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COMPUTATION STRUCTURES

A. INTRODUCTION

Research in the past year has concentrated on the further study of semantic
foundations of languages and systems and the use of packet communication architeclure
as a basis for computer system design. Work on semantic foundalions includes
investigation of the formal specification and semantics of parallel programming
languages, examination of equivalence problems in database systems, and the
application of Pelri nels to the understanding of comptex systems. The study of
packet communication architeclure involves the design of computer systems which have
such structure, the development of a formal semantics ol memory syslems with packet
communication architecture, and the development of simulation facilities to be used as
tools in the investigation of such struclures. ’

B. THE LOGIC OF SYSTEMS

Petri nets have developed as an important mathematical formalism for describing
those systems in which both concurrency and nondeterminacy play a prominent role.
Unfortunately, the usefulness of these nets has been limited by a lack of analytical
techniques for analyzing general classes of nels.

Fred Furtek has developed an approach thal treats important kinds of nets
which were previously outside the scope of any theory. Although the structure of
these nets is restricted -- somewhat severely, in fact -- it is not yet clear to what
extent, if any, their representationsl power is restricted.

The basic idea underlying the approach is quite nalurel: a system is represented
by a Petri net salislying certain assumptions. these sssumplions permit syslem
behavior o be seperated into two components: information and control. Information
has to do with choices and how choices are resolved. Control is concerned with the
fixed, repetilive aspects of behavior, those aspects independent of choices.

The first step in the analysis is lo extract the control component of behavior. A
standard mathematical technique is used: the construction of a quolient system. This
involves “folding” the original net o produce the control struclure of the system, as
itlustrated in Figure 1. Each state (event) in the conirol structure consists of a set of
states (events) from the original net -- these composite states and events are called
alternative classes. The essential characterislic of the control structure is the absence
of choices (branching on slates}, which means that the control struciure is an evenl
graph, a type of Petri nel having very regular behavior. As with any quotient system,
the control structure loses cerlain features of the original syslem, primarily the ability
to distinguish between alternatives (elements in the same slternative class}).

Figure 2a is a simulation of the Petri net in Figure 1s, and Figure 2b shows the
structure that results when the elements in thal simulation are replaced by their
siternalive classes. This new structure is a simulation of the control struclure in
Figure Ic. Note that different system simulations may correspond to Lhe same control
simulation. For example, the syslem simulalion in Figwe 3 slso corresponds o the
conltrol simuiation in Figure 2b.
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Figure |. Generating the control structure.

Having succeeded in eliminating alt aspects of choice in our quotient systems, we
now wish lo reintroduce Ihose same aspects -- but in a special way. We assume that
the original Petri net is decomposable inlo modes, each mode being » subnet isomarphic
lo the control structure. A covering of modes for the Petri nel in Figure 1a is given in
Figure 4. (it is convenient to identity each mode with & color) The information contenl
of an slement (state or event) in the original Peiri net is now defined as the sel of
modes excluded from that element. The informalion contents for the elements in owr
example are as shown in Figure 5. Note that because slates a and d are excluded
from neither mode, their informalion conlents are both null.

An etement in the original Petri nel is thus identified by specifying two things:
{1) the allernative class to which il belongs and (2) its information content. The
advantage of associating colors with the modes is that we can think of information as
colors assigned lo the "tokens™ on the control struclure.

“Information flow™ can be represented quile vividly by coloring the arcs of a
system simulalion according lo a simple algorithm: sn arc connecting Eilements x; and
x5 i assigned a given color iff the mode associsted with that color is exciuded from
both x; and x5 Figure 6 illustrates the resull when this algorithm is applied to the
system simulalion in Figure 2a. in Figure 6 we nole that colors “appear” and
“disappear” only at occurrences of events. Thus, we define the inlormation gain (loss)
of an event as the information that sppears (disappears} st each occurrence of that
avenl. This yields Lhe following result which is consistent with intuition.

ot
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Figure 2. Corresponding simulations.

information is gained by a system at precisely those points where there is
forward conflict and is lost at precisely lhose points where there is backward conflict.
Furthermore, the information gained or lost in a conflict situation is exactly equivalent
to specifying how the conflict is resolved. For example, in Figure 6, events 1 and 2
are in forward conflict, and it is at these two events that informaltion is gained.
Similarly, we see Lhat Events 5 and 6 are in backward conflict, and it is at these

avents that information is lost.

This forms the essence of the approach for decomposing system behavior into a

control component and an informational
approach will be delermined in large par

component. Of course, lhe value of this

t by the analytical lools it provides. This is

the most atiractive part of the theory because the regular properties associaled with
the control structure together with lhe abilily to lrace information flow provides »
powerlul technique for predicting and describing behavior. This ability is fundamental
te sclving a greal many probiems in the systems area.
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C. DECIDABILITY QUESTIONS FOR PETRI NETS

in order to utilize Pelri nels as an abstract model for concurrent systems, one
must first gain an undersianding of their mathematical properlies. The decidability of
various problems which arise in lhis context is an imporlant aspect ot this question
The fact that these problems siso arise in the context of other malhematical theories
provides further motivalion.

In his Ph.D. disseratation Michel Hack has completed the work described in a
previous report (2] In Lhe dissertalion, he invesligates a number of these decidability
guestions and shows that a number of Pelri net problems are recursively equivatent to
the Reachability Problem for Vector Addition Systems -- whose decidability is still an
open question. These problems inciude the Liveness Problem (e.g. can a given system
reach a deadiocked stale?), the single-place reachability problem (can a given buller
ever be emptied), the persistence problem {can a given lransition ever be disabled by
the firing of another transilion?), and the membership and empliness problems for
cerlain classes of languages genereled by Petri nets.

D. FORMAL SEMANTICS FOR PARALLEL PROGRAMMING LANGUAGES

J. Brock is working on his master's thesis, "Formal Specilication of a Language
with a Monitor Construct.” This research program is divided into three areas:

1. The design of a language, with a monitor construct, in which well-structured
parallel programs may be written

2. The formal specificalion of the syntax and the semantics of this language

3. The derivation of proot methods for praving not only “partial correciness”™ of
programs written in this janguage, bul also for proving behavioral properties,
such as the absence of deadlock and starvation

The monilor construct was developed by Hansen [3] and Hoare [4] for use in
programs performing operating system resource allocation. A monitor consists of local
“own" data, own dala inilialization code, and a sel of monitor procedures. Monitors
have two properlies for synchronizing monitor procedure calls: mutual exclusion of
calling processes and conditional variables. The former allows only one calling process
actively executing wilhin the monitor at any moment. The Iatter, through use of the
statemenls cwail and c.signal, where c is the name of a conditional varisble, ensbles
monitors lo form queues of suspended processes. It c.wail is execuled during »
monitor procedure call, the calling process is suspended and placed on a queus
associated with ¢ I c.signal is executed and the queue associsted with ¢ is non-empty,
a process is dequeued and reaclivaled. The monitor programmer is expected to
structure the monitor by defining on the monitor's own date an invariant, |, which is to
hold whenever no process is aclively executing the monilor, and by associating wilh
each conditional variable ¢ a Boolean predicate C, such that C holds belore each
c.signal statement and, consequently, siter each c.wail slatement.

This language design research has ihree goals. Firsl, the monitor construct is to
be moditied so that menitors may be wrillen lo be complete, efficient representations
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of operating system resources, inslead of schedulers of resources. The Programming
Methodoiogy Group has shown the usefulness of data absiractions in structured
programs and has designed the CLU fanguage in which "clusters™ may be used to
implement both the representation and operations of dala abstraction. Unfortunately,
due to their mutual exclusion praperties, monitors, unlike ¢lusters of CLU, cannot
generally contain the actual prolected resource and the operations on it. For example,
a monitor representalion of a dala base could not allow several read operations to
proceed simuillaneously. There are lwo problems with separating the scheduling on a
resource, by a monitor, from the resource and actual operations: {1) the resource is
inadequalely protected when its user is expecled to use the monitor protecting it. (2)
the correclness of Lthe operations on the prolected data base depends on the
scheduling propertics of the monitor. This complicates the proof of correctness, and
understanding of these operations as these scheduling properlies must be brought
outside of the monitor. : '

The second goal of the language design research is the delineation of operations
for lhe creation, and possibly the assignment of monitors. in [4], monitors are
considered to be global operaling system fixtures; however, in many parallel
programming applicalions, it will be necessary to create monitors. For example, in an
airline reservation system, monitors representing flight records must be created when
needed. The last, and most elusive, goal is the discovery of a modification of the .
monitor construct thal would fessen the possibilities of deadiock and starvation.

E. FORMAL EQUIVALENCE PROBLEMS IN DATABASE SYSTEMS

A user of a dalabase system always has some view of the structure of the data
in the database and knowledge of the operations which can be used to alter the
database. The types of data structures visible to the user and the operations allowed
on these structures delermine the dalabase system’s data model. The database
system may just be a secondary slorage file system in which the user interacts
directly at the storage device level. In this case, a user's view of the database may
consist of a set of files with certain indexing characteristics. The operations are those
appropriate to defining and modifying the files.

in an effort to simplify the user's view of the data, lo allow for portability
across different machines and to allow for easier growth of dalabases, database
systems were designed with greater degrees of physical data independence. The data
models used in data independent systems let the user define the logical structure of
the data and perform operalions without regard to lower level implementation details.
Such data models are called logical dala models. Existing implementations of such data
models present to the user siructures such as trees, lables, or linked lists along with
appropriate operalions.

it is not obvious how to best use a particular dats model for a particular
application. Nor is it clear whether one data model ¢can represent ail information
representable in another data model. This has led to the invesligation of semantic data
models. These are logical data models in which the structures are explicitly meant to
represent cerlain types of objects or concepts which can cccur in the real world. The
operatlions delined on these data structures are meant to represent ways in which the
state of the real world can change.
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Given the variely of data models available, there are seversl reasons for
developing a comparison between the models. Only through an understanding of their
features can a user decide which model, if any, is mosl appropriste for & particular
application. The possibility that different applications might desire to see the "same”
dala lhrough the perspective of different data models requires a definition of what il
means for dalabases founded on ditferent dals models to be equivalent. Finally, »
desire to transiale a datsbase founded on one data model into a database founded on
another data modet alsp requires an underslanding of equivalance belween different
data models. il also musl be determined if such an equivalence can always be defined;
it may be the case that the "expressive power” of data models differs.

Sheldon Borkin has been investigaling the problem of formally describing and
proving the eguivalence of two semantic dala models. The tirst data model being

considered, lhe semantic network dala model, is similar to that presented by Schmid
and Swenson [5] This data model postulates two types ol semantic objects: enlities
such as people and companies, and associalions between entities such as a person
being employed by a company. Both entilies and associations may have characteristics
such as a person’'s age or lhe date a person was hired by a company. The applicable
operations are the insertion and delelion of entities and associations. In a database
using this data model, a one-to-one correspondence is assumed belween objects in the

database and objects in the "real world" about which information is being stored.

The second dala model being considered is an extension of the relational model
af Codd [6] A database in this model is delined as a set of relations siong with 8 set
of constraints. A reiation can be viewed ss a table where each row represents some
true statement about the world being described in the database. A reiation is the set
of all true statements fitting a certain pattern For example, a relation might represent
all statements of the form: "__is an employee and operales the __ machine™ where
the blanks must be filled in with appropriate values. A row in this relation with the
values "John, drill press” would represent the statement: “Jjohn is an employea and
operales the drill press machine.” Constraints specily cerlain conditions which must
always be lrue of the relations in the database. For example, in the relation just
described, it might be required that each dilferenl machine have only one operator.
The operations allowed in lhis dala model are the insertion and detetion of sets of
rows in lhe relations so long as the resulling relations are consisient with tha set of
declared conslraints.

We have developed formal sel theoretic definitions for both of the dats models
-- including both struclures and operators. A dats model is formally defined as sol
of possible databases and 8 sel of operations which map one database into another. A
database has two components: a schema and a sipte. A schema contains the
declarative inlormation defining the structures ailowed in the databsse state. For
example, lhe schema of a relational database defines the relations and the “statement”
which each row in the relation represents, the types of values sllowed in each column
of each relalion and the conslrainis on the reistions. The slale of the relational
database concists of the set ol rows of each relation representing specific ststaments
about the world being represented in the database.

Data model equivalence i defined for databases wilh fixed schemas {i.e.
consideralion is given only to operalions which change the stale) in a two slep
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process. First, @ mapping is defined between the possible schemas of the two data
madels, This mapping defines equivalent schemas for which it is then shown that: ()
there is a one-lo-one mapping between slates in lhe databases {for given schemas)
defining equivalent states, and (ii) for any operation in either data model there must be
an operation in the other data model such thal the two operations map equivalent
stales inlo equivalent states. Note that the mapping defining equivalent schemas need
not be one-to-ocne. If there is a many-to-one mapping, this would mean that there are
several databases in one data model equivalent to a single database in the other dala
model.

To define the required mappings and prove the properties outlined above
requires a formal proot of data model equivalence. This work is currently being done
for the two data modets previously described. The equivalence mappings being
defined will equate several relalional dala model schemas with each semantic network
data model schema. There sre thus several relational "views"” of the information
stored in a single semantic network database.

F. SYSTEMS OF DATA STRUCTURING OPERATIONS

One issue that continues to be of great interest to us is the occurrence of cyclic
structures in the runtime dals struclures of programs in execulion. Previous sludies
have shown that powerful languages can be implemented withoul requiring cyclic
runtime structures. Whether cychic structures are in some sense & necessary
accompaniment to essential imperative constructs of programming languages, or are
essential to the support of database computations is & question that continues to be

. debated wilhin our group. David Isaman has explored the other side of this question,

namely, to show in what sense avoiding the occurrence of cyclic structures can yield
more efficient computer architeciures.

This work on acyclic data structures examines the design of computer memories
capable of directly storing these structures. Primilive memory operations inciude
“select a named substructure of a piven structure™ and "make one structure a named
component of anather.” Two alternate systems of dala structure operations are under
investigation, along with their implications for paraliel processor design.

A Structure Memory (SM} stores direcled graphs, with scalar values allached to
the nodes, and selectors labelling the branches. The graphs are restricted only in that
the branches emanaling from any given node always have distinct seleclors. The SM
representation of the LISP list (1 2 3} is shown in Figure 7.

External communication of a structure value is by means of a pointer, which is
associated by the SM with the ropt node of that structure value. The primitive
operations of the SM include:

Fetch, Assign -- Given (a pointer to) a node n read or write the single
Vscalar value attached to n.

Select - Given a node m and selector s, return a pointer to the node st the
end of that branch leaving m which is labelled with s (Figure 8a).
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Figure 7. Structure memory represeniation of & LISP list.
Delete -- Remove that branch from m which is labelled with 1.
Update -- Add a branch from m to n, and label it with s
First, Next -~ Enumerate the set of selectors of branches leaving m.

Copy -- Create a new node m', with the same scaler value a3 m, and wilh
branches Lo the same olher nodes, labelled with the same
selectors as m (Figure Bb).

One immediate consequence of unrestricled use of the sbove operations in a
parallel processor is the danger of nondelerminacy. For example, if a Felch and an
Assign have as inputs pointers lo the same node, the outcome of one may depend on
whether the other executed firsl. Whenever the relative execulion order of two such
conflicling operalors is not fixed, nondelerminacy erises.

There are two alternate systems in which non-delerminacy is easily eliminated.
In the Structure-as-Value {S-V) system, the wrile-class operalions {Assign, Delele,
Update) sre slways coupled with a Copy. The change is made lo the new node output
by the Copy, that node is available to no other operators until it has been changed, and
once it is available, lhat node represents an unchanging structure value. Figure 9
illustrates an S-V program to perform the concatenation of two list structures.
(Append is the coupling of Update with Copy.) All programs using the S-V system of
operations are determinsle.
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The second allernative is the Structure-as-Stlorage (5-5) system.
Nondeterminacy is conirofled by the combination of & syntactic consiraint on programs
and an execution constraint on Select operalions. The synlactic constrainl, the
Determinacy Candilion, is a local condition on each distribulion group: those operators
taking their pointer inputs from the outpul of a single other operator. Any two
operalors in a distribution group musl be sequenced if either: 1) they polantially
conllict, or 2) bolh are Selecls with potentially equal selector inputs.

—_— = M em
i s
gt I:> -
Select _" I Select
== wen
6 ' 6
Copy
-
6

Figure 8. Primitive structure operalions.

The necessily for the first constraint is evident from the fact that 2l operators
in & distribution group necessarily operale on the same node. Figure 10 illustrates
how the second parl of the Delerminacy Condition helps coordinate parallel processes
accessing a common data struclure (the inputs X and Y are the same as those in Figure
9). This program conlains \wo parallel processes, whose inputs are the oulpuls of
Selects 5| and S3 The sequencer (seq} operstor ensures that §; executes before
Sp, as the Determinacy Condition direcls. The final operators, Sg and Sg, operate on
the same node, and so must always execule in lhe same sequence. A syntaclic
sequencing is unacceptable in the more general case of verichle seleclor inputs: the
processes’ paths may then diverge, so thal no conflict eve: arise  Tn preserve
maximum concurrency, any sequencing of operator sxecutions must L. nsitive to
whether Lheir inputs actuslly point to the same node.
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Figure 9. S-V program to concatenate two list structures.
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Figure 10. An example S-V program.

This sensitivity is provided by the restriction on Select executions, which is buitt
on the reference-counting method of structure storage rectamation: every execulion
of & Select having r output arcs creates r pointers to a node n; this requires that at
loast r more executions with n as input occur before n can be reclsimad. Thus there is
available an execulion reference count, ERC(n), of the number of outstanding pointers
to n Each Select execution is restricted as follows: if n is the node which would be
output, then that execution is blocked (will not occur) so tong as ERC{n) > 0. The effect
of this in the program of Figure 10 is explained next.
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S cannot execute before S|, due lo the sequencer. Since S5 selects the same
node ny as S|, it is further blocked until ERCngy) = O; that is, unlil 53 has executed.
S4. of course, canncl execute before So, so §4 cannol execule belore Sgj.
Furthermore, since S, oulpuls a poinler to the same node ng 8s Sg, it cannot execute
until ERC{ng) = 0; i.e, unlil Sg execules. Sg cannot execute until §4 does, so the
Selecl S¢ can never execule belore the Updale Sg, it they conflict. If S5 and Sg have
differcnt nodes as inpuls, 54 will not be blocked, and the rest of the two processes
will be fully concurrent

This is the alternative Structure-as-Storage system: the original SM operalions,
plus ihe syntactic Delerminacy Condition and the dynamic blocking of Select executions.
This system guarantees that two parsilel processes never conflict al a node they have
reached via idenlical palhs.

Any program writlen to run in the S-V syslem cen be easily rewritten to run
determinately in the $-5 syslem, and the two programs will be equivalent.
Furthermore, the equivalent 5-S program can oflen be oplimized o produce a program
which is capable of exploiting up to twice as much of the mvailable parallelism. Major
contributions of this work include comparative analysis of the lradeoffs between the
two systems in terms of expressive power and efficiency ol execution, the
develapment of schemes lo make the two syslems behave comparably, and the
invesligalion of techniques used in proving the schemes’ correctness.

G. DATA FLOW SEMANTICS

A Data Flow Program is a direcled graph whose nodes are operators and whose
arcs are data palhs {7, 8] Operators in » Data Flow Programming Language (DFPL)
functionally transform {heir inputs to their oulputs withoul affecting the state of the
rest of the program. Since there is no control flow, there is no GOTO; in spite of this,
iterations may be programmed, as weli as recursion. Mosl significant, though, is the
fact that unlike ordinary applicative languages, programs may exhibil memory behavior;
that is, the current outpul may depend on past inpuls as well as the current inpul.
The effects of memory are local like those of other operators, and they do not
permeate the semantics of programs.

Data in DFPL are pure values, either simple numbers or struclures such as
arrays or records. There are no addresses in OFPL, although cerlain operstlors may be
programmed to inlerprel inpul values in a manner reminiscen! of addresses. An
operator “fires™ when ils required inpuls are avatlable on its incoming palhs. After a
vartable amoun! of time, it sends its outputs on its outgoing palhs. H may not be
necessary for all inpuls lo be present belore an operstor fires. Similarty, not all
oulputls may be produced by a given firing. Synchronous operators fire only when all
{heir inputs are present and produce their outpuls all at once, such oparalors are
analogous lo subroutines. Some operators produce a time sequence of output values
from one inpul value and operate in & manner similtsr lo coroutines, The operators in a
DFPL program operate in parailel with one another, subject only lo the availability of
data on the paths.
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An operator may be either primilive or defined. An operator is defined as a
network of other operators which are connecled by data paths such thal certain paths
are connected on one end only. These paths sre the parameters of the defined
operator. A defined operator acls as if its node were replaced by the network which
defines it and the parameter paths spliced to the paths which were connected to that
node. In this manner, recursive operators are defined.

The DFPL developed by Paul Kosinski consists of the five primilive operators
shown in Figure 11. Of these, two are simple in their behavior: the Fork and the
Primitive computational function (Pcf). This latter is really a whole class of operators
including the usual arithmetic, logical and aggregale operators (e.g. construct and
select). These two operalors have the property that they demand all their inpuls and
produce all their outputs each lime they fire. Furthermore, each firing is independent
of any past history, that is, the operator defines & function from current input to
current output. The funclional equations for the Pcl and Fork operators shown in
Figure 11 are thus:

X =F UVW) &Y =F (UVW) for the Pcl F,
X=U&Y=URZ-=Utor the Fork. :

The most complicated operators are the Switch operators, also shown in Figure
11. These operators have the property that although each firing is independent of
previous firings, nat all inpulsf/outpuls are demsnded/produced upon each firing. The
Outbound Switch, for example, demands C and U as inputs for each firing, but only one
of X, Y and Z receives the output value U, determined by the value received on input
C. The Inbound Switch operates conversely, only one of the inputs X, Y and Z is
accepted upoen firing (C is demanded), and its value is always sent out on U.

Since these operators sometimes do not accept/produce inputsfoutpuls, we can
not describe their funclional behavior by such simple equatlions as before {nol
producing an outppt is not the same as producing a null output). Bul we can describe
their behavior if we view them as functions from sequences of inputs to sequences of
outputs. Now the functional equations for both kinds of Switchas are (i -origin indexing
is assumed):

U* = Inswitch (C*X*, 2%} and
X* = Outswitchx (C*,U") &

¥* = OQutswitchy (C*UY) &

Z* = Qutswiltchz (C*,U*) where
Y = Uj if Cj=2 & k=s{igjlC;=2}
Zk = U] if Cj=3 & k=u{i5j|Ci=3}

The noltation «#{izj[C;=q} means the number of limes the value q occurs in the first j
elements of C*.
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Figure 11. DFPL primitive operators.

The most interesling DFPL primitive operator is the one which behaves like a
memory cell, This operator is jusl a holding siation; that is, the output consists of the
input on the previous firing. More precisely, Y= Holdo()(') where Y = Q&Y =X
Vi>l. The Hold operator is interesting becouse it is sufficient to construct any kind of
memory desired, ye! ilsell is purely and simply functional (albeit from input sequences
to oulput sequences). This operalor can also be used to conslruct iterations.

Now the first three operators can be recast as functions from sequences of
inputs to sequences of outputs:

X, = C for the Primitive constont;

X = Fx(U VW) &

Y; = Fy(U;Vi,Wj) Vi for the Pcl F; and

X -Ui&Yi-Ui&Zi-UiViforlheFork.
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-

Figure 12, Structure of a memory cell.

All primitive operators are causal in the sense thal an output cennot be affected
by future inputs, that is, once an outpul is produced, il cannot be changed. More

precisely, it Y* = F(X*) & Y, * = FO*) & Yp* = FOX;Y) & j2i, then hzk.

A fancier memory cell is shown in Figure 12. When a O velue is presented on
the control path C, the current contents are read out on path Y. When a | value i»
presented on C and a data value is presented on the inpul peth X, the cell is updated
to contain that new value, The cell has initial contents Q.

More complicated memories may be programmed by substituting other operators
for the Fork and - operators in Figure 12. For example, by replacing the Fork by a
Deque operator, and the - by an Enque, a queus memory results. To progrem »
random access memory, snother input path, lo carry the “address”, must be sdded, as
waell as replacing the operators.

This approach lo data flow semantics is currently being brosdened to include
synchronization semantics (1o prevent build-up of queues on the data paths) and timing
dependent semantics (to study the indelerminale behavior needed fo deal with the real
world). Also under investigation are the algebraic relationships wilhin and among these
three levels of samantice.
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H. PACKET COMMUNICATION ARCHITECTURE

In continuation of our work on packet communicalion architeclure, we have been
developing formal models for packel communication systems and further investigating
the slruclure of dala processors organized in such a manner. Packel communication
architecture is the slructuring of data processing syslems as colleclions of physical
units thal communicate by sending information packets. Packets are rouled between
seclions of a packet communication system by nelworks of units arranged to sort many
packets concurrently according lo their destinations. In this way, it is possible to
arrange thal syslem unils are heavily used, provided concurrency in the task to be
performed can be exploited.

Previously, we described lhe struclure of three dala flow processors orgsnized
in such a fashion [9, 10, i1] We have also developed the application of this
architectural principle lo the organizalion of large memory systems capable of
simultaneously processing large numbers of concurrenl memory transections [12}

1. Eormal_Semantics for Packet Communicalion Systems

As parl of our research effort in packet communication architeclure, we are
developing methods for formally describing the behavior of systems with such
structure. Two significant benefits to be derived from the formal semantic models are:

8. A flirmer understanding of the behavior of packet systems, and

b. The ability to prove that specific syslem structures and implementations salisfy
desired criteria.

One factor which makes formal specification difficult for packet communication
systems is that information passes through these systems asynchronously. The nation
of tlow of control, which is used as an integral part of conventional program
specificalion lechniques, is not present here. Because of this diffarance, naw
approaches need to be developed

The research eflorts of David Ellis in this field have focused on formally
specifying the behavior ol one particular module, a packet memory system which is
described intormally in [12]. This memory system M (Figure 13) is designed to store
vslues of two types: elementary values and pairs {psirs are essentially LISP CONS-
cells). M communicates wilh a processor P through four ports over which information
in the form of flixed-formal packels passes.

The inpul ports C and S accept from P commands snd values to be stored,
respectively. The output port R passes values retrieved from M on to P. The output
porl U passes unique id's, which correspond to addresses within M. A significant
aspect of the design of the memory system is that the processor P should be able to
access no localions olher than those dencted by unique id’s that have sirsady been
received by P from M (through M's U port); M uses a raference count scheme to
manage the |locations currenlly in use,
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Figure 13. Packet memory system.

In the semantic model currently under development, the behavior of the memory
system is captured by the notion of a history, which is a finite sequence of time-
ordered events. Each event is the Lransmission or reception of a particular information
pecket at one of M's four ports connecling it with P. A formal semantic specification
for the system in the model consisls of three parts:

a A list of the legal types of evenls, which specifies whal kinds of informalion
packels may pass through each of the ports. For instance, only commands and
nol values may be passed along the C line.

b.  An inductively defined validily predicate on histories. This specifias the
condhilions under which it is semanlically meaningful for each kind of jegal avent
to take place. For example, a value may be retrieved from a given location in M
only if it had previousiy been stored there.

€. A way of determining the expected and/or possible outputs of M from a given
history, including & lest lor when twe histories are equivalent in this respect,

: A formal semantic specificalion has been produced for the packet memory
system M, and work is currently under way in proving that certsin realizations of M as
interconneclions of compeonent modules do, in fact, satisfy this specitication (given the
proper assumptions for the behavior of the componenl modules).
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Figure 14. Procedure activation

2. Data Flow Computer Architecture

Work in the area of dala flow compuler archileclure has proceeded in two
direclions this year. First, an examination of data flow represeniations of signal
processing compulalions such as the Fast Fourier Transform has resuited in the
developmenl of a processor particularly suited to applications requiring high ratas of
compulation, but involving relatively small programs [13] The poteniisl performance
of the processor has been analyzed, and means of preventing the occurrence of
deadlock during operation of the processor have been developed.

The other research area involves the study of procedura aclivation on » dala
flow processor. The scheme developed previously. for the handling of procedure
applications resulls in a semanlics which is analogous lo the copy rule of Algol [11]
For each operator in a program, the dala values necessary for execution are stored
with the operaior itsell. Consequently, establishment of 8 procedure’s aclivation
requires nol only creating a unique dats sreas for the activation, but also setting up a
new copy of the code. The problem is furlher complicated by the fact that
computations including distinct activetions (such as those arising from recursive calls) of
a given procedure proceed in parallel.

The various schemes for procedure aclivation exploit techniques for dynamic
renaming of aclors of a program to alffect procedure calls. Gien Miranker has
investigated the implementalion of these techniques Ihrough the addition of distinct
memory relocalion mechanisms to perform the memory mapping function.

There are seversl ways of invoking a procedure in a dela flow language that ere
consislent with the data fiow model. The simplest method is 8 singls argument APPLY
actor, as shown in Figure 14, The effect of APPLY P is intuitive,. When & data velue «
arrives on the input arc, a copy of the data tlow graph for P is made and « is pluced
on the inpul link of procedure P. As each of the k outpuls for this activation ol P is
produced, it is passed from ils oulput link to the corresponding output link of the
APPLY and hence lo a successor node of N To be syntaclically correct, P must have
one inpul link, and k output links. To be semanlically correct, P must be properly
terminating. Briefly, this means that P produces {(aller some finite time) one output
value on each of its output links and then undergoes a finite (possibly 0) number of
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additional actor firings. The struciure of the machine to be used for the following
implementation of single argument/single output APPLY is depicted in Figure 15.

Functional Unit

Functional Unit

Distribution | * Instruction * | Arbitration
. Memory ..

Network . n Celis . Network
LI N LN N ]

Command : Controt
Network Network

Relocation Box

Packet Memory

Figure 15 Structure of a dats flow processor incorporsting procedures.
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The processor of Figure 15 is the basic dste flow protessor described
previously {10], with one addilion: the relocalion box. The operstion of the relocetion
box is quile simple. Upon receipt of o retrieve packet from the memory command

pS b LA

network, requesting lhe retrieval of node a of some program from the Packet Memory:

ar
retrieve

{ et |

to the Packel Memory. When node a is returned by the Packet Memory to the
Memory Control Netwerk, all the names in ils deslination fields are changed to have
suffix o. The relocation box then passes the node back through the Memory Cantrol
Nelwork to the Instruction Memory. 1t is assumed thal with the sole exception of the
relocation box and one special funclional wnil, no other component of the data flow
processor of Figure 15 can distinguish il a node name has » suffix sppended or nat.
Thal is, if the Distribution Network, for example, receives 8 packet with & destlination
a.e, it transmits the packet to destination ae within the Instruction Memory (the dot
separating the name from the suffix is included merely as an sid 1o the reader’'s eyes).
The essential idea is that a complele node naine {i.e. a node name pius an appended
suffix) is treated everywhere but the relocation box and the distinguished tunctionsl
unit as a single entity -- & node designation.

it passes the packel:

3. Fault-Tolerance in Packet Communication Architecture

The modular struciure of a system wilh packet communicalion architecture
permils the incorporation of taull-tolerant structure at the medule level. The highly
parallel nature of the interconnection networks of & packet communication system
supports the existence of mulliple paths belween units of the system snd hence offers
many reconfiguration possibilities in case of component failure. Also, due o the
parailel structure of the nelworks, processor reconfiguration does not significantly
degrade either the error delection or recavery capabilities of the system.

An inilial investigalion of one such scheme for the fauil-tolerant structure of an
elementary data flow processor has yielded promising resulls as io the error detection,
isolation, and recovery capsbilily of such processors {14} Hardware errors are
detected through redundant computation combined with voting. Upon delection ot an
error, the processor can be readily reconfigured Lo bypass any faully componant(s).

1. SIMULATION OF PACKET COMMUNICATION ARCHITECTURES

Two simulstion Iacilities for packet communication systems sre currently under
development. The concurrent development of both 8 microprocessor-based hardware
simulation facility and 8 software simulalor silows the exploitation of the sdvenlages of
sach syslem and provides a novel comparison of the two lechniques.
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Each simulation tacility receives a description of the packet communication
system to be simulated in an Architeclure Description Language (ADL) which has been
developed solely for the purpose of describing packet communication systems. The
ADL supports bolh the struclural description and the behavioral description of a
system. Inlermodulie packet communication is expressed with send and receive
statements. The behavioral language is sn extension of a subset of Pascal. Work in
progress involves the further refinement of these concepts and the formal specification
and documentation of a version of the language. Informal illustrations of the language
are presented in [15] and [13]

The development of the hardware simulation facility was stimulated by the
advent of low cost LS| processors. With such processors, it is economically fessible to
divide a packet communication system into parts and emulate the operation of each
part on a microprocessor. The facility we have designed consists of a number of
microprocessor modules arranged so they may easily communicate through a network
for the simulation of any packel communication system. A host computer transiates
system deseriptions in the ADL into program modules executed by the microprocessors.
The host computer also provides means for debugging and for measuring performance
of the simulated system, o ‘

The software simultation facility is designed to be executed on a conventional
seqguential computer, and currently resides on a POP-11/70. The soilware simulator
also receives as input an ADI. description of s packet communication system and some
program to be executed by that system. The ADL description is used to creale a
processor structure which represents the simulated system. Time is broken into small
discrete intervals, and a simulation proceeds by executing the program simulating the
operation of any unit which is enabled during the current time interval, and then
proceeding to the next interval.
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