl:‘ B Pijk-l.‘ )

(et 1P, - P

‘ijlt-l)

where P, jk""’l is simply P, ., raised to the canstant power (x+1).



28

The stepwise verticel diagnostic equation for the geopotential is:

T

Qi-Jh' Pt (Cpf2)(PKum-l - quh,[._T_‘Jl * 4&‘_1_]
me meu
subject to the surface level boundary condition:

K -
'b-ijl( = 'I'S-ij + Z Ti:jk{ M'

k=2 P

- (Cple[ wk(PKum -l]-c. 1[ 1;& -l] ] }
P i3k . 1:}&.

where Cj, and R are constants and @S, is the surface geopotential from a table
of surface characteristics. Before use the geopotential & undergoes an additional
normalization step:

&’

= ‘bijk +Cp9PK”‘k .

ijk

where @ is a constant.



29

The forecast aquation for temperature is:

dnT, =D, (T)- gk 11r¢1n[Tijn+T1jt+1]-éuk_JQ‘1;u+T11&-1)]
dt 2Ae PK PKH“I . PK”'t_l
IL, 0, 1j|:|.dnij

P, dt

+ Ui;‘t {Z(H,HU i-1j -'(n1+ZJ i- 2.1)}

acosy, 3A\ - 12AM

Vi {2mu+1 1.1-1)—m1j+z"ni.1-z,} ]
o 3Ay 1240

+ 1L UQ-RIC )y,

where ((O-R}!cph s 18 the net I.'Ieating term (solar heating minus radistion loss)
from a table computed only periodically.

The forecast equation for moisture is:

MA =~ D50@ - (/21,5

: LTI I L BT 5'1.1u-1(01,11"aux~1)}
d .

* nij(E'C)m: ’

where the term-(E-—C)iu. the difference between the evaporation and

condensation rates, is from a table computed only periodically,



30

The forecast equations for the two components of the wind vector sre:

il%[.’_uu =-D, () - %‘—1{&1“‘U1jk+uijk+l)+&1jt-l(uijt+u'¢jk-1)}
t - Ao

4 .E*_J'_{_Z[‘an""’v1jt+’tRT,+1k([—Ij:lLil-Ii—'11]]
acosp, 34) 13

- _l[ﬁ"ﬂzjk""-i-ZJI:"’I:RT’HI:[E“—EIMJ] }
124\ oy,

+ {F”-l-uijktan.pjja)nvﬁk s and:

t _ Ao .
: 2 » » ’ _ .
+ _H_“_Q____{_[‘l' T 13-1n+‘tRT m[ﬂ, ot | 1]]
acosp, 3A\ _L_Lnﬁ
: 1 L) » - . : _
T e KT (Mg Tl )] )
12A) §

+ (F1j+V”klan¢j/u)ﬂU”k .

where F‘.J. is a friction term used oniy ot the surface level, retrieved from a table
of surface characteristics, and T’ is a normalization of temperaturs determined as

follows:

T.ijk = Ti_ﬂ. - 6PK

ijk *



31

23 Performance of the Existing Madel

The current GISS fourth-order GCM is implemented in Fortran on an
IBM 360/395 with 4 megabytes of memory. The program is configured with Ax=5",
Ap=4°, and Aa=!/g, corresponding to s grid size of N=45, M=72, and K=9. The
time step At -used is 5 minutes. Computation of the solar heating, radiation,
cendensation, and evaporation terms Is perfermed every half houf, and the
application of the filtering and averaging cemputations are performed every two

hours. The program simulates 24' hours (430'time steps) in about 1 hour of
| computer time. Computations are performed principally with 32-bit floating point
quantities.

A conservalive estimate of time spent in the principal forecasting (as
opposed to the periedic calcqlatinn§ mentioned above) is apoqt B0%, implying that
a time step is performed in about:

(.80)}3600sec/24hr simuiation}{24hr simulation/480 time step)

| = § secftime alep.
The remainder of this thesis will ignore the pericdic calculations {except in
determination of -the number of instruction cells required), as analysis of these
calculations shows that they ere similar in form to the principal forecast equations
[3,9,14], and the degree of parallelism and increased speed obtainable is about

tha same.



32

3. A Data Flow Algorithm for the GISS GCM

Anéiysis of the forecast equations of the GISS GCM reveals that,
except for use of ;:he normalized geopotential @’ of fourth order horizontal
néighbors in the wind forecast, the forecast computation for each column hj ig
essentially- indepéndent. In the existing model each time step is performed in two
passes, first the geopotential is computed for each point and then the principal
farecast computations are performed.

For the data flow implementstion, to serially perform the two pass
atgorithm over the entire grid would require a very high bandwidth of the
structure mem.ory to achieve the desired level of performance. Forecast
computalions for each column require retrieval of TI and the state variables I1U,
nv., T, 1Q, end & at each and at all the fourth order neighbors of each paint Iin
tﬁe column,, plus retrieval of the previous values of IIU, MV, II'T, and 1@ for
each point in the column. This translates into about- 30xK structure operations
per column, just for the‘ principal computation (i.e. not including the flrst pass for
computation of the geopotential). Even if the brograrn is optimized so the forecast
computations for successive columns ij at a constant latitude do not perform
redundant fetrieval of _sthle information of peints along the latitude line (four of
the five east west fourth-order neighbors of i,j,k are used in the forecast

computation at i+1,j,k}, tho averall program still retrieves the state information at



33

each point five times during the course of the principal computation and once
during compﬁtation of the geopolential. If the program could be condensed into a
single pass, requiring the.s{ate information ‘at -each poirt 10 be refrieved only once
and performing the geopoten{ial concurrently with the principal forecast, the
bandwidth required of the structure memory would be reduced by almost an order
of magnilude.

By concurrently performing the forecast of alf the calumns along a line
of longitude the north south neighbors of & point are available wfthout redundant
accesses. By stepping sequentially through lines of longitude and optimizing the
program so that state values of points aloné the same latitude as i,j,k are saved
for subsequent forecagt computatiou"\a -at i+i,j,k the number of times a point is
retrieved per timeqtep is reduced to one. State value retrieval and computation
of the geopotential of the column i+2,jk is performed immediately prior to the
forecast computation at i,j,k. By saving the geopotential similarly to the state
values (along latitude j), the need to compute it in & separate pass is el.iminated,
as is the need to store and retrieve it with the structure memory. The quantities
P and PK which are required for the geopotential computation need not be
redundantly computed as in the two pass fnlgorilhm.

Performing N column forecasts concurrently not only reduces the
required structure memory bandwidth, it reduces the required average completion

rate for a column forecast (and hence the required cycle time} by more than a



34

factor of N. Speed is gained via parallelism, at the expense of incressing the
required number af instruction cells. .

Figure 3.1 illustrates the proposed algorithm:

Computation proceeds in an

(j+2) ¢ East-West direction.
State and normalized geopotential
& values ot o1, i, -1, and i-2
() _ are saved from the previous
-t-c\ computation at longitude i~1.
_ Retrieve values at i+2, compute
(i-2) —~— - normalized geopotential &’ at

N o

Perform the forecast far each point

-2 () (+2) — ik at longitude i, using state
' J variables and derived quantities

of fourth arder neighbors.

Figure 3.1 - lllustration of the Data Flow GISS GCM Algorithm

One further extension to the above algorithm is proposed: the
forecast compulation for all I'; levels of each column i,j will be performed
concurrently. Because the foref:ast computation for a single point involves many
simplé functibns, each with severesl inputs and outputs, and because of Lhe
depéndence of the point forecast computations on vertical neighbors, expressing
thg forecast of a column as an iterati\;a loap thet performs the point forecast from

the surface level to the top of the model requires a very large number of merge



35

and gating operators to route the inputs and outputs_to and from the point
forecast computation. This_ means that, at least for relatively small values of K,
the concurrent eyaiuation of all K levels is actually cheaper (in terms of required
number of instruction cells and execution delay) than the iterative method. Note
that because the stepwise vertical integration used to compﬁta the vertical
vélocity ¢ and the geopotential & starts at the surface level {k=K), the top level

farecast (k=1i) will require more time to complete than the lower levels. -
3.2 Performance Analysis of the Data Flow GCM Program

From analysis of the diagnostic and forecast equations of the GISS
GCM, the computation at a point i,k Has been mapped in detail (figures 3.2, 3.3)
for an arbitrary paint i,j,k and for a surface point i,j,K.

Note that all of the terms involving ¢, and ¢, are now constants, as a
separate data flow subprogram wilt be generated for each line of latitude j and
each vertical level k. Keeping this. in mind, the depth and number of operations
required of each computational block shown in the program map (figures 3.2, 3.3)
have been tabled in figures 3.4 and 35. The longest serial dependency {referred
to as the depth of a computation or Tiotsl in the forecast computations of a
column i,j is the dependence of the wind vector W forecast equation at the top

level of the mode! on the stepwise vertically integrated geopotential- . The



36

tatal depth of this serial chain is on the order of 70 tycles from the start of
processing at column i,j to the forecast of a n;ew wind vectar W.

To obtain the desired hundredfold increase in speed, the data flow
program wiil hava to perform a timestep in 60 msec, for an average forecast
camputation time of 833 usec per Iing of longitude. This would require an
average; cycle time of 12 usec, including the time required to access the structure
memory for retrieval of the required state values. |

in order to study how the program may ‘be further optimized to achieve
the desired level of performance on a more easily realizable machine, the program
will be analyzed in two parts. The forecast equations wili each be modeled as a
series of small sequential functions, where e;fary step of a forecast equation is
interpreted as the application of a fmctlﬁn. The parts of the program performing
the sequential access of the pravious and current state.slructures and then
creating the next state structures will be modeled as the copying of simple linear
data vectors, Qith each vector corresponding to the state values lying elong a line

aof latitude.



37

UM V(h) ' {i+2) Im,,, (%
A ss2gk-(®)
Compute
1 Oivergence Retrieve state values Compute:
Coefficients L'_ OUNVIIT,na PH_Z_“ '
at ijk o at paint i+2jk. {9) seage - (8)
l “1+:j(*} T1+z_1u '
— d : PK'H-zjt-l-l(*,
Compute Divide by IT giving U,V, w2gperl®
D, (D T,Q at i+2jk. (s) @ifj,‘ﬂ(*)
. _ —
I, a ', Compute &,
¢ en® | U,V,T.a(h
dI, /dt(+) &
Compute divergence
Compute ¢ ., of UV,T.Q at ijk Compute &', ., (s)"
VN Y ' It
Do} | e I
aQ,, mh T
IR L), _ (Q-—R),.jlt ‘ Tm
{E-—(’.I)1Jk PK(v) PKm_
L T(vy D'(4«)
dil. . /dt(+)
3."’ : ulr ¥
Compute d[1@/dt Compute dIiT/dt Compute T, AU/, dTTV/dt

. %
Retrieve previous values of
OQIT,UVITV at ijk,
campute next forecast values,

{i) Store forecast values for ijk.

g{v) - Value of g at ijk and vertical neighbors ijk+1, ijk-1.
g(h} - Value of g at ijk and fourth order horizontal neighbors.
g(#) - Value is fram other [evel(s} that are being computed concurrently with
the computation at ijk, and are not available at the start of the computation.

Figure 3.2 - Point Forecast Computation Map



38

Retrieve l'l”

> (all fourth order column neighbors)

s5a(1) —{Compule dit/dt, ;—>(all vertical neighbors)

D
S,
I,
Tu. Compute ﬁmﬁ——i (k = K-1)
P : -
PK,
. é=0 > (k = K-1)

Figure 3.3 - Special

Surface Computation Map



39

Operation Required instructions depth
st x + ¢

Select state values at i+2jk 10 - " - - 1
Divide state values by IT - - - 4 I
Compute divergence coefficients - 12 8 - 3
Compute (1) at ijk - I 7 - 4
Compute ¢ at ijk - - 2 1 3
Calculate divergence of each

state variable at ijk - 36 60 - 6
Compute P, PK at i+2jk - 20 10 10 8
Compute & at ijk - 3 3 - 4
Compute @’ at ijk - H | - 2
Calculate dI1Q/dt - 7 5 - 7
Calculate dIIT - 17 t2 5 8
Calculate T of ijk, ,

dITU fdt, dITV /dt - 27 29 2 8
Retrieve previous values of

nanTnuvIv 4 - - - 1
Forecast MQ,IIT, U,V - 4 4 - 2
Store forecast next values of '

neatrnunyvy 4 - - - 1
Total requirements at ijk: 18 128 141 22 -

Figure 3.4 - Instruction Requirements for Point Forecast.

Operation Required instructions depth
' st x + [/

Retrieve current [ and

$S, F terms 3 - - - i
Compute d[i/dt . - 1 g8 - 5
Compute ':"jK ) - 45 45 27 10
Retrieve previous [T value 1 - - - 1
Forecast next IT value - 1 1. - 2
Store forecast next J1 1 - - - 1
Additional requirements at ijK: 5§ 47 &4 27 -

Figure 3.5~ Additional Instruction Requirements at Surface.



40

33 Structure Manipulation in a Data Flow Computer

First, consider the problem of copying a simple dala vector of size Zd.
represented as a simple tree. Each read operation on the old structure requires
d simple selects (each simple select in turn requiring a singie MM read operation),
for a total of d-29 MM read operations. In creating the new structure, each nade
is written iwice, the first time with one element nil and the second time replacing
this element; thus requiring.a requiring 4.29 MM write operations, Finally, in the
course of creéting the a new structure, the top node of the structure of size 2% is
read 2%-1 times; summing this quantity recursively for each node of a simple
tree of size 29 {depth d) gives a further r'equirernent of (d-l)'éd MM read
operations. The total cost of copying a simple tree structure of size 29 or depth
d is (2d+3)-29 MM operations, or about 2,200 operations for d=7 as in the
weather program. | ' -

Consider copying a finked list, again of size 29 R-éadlng the list
requires only 2_d_ MM operations, but writing the nth element requires n-1 selects
(each a single MM operatian) followed by two write operations (addition of a
pointer to the new node ta the current end of the list and creation of the new
node). Thus the total requirement (or_ copying a linked list element by eiement is
3-29+22d-1 My operations, or about 8,600 ope’rat}ana for d=7.

A cheaper method of copying a linked list (in terms of MM operations



4]

required) involves copying the list twice, each time reversing the order of the list.
This method eliminates the expensive compound selection needed: to append to
the end of a list, appending instead to the top. The {otal cost far performing two
order reversing caopies is two read and two write operations per node, for a total
of 4.29 MM operations, or about-500 oparation§ for d=2.

The -speed advantage of a linked list representation lies in the ability
to retrieve the hext item and the structure pointer to the remainder of the list in
a single MM operation. If the list is being destroyed while being read, reading a
. pode causes its reference count to drop to zero (and it is placed on 'the free list),
but the reference count of the subsequent hqde remains ﬁna, h_ence oﬁly one‘ MM
operation is required per node read. If lhe-list is not to be desiroyo;d, keeping
the reference counts correct requires some additional bookkeeping.. If pointers
exist to the beginning of and the next node n of a list, the reference count of
node n is at least two. Retrieving the contents -of node n will decrease its
reference count end increase the reference count of the subsequent node n+1.
This requires reading of both nodes, updating their reference counts, and rewriting
" them; gi;fing a reguirement of 4 MM operations per node read. The cost of
reading a list of size 29 without destroying it is 4.29 MM operations. The cost of
copying with list reversal and recopying to get the correct ordering is ?c2d, or
about 900 MM operations for d=7. Note that this is (d/3_5} times as efficient as

the simple tree method for large d, and sbout 2.5 times more efficient for d=7.



3.4

32

Structure Memory Requirements

Figure 3.6 details the average number of structure manipulations

required in the forecast of a longitude line and the cost (in MM operations

required) of these manipulations for both linked list and simple tree

representations:

(H

(2)

(3)

(4

(5)°

(6)
{7

(8}

- Operation ' Cost

List Tree
Read (destructively, if convenient) the
previous state values of U, V, T and Q
at each level k. 4. 4d-K
Read {non-destructively) the current state :
values of U, V, T, and @ plus the tabled :
values if Q and (E-C) at each ievel k. 24K 6d-K
Read (destructively, it convenient) the
previous stste value of II, at the surface
level only. 1 d.
Read (non-destructively) the current state
value of I and the tabled surface characteristics

$S and F, at the surface level only. 2 3d

Store the forecast values of U, V, T,

and Q at each level k. 4K Ad+3)-K
Store the forecast value of 11, at the - _

the surface level only. : 1 d+3

Recopy (reading destruclively) the forecast

vectors for U, V, T, and @ to get the

correct ordering at each level k {not

applicable to the simple tree method). 8K -
Recopy (reading destructively) the forecast

veclar for I to get the correct ordering

at the surface level only. 2 -

Total MM operation cost equations and numerical results
for the forecast of a longitude line:

Linked List = (40K + 16) = 17,000 ,

Stmple Tree = ( (14d+12):K + 9d + 3) » 47,500

Figure 3.6 - MM operation costs for Simple Tree and Linked List methods.



Note that the linked list version of the program spends sbout 20% of
its time in recopying the forecast lists to get the correct ordering. During this
recopying time, no c_ornputatioh may be performed and thus to achieve the same
ievel of prerformance this version requires a 25% increase in processor throughput
aover the simple tree. version. The simple tree version requires 3 times the
bandwidth of the structure processor over -the linked list version to achieve the
same level of pérformance. - _

To achieve the desired throughput, thé structure memory must be able
‘to perform all of the structure manipulations required for foracast of an entire
longitude line (abbr.eviated as L)} in an ave-raga of B33 usec. Assuming an MM
unit cycte time of 250ns, the number of MM units required to achieve the desired
bandwidth may be computed. For the simple tree representation this number is:

~ no. MM units = (47,500 op/LL)(250ns/op)(1 11./833 usec) ~ 14 units,
with an average MM operation rate-of one operation every 17ns. For .the linked
list methog; |
ne. MM units = (17,000 op/1.1}{250ns/op)(1 1./833 usec) ~ 5 units,
with an average Mﬁ operation rate of one operation every 50ns.
For the current GISS GCM size, the relative cost of using the simple

tree representation is ne_gliéible, and allows much simpler encoding of the

structure handiing portions of the program then the linked list method. The speed



44

requirements placed on the structure memory are such that a singlle SC unit could

handie the required'transaction rate. The difficulties encountered with the

boundary conditions of the globe when using linked lists imply that the simple tree

representation should be used, for example the east west neighbors of the zero
longitude line are at oppasite ends of the list.

The structure memory must contain three complete state variable

grids, the surface characteristic tables for & and F, and the values (Q-R) and (E-
C) for each point of the grid, for a total of; ~

2LM-(14K+5) = 900,000 structure nodes,
or approximately 1 million nodes of secondary memory to be partitioned between

the MM units.



45

35 Pipelining in Data Flow

A serial operation being performed upon a vector of data items and -

‘yielding another vector may be modeied by the computation shown in figure 3.7:

/* Initialize the iteration control variable i tf

for i:=0
/* It not yet finished, perform the ith computation x/
if i<=n
begin
result[i] := £2( f1{ input[i] ));
/% Iterate, replacing i with i+1 #/
iter i+1;
end
. /* Eise (finished) return the vecter 'result’ xf
else resuit;
Uinput® data vector I
— f 4‘—
select input[i]
input[i]
function f1
(i)
iteration control | Lfl(inpul[i])
function {2
|t aneutsiny
append resultfi]
[Cresul” dala vector 1

Figure 3.7 - A Pipelineable Data Flow Program.



46

where the iteration control produces a stream of tokens for i ranging fram O to n.
If the time Ty 1, is defined as:
Teotal = Tselect + T1 * Ti2 * Tappend! »
then time required to perfarm this compulation is
| ' Teomputation =" * Ttotal -

At any time during the computation only one of the four serial operations is being
perfﬁrmed, the other three being idle. |

| The speed may be inn;.reased by a technique called pipelining. This
involves allowing more than one of the serial parts of a computation to be
performed concurrentty on successive data |tems, tor example if the f2
computation is being performed on the ith item the fl computation would be
operating on the i+1th item and the selection in progress would be of the i+2th
input. Each cﬁmputation or serial subprogram behaves like a single data tlow_
actor, and obeys the same firing rules: it may fire when all requisite inputs are
available and no tokens are present on any of its oufput arce. The time required
to process a single data item inpul[i] remains the same, but the time for the tatal
computation becomes |

Teomputation = (M=11Tpay + Ttﬁtal '

where Tmax is defined as;

Tenax = maximum{Tegipets Tf1s T2 Tappend) » O



47

Teomputation = M Trax -
Thus even though the delay for the processing of one data item remains constant,

the average lime required for this computation is approximately T A

max-
throughput increase of a factor of about (TtotaIITmax) can be achieved by
increasing only the bandwidth of a data flow processor, requiring neither increased
cycle time nor a substantial increase in the number of inst.ruction cells.

As illustrated in figwe 3.7, to obey the firing rule the iteration unit
may not produce the i+1th token until the append actor has fired and removed the
last token from its output arcs. This implies that the selection of the i+l item
will not be perfbrmed until the last of the serial processing for the i‘th item is
completed, and the computation will not pipeli‘ne.

The situation that prevents a sequential computation from pipelining is
end of the computation (In figure 3.7, the iteration control has output links to both
the select and append actors). The bottleneck is the path leading to the end of
the computation. If this path could carry more than 1 token,. the computation
would pipeline. The solution involves partitioning the critical arc into several
sequential arcs via identity operators ( 1 ), allowing the arc to contain several

tokens without violating the firing rute which prohibits more than one token on an

arc. The number af identity operators limits the number of serial operators that

may be active at one time, refered to as the degree of pipelining. Figure 3.8



48

illustrates a pipelined version of the computation illustrated in figure 3.7:

/* Initialize the iteration controt variable i +/
for i:=0
/% If not yet finished, perform the ith computation ¢/
if i<=n
begin
/# partition the path fram the iteration contrel
il to the append operator +/
je=iy ke=j; li=ky
/* note the use of different indices in the append and select +/
result[l] := f2( f1{ input[i] )%
[+ Iterate, replacing i with i+1 &/
iter i+];
end
[* Else {finished} return the vector 'result’ +/
‘gise result;

{ input da!!a vectorL |

select inputli]
— _ (i)
iteration contral l input[i]

o function f1

Gy 1 f1¢inputfi]

o function 12 .

(k) JL f2( f1inputfi])

o append resultfi)
O '
I}

[result’ data vector |

Figure 3.8 - A Pipelined Data Flow Program.



49

It is significant that this bottleneck condition erises often, and not just
in conjunction with the for - iler construct. If two serial computations share a
common input and an output of each is used in & common third computation, the
degree of pipelining that will be achieved is limited by the depth of the shorter of
the twb computations. Again, the solution lies in partitioning the critical arc; in
this case the output arc of the shorter of the two camputations. In general, if a
dala path splits and rejoins, the camput#tions along the two halves of the split
will pipeline correctly whenlthe depths of the two halves are equal. A totally
pipelined computation is one in which ali paths from the beginning to the end of
the computation have the same depth.

In the data flow machine described earlier Trax ©f @ iotally pipelined
compulation is twice the average cycle time, as thé tiring rule requires sending an
acknowledge to the last step of the computation 'prior to the production of each

result. Because of this the maximum allowable average cycle time is half the

~ required resuit production rate for a totally pipelined computation.

It is possible that a high level language compiler could look for
pipeiir_meable serial depenfiencies with the bottieneck condition described above
and automatically insert identity actors, the number of identities. needed being a
function of the length (depth) of the serial operation. In any case, it is always
possible to explicitly add identities (as’illustrated in figute 3.8) and it‘is beyond

the scape of this thesis to develop such an algorithm. In the remsinder of this



50

thesis the performance analysis of the GISS CGM program will assume that
identities have been inserted so thal the program will pipeline correctiy.

Pipelined caomputations tend to exhibit a property called smoothing,
that is the frequency of use of any particular fesource (i.e. @ floating point
multiplier) tends to be constant, rather than in occuring in bursts during which
other activity diminishes. Because of this property, the computation of required
resources can be performed using average bandwidth rather than using peak
bandwidth as is the case with a non-pipelined computation. This fact will be used

in computation of the remirgd number of operation units that follows.



51

3.6 Instruction Cell and Operation Unit Requirements

Using the operation requiremeﬁts summed in figures 3.4 and 3.5, the
number of operation units required to achieve the desired performance lavel may
be computed. Assuming arithmetic operation unit delay times {typical of a modern
minicomputer [8]) of 2.5 usec, 3.5 usec, and 7 usec for 32-bit floating point
addition, muitiplication, and division operators respeclively these requirements
are: |

No. Add. Units = (2.5 usec/op)(60000 op/I.LX1 1.1./833 usec) = 180 units.

No. Mult. Units = (3.5 usec/op}54000 op/IL)}{1 1../833 usec) = 230 units.

No. Div. Units = (7 usec/op}(10000 op/i.L}(1 1../833 usec) = 85 unils.

To compute the required number of instruction cells, the additional
code for the periodic calculatinns,_iteration control, and pipelining must be
considered. Assuming use of the same basic algorithm structure for the periodic
calculations the additional code requiréd will be of approximately the same size as
that of the central forecast computation. The arithmetic code for the central
forecast requires about 3000 instruction cells (figures 3.4 and 3.5).

The iteration control overhead is on the order of 500 instructions per
column (including the iteration startup clondition handling), or rab.out one sixth of
the number of arithmetic instructions. This control mechanism is composed of
identity operators for storage and shifting for sequential longitude lines of the ITU,

IV, IIT, Ti@ and & values at each level K and of T al the surface level. Also



52

included are gating operators used to discard input tokens to all but the
geopotential computation for the first four lines of longitude processed, as the
forecast computation does not commence until the & and state values for TIU, TV,
ITT, and 11Q are available from ail fourth order neighbars.

Checking the data dependence map of the point forecast computation
for pipeline bottlenecks shows that several instances of a common input at the
beginning and end of a serial path do in fact exist {for example mu, i is used to
compute bath the divergence coefficients and the wind forecast, and the iteration
control causes a bottieneck usl in the example of section 3.5). Inserting identity
operator# to totally pipeline the point forecast computations {(making all paths
from the top to the bottom of the cumputatit;n are of uniform depth) requires

about 600 identity operators per column, or about one fifth of ‘the number of

arithmetic instructions. The required average cycle time is one haif the required

average forecast time per longitude line (.as determined in section 3.2), so the
required average cycle time is (833 usec/2), or ~ 420 usec.

The total number of instruction cells required for the forecast

computalion is equal to N (the number of ques of latitude in the grid) times the

sum of the required arithmetic, iteration control, and pipelining. instructions
required for a column forecast, or about 185,000 instruction cells. The total
number of instruction cells required for the whole program is about twice this

amount, or about 370,000 instruction cells.



23

q Conclusions and Suggestions for Future Research

The achievement of a hundred-fold speed improvement in simulation of
the GISS weather model has been shown to be feasible on a d&ta flow computer
with on the order of half a million instruction cells and several hundred floating
point arithrhetic units, réquiring an average cycle time of about 400 usec. Such a
compu.ter is definitely possible to implement with contemporary technology.

*The pipelining problem has been detailed, and the example given shows
that at least 157 of the total required number of instructions are likely to be
identities. Further research _needs to be performed on detection of pipeline
bottlenecks and placement of identity operators. One suggestion that has arisen
out of the pipeline discussian is that identities be implemented by reﬁlacing the
operand storage registers of the instruction cells with FIFO {first-in, first-out)
queues, thereby decreasing the required number of instruction cells and the
required bandwidth of the arbitration and distribution networks.

Though some research is in progress on the structure lof routing
networks in packet communication architectures [4), how arbitration and
distl‘ibt;lﬁon netwaorks can best be implemented to satisfy the 400 usec average
cycle lime needs to. be carefully investigated, as it is in these networks that the

butk of an instruction cycle elapses.



54

Reterences

. Ackerman, W.B. A_Structure Memory for Data Flow Computers, Technical

Report 186, Laboratory for Computer Science, MIT, August 1977.

. Ackerman, W.B. A Siructure Controlier for Data Flow Computers, Computation

Structures Group Memo 156, Laboratory for Computer Science, MIT,
January 1978. ‘

. Arakawa, A. Design of the UCLA General Circulation Madel, Numerical Simulation

of Weather and Climate Reporl 7, Department of Meteorology,
University of Califarnia, Los Angeles, July 1972

. Boughton, G.A. Routing Networks in Packet Communication Systems, S.M. Thesis

in Preparation, Department of Electrical Engineering and Computer
Science, MIT.

. Dennis, JB. "Packet Communication Aréhitecture", Proceedings of the 1975

Sagamore_Computer Conference on Parallel Compulation, also
Computation Structures Group Memeo 130, Laboratory for Computer
Science, MIT, August 1975. :

. Dennis, J.B, Misunas, D.P., and Leung, CK. A Highly Parallel Processor Using a

Data Flow Machine Langtiage, Computation Structures Group Memo 134,
Laboratory for Computer Science, MIT, January 1977.

. Dennis, J.B. and Weng, K.-S. "Application of 8 Data Flow Cambuter to the

Weather Probiem™, to be published in the Proceedings of the
Symposium on_High Speed Computer and Algorithm Organization, also
Computation Structures Group Memo 147, Laboratory for Computer
Science, MIT, May 1977.

. Digital Equipment Co., PDP 11/70 Processor Handbook, 1976.

. Kalnay-Rivas, E., Bayliss, A, and Storch, J. "Experiments With the Fourth Order

GISS Model of the Global Atmosphere”, to be published in the
Proceedings of the Conference on Simulation of Large-Scale
Almospheric Processes, Hamburg, Germany {1976).




55

10. McCarthy, J. et al LISP 1.5 Programmer’s Manusl, MIT Press 1966,

11. Misunas, D.P. Deadiock Avoidance in a Data Flow Architecture, Computation

Structures Group Memo [186, Laboratory for Computer Science, MIT,
February 1975. -

12. Misunas, D.P. A Computer Architecture for Data Fiow Computation, S.M.
Thesis, MIT, June | 975.

13, Misunas, D.P. "Structure Processing in a Data Flow Computer™, Proceedings of
the 1375 Sagamore Computer Conference on Parallel Computation, also

Computation Structures Group Memo 129, Laboratory for Computer
Science, MIT, August 1975,

14. Somervilie, R. et a} "The GISS Model of the Glabal Atmosphere”, Journal of the
Atmospheric Sciences, Vol. 31 pg 84-117, 1974.

15. Weng, K.-S. Stream-Oriented Computation In Recursive Data Flow Schemas,

Technical Mema 68, Laboratory for Computer Science, MIT, December
1977. ]




