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Consistent Semantics for a Data Flow Language

Absiract

Concurrent  programming languages based on variations of the
von Neumann model of computation impose on their users the task of partitioning
programs into synchronized processes and the burden of understanding complex
semantics for process interaction. Data flow languages resemble conventional
applicative languages and, consequently, have a widely understood control structure
and an elegant semantic characterization. Furthermore, in data flow janguagcs
concurrency in not litnited to the simultaneous execution of a few processes but

appears at the lowest level of expression evaluation.

In this paper we will examine the daté flow model of computation and
define ADFL, an Applicative Data Flow Language. Additionally the denotational
and operational semantics of ADFL will be given.and shown to be consistent. The
denotational semantics are given by application of Scott’s fixpoint theory. The
operational semantics are given by a two step process. One step corresponds to the
translation of programs into data flow graphs (schemas), while the other -
corresponds to the execution of the resulting graphs. The result of graph execution

Is derived using Kahn's fixpoint theory of communicating processes.



1. Introduction

Recent attempts to design programming languages for specifying
concurrent computation, and, consequently, recent attempts to semantically
characterize concurrent computation, have been "hardware-driven." Programming
langyages have made the transition from modeling a single serial von Neumann
process and its memory; to modeling several processes sharing a memory; to
modeling several cominunicating processes, each with its own memory, Concur_rent
programming concepts, such as Hoare's [9] communicating sequential processes and
Brinch Mansen’s [4]  distributed  processes, may be forgiven their semantic
complexity, since they introduce abstraction to the very important application area
of real-time systems presently dominated by ad hoc machine language
programming, and sfnce most real-time systems are inherently non-determinate and
time-dependent and  therefore beyond straightforward semantic description.
However, there are many semantically "simple" application areas, such as
mathematical programming, in which any performance benefits that could be
gained using concurrency are overwhelmed by the programming cost of partitioning
taéks among several communicating processes. This partitioning task would be
immense on envisioned computer architectures exploiting the advantages of VLSI
technology by incorporating thousands of very small processing elements.
Consequently, it is imperétive that models of concurrent computation other than
virriations of the von Newmann model be investigated. The data flow model of

computation [6] is one such model.
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A data flow program may be translated into a data flow graph in which
the grain of concurrency appears at the level of elementary program operations
instead of procedures consisting of several program statements. Furthermore, data
flow programming languages are applicative languages, and, consequently, share
with applicative languages elegance of semantic characterization and ease of

program verification.

In this paper we will examine the data flow mode] of computation and
define ADIT, an Applicative Data Flow Language. Additionally, the denotational
and operational semantics of ADFL will be given and shown to be consistent.
Scott’s [11] fixpoint theory will be used to spécify the denotational semantics. In
another paper by the author [5], the operational semantics are given by a two step
process. Once step corresponds to the tranﬁlation of programs into data flow graphs,
while the other corresponds to the execution of the resulting graphs. The result of
graph execution is derived using Kahn's [10] fixpoint theory of communicating

processes.

The denotational and operational semantics of ADFL are not equivalent,
The denotational semantics specify that expression evaluation must terminate to
vield results and that, if expression evaluation terminates, all sub-expression
eviluations terminate. However, in data flow, and many other models of
concurrent cmnputﬁtion, 4 computation may produce results even if some
sub-computations do not terminate. The characterization of such computations
coutributes much to the complexity of the operatiopal semantics of ADFL.

Conscquently, the simpler denotational scmantics are the more useful in tasks such
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as program verification. The proof of consistency assures those using the simpler
semiantics that the two semantic theories agree on all "denotationally" terminating

expression evaluations.
1.1 The Data Flow Model of Computation

The program schema of the data flow mode! of computation is the dara
Jflow graph, a directed graph whose nodes are called operators, Each operator has
labeled input and output ports, and graph links are directed from operator input
ports to operator outpﬁt pérts. Graphs, like operators, have input and output

ports. The unlinked operator ports within a graph are the ports of the graph itself.

The exccution of a data flow graph can be interpreted within Kahn’s [10]
fixpoint theory by viewing the operators as parallel programs and the links as
channels for program (operator) communication. Because graph operators
correspond to elementary program operators, they are exceeding simple parallel
"programs." For most operators, execution consists of a repetition of firings.
Operators are enabled for firing by the presence of input values. In firing, an
operator accepts values at its input ports and produces results at its output ports.
The following program of Kaha's parallel programming language implements the

data flow + operator:
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Process plus(integer in I1, 12; integer out O)
Repeat Begin Integer T ;

Comment : the order of the wait invocations is u'relevant

T = wait{Il) + wait(I2) ;

send T on O ;

End ;

The data flow graph and parse tree represeatation of elementary
expressions are very similar. The graph representing an application of + to two
arguments is formed by linking the output ports of the graphs computing the two
arguments to the input ports of a + operator. The data flow graph for the simple
expression:

X*x + y¥y
is illustrated in Figure 1. Note that the graph input ports are labeled by the free
variables of the expression. If a free variable occurs more than once, a copy
operator (represented in the figure by a solid black dot) is used to distribute the

variable.  The data flow graph implementations of other commonly used

programming concepis will be discussed in Section 3.

There are two prerequisites to the practical use of data flow computation:
(1), - machine which executes data flow graphs; and (2), a programming language
which can be translated into data flow graphs. Preliminary data flow machine
designs have been made by Dennis and Misunas [8] and Arvind and Gostelow [2].
Within these machines, a data flow graph is distributed over a network of
processing elements. These elements operate concurrently, constrained only by the

operational dependencies of the graph. Thus, a very efficient utilization of the



machine’s resources appears possible.

Data  flow programming languages resemble conventional languages
restricted to those features whose ease of translation does not depend on the state
of a computation being a single, easily manipulated entity. Because the "state" of
a data flow graph is distributed for concurrency, gofo's, expressions with side
effects, and multiple assignments to the same variable are difficult to represent.
Since these "features” are generally avoided in structured programming, their

absence from data flow languages is little reason for lament.

The "First Version of a Data Flow Language"” by Dennis [6] was a
rudimentary  ALGOL-like language.  Most data  flow language  are
statement-oriented languages giveﬁ an applicative flavor by imposing the
single-assignmment rule; Programs are syntactically restricted to guarantee that each
variable would be assigned only one value during the program’s execution. The
languages of Weng [13] and Arvind, Gostelow, and Plouffe [3], in addition to
having the expressive power of ALGOL, facilitate the programming of networks of

communicating processes, such as co-routines and operating systerns.
1.2 ADFIL. - An Applicative Data Flow Language

ADFL, Applicative Data Flow Language, is a simplification of VAL, the
Value-oriented  Algorithmic Language being developed by Ackerman and

Dennis [1]. A BNF specification of the syntax of ADFL follows:
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‘exp == id | const | oper(exp) | exp , exp | let idlist = exp in exp end |
if exp then exp else exp end | for idlist = exp do iterbody end

iterbody = exp | iter(exp) | let idlist = exp in iterbody end |
if exp then iterbody else iterbody end

fd == ... programming language identifiers ...

idlisr

il

id{,id]
const = ... programning language constants ...

oper = ... programming language operators ...

The most elementary expressions of ADFL are identifiers and éonstants.
Tuples of expressions are also expressions. One such expression is "x, 5". The
application of an operator to an expression is an expression. Although, the BNF
specification only provides for operator applications in prefix form, such as
"+(x, 5" applications in infix form, such as "x + 5", are considered acceptable
equiv;ﬂenfs (sugarings) and will be used in example ADFL programs. All operators
of ADFL are required to be determinate and therefore characterizable by
mathematical functions. We will not attempt to completely specify the class of
operators and constants. It is assumed that at least the usual arithmetic and

boolean operators and constants are present.

Since ADFL is applicative, it provides for the binding, rather than the
- assignment, of identifiers. Evaluation of the binding expression:

let y,z=x4+56iny*zend
implies the evaluation of "y * 2 with y equal to "x + 5" and z equal to 6. The

result of binding is local: the values of Yy and z outside the binding expression are



unchanged.

ADFL contains & conventional conditiénal express‘ion, but has an unusual

iteration expression. The eviluation of the iteration expression:

for idlist = exp do iterbody end
is 31ccom;;lished by first binding the iteration identifiers, thg elements of idlist, to
the values of exp. Note from the BNF specification - {rerbody, that the
eviluation of the ireration body wil ultimately result in either an expression or the
"application” of a special operator iter to an expression. This application to iter is
actually a tail recursive call of the iteration body with the ite;ation identifiers
bound to the "arguments” of iter. The iteration is terminated when the evaluation
of the iteration body results in an ordinary, non iter, expression. The value of this
expression is returned as the value of the iteration expression. The following
iteration expression computes the factorial of n:

fori,y=n,1do

if i > 1 then iter(i- 1, y * i) else y end
end
In conventional languages execution exceptions, such as divide by zero

errors, are generally handled by program interrupts. This solution is inappropriate
for data flow since there is no control flow to interrupt. In ADFL execution
exceptions are handled by generating special error values. A detailed specification
of the class of error values and the results of operator application to error values is

given in the documentation of VAL [1].
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2. /'t The Denotational Semantics of ADFL

ADFL has a simple denotational characterization, similar to those given
by Scott [11] and by Tennent [12] for other applicative languages. Before
preceding, we bricfly review some of the notations and concepts of fixpoint theory.

Notation: Given a set A4 with partial ordering €, the least upper bound of a subset
£ of 4 is denoted U E, and the /imis, U X[s Xy, ..}y Of an increasing sequence
Ny Eay, Eoof 4is denoted U X;

Definition: A domain is a partially ordered set 4 with a least element, usually
denoted 1, such that every increasing sequence of 4 has a limit.

Definitions: A function F from domain A to domain B is continuous if, for every
increasing scquence X Exy &y FUx)=UFx). Every continuous function F
is also monoronic, that is, x © y implies F{x) € F(y).

Definition and Theorem: Given domains A and B, the product domain A x B,
populated by the elements of the Cartesian product of 4 and B and ordered so
that (xp oy E (xp, p,) if and only if X € xy and y E yy» and the funcrion
domain 4 — B, populated by the continuous functions from A4 to B and ordered so

that Fc G if and only if F{x) € G(x) for all elements x of A, are domains.

Definirion and Theorem:  Given a continuous function F of A — A, the least
fixpoini (solution) to the equation

Flux) =x
exists and it denoted Y(F). Furthermore, letting F"' denote the function formed
by composing F with itself n times:

Y(F) =u FQ)
Let V be the set of all values of ADFL, V* be the set of all tuples of
values, and V¥ be the discrere value domain formed by adjoining to V* a least
element 1. VI is ordered so that, for all elements x and y of VI, x Cy if and

only if L=x or x=y. The four semantic categories of ADFL, constants,
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operators, identifiers, expressions, and iteration bodies, will be denoted, respectively,
Const, Oper, Id, Exp, and Iterbody. The semantic function .9 maps ADFL
constants and operators into their interpretations. The interpretation _9[cons(] of
4constant const as an element of V*. Jloper] is the usual arithmetic or Boolean
function associated with oper, extended to VI by defining applications of Iloper]

to tuples inappropriate in type to map into special error values. For example:

I+, 2y =x+ pif x and p are integer values
D, ¥ =x Ay if x and y are boolean values

A complete specification of _§ will not be given here. However, the denotational
interpretation of operators is required to be sirict in the following sense:
AMoperfix) = L if and only if x = L. Because 1 will correspond to the result of a
non-tenlnina'ring computation, this strictness requirement insures that an application
of oper to an expression terminates if and only if the expression terminates. In

addition, this requirement insures that _ﬂlIoper]] is continuous.

Because ADFL is applicative, its expressions may be denotationally
characterized by a function mapping each environment, association of identifiers

and values, into the tuple of values returned. by expression evaluation within that

environinent. Let U be Id — V, the environments of ADFL. The semantic

function 2 is the expression evaluation function of ADFL. £, a member of
Exp - U — VI, maps (in curried notation) expressions and environments into
tuples of values. In the specification of /', expressions which a translation
algorithin could declare “invalid" are ignored. Such expressions are invalid either

because they contain instances in which an unbound identifier could be evaluated
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or instances in which an operator could be applied to an expression of

inappropriate arity.

The specification of £’ for expressions not involving iteration are trivial,
Evalvation of an identifier yields the value of the idehtifier within the current
environment, evaluation of a constant yiclds _O[consi], and evaluation of an
operator application is accomplished by applying _9loper] to the values of the

argunient expression.

Alidle = pllid]
AlLconsQp = YLconsd]
L Toper(explo = JMoperl(/ Texplo)

For elements x and y of V*, jet x ® ¥ be the concatenation of the tuples x and y,
and let X ® L and L ® y be L. The vilue of a tuple of expression is defined to be
Lif Ol‘l;‘, of the component expressions is J. |
ETexpys expylo = £lexp,Jo ® LTesp,Jo

The updated cnvironment resulting from binding the values of a tuple x to
successive identifiers of a list id/ist in environment p is denoted plidlist/x). Our
denotational specification requir_es the binding expression and the conditional
expression fo be strict. The precedes function = and the condition function —

enforce strictness.
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L=y=
X=y=y,ifx=1

i}

Ahet idlist = expy in exp, endJo =
Alexp,Jo = £lexp Tolidlist/ Slexp To)

L —=x,y=1

frue — x,y = x

false — x,y =y

2 = X, ¥y = ..some error value .., if z ¢ {1, true, false}

A Tif exp| then exp, else exp, endJp =
LlexpTo — Llexp,Jo, £Texp,Jo

Evaluation of the iteration expfession "let idlist = exp in iterbody end"
could be specified by considering fterbody to be a recursive procedure, with name
iter and parameters id/ist. However, for the proof of consistency, it is more
convenient to view the iteration body as returning a tuple with a tag indicating
whether or not iteration is to be continued or terminated. We wish to extend
tuples from their mathematical foundation as functions whose domain is a subset of
the integers to functions with arbitrary domains. Note that environments are such
tuples. The tag of the tuple x returned by the iteration body is appropriately
denoted Xtag: Additionally, this tuple has either I components Xy, X;, ..., denoted
X, or R components XR s Xpas - denoted Xp. A true tag requests continued
iteration with the I components bound to the iteration identifiers, A false tag

requests return of the R components as the result of the jteration expression.

The iteration body evaluation function /_f'I of Iterbody — U — VI is

defined like /. In the definition of / » in imitation of the environment updating
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notation, the tuple x with a true tug and I components Xx; is denoted
Aftag /true][I/x,]). Similarly, the tuple x with a false tag and R components Xg is
denoted A[tag/false][R/xR]

Ailexplo = ATexplo = Altag/false]R// [explo]
Liliter(exp)To = £lexplo = Altag/true)(l/ £ Texp]o]
A'llet idlist = exp in iterbody endJp = |
Alexplo = Sy[Literbodylolidlist// Texplln)
A'{Iif exp then {terbody, else fterbody, endJlo =
Alexpllo — / Titerbody, Je, £ Literbody,Jo
The least fixpoint operator Y is used to specify the iteration performed

during evaluation of an iteration expression:

A'Mfor idlist = exp do iterbody endJo =
YOF ax. x = (f 'I[[m:'r4’)(:»(:’)-]];0[xv'am'sr/x])mg -
F((£Literbodyloidlist/x]) h
(X1 Literbodyllplidlist/x))g ) £ TexpTo

That is, each iteration is an evaluation of the iteration body with the iteration
identifiers bound to some x which yields the tuple Lylliterbodylolidlist/x]. If the
tuple has a true tag, its I components are bound to the iteration identifiers and
iteration is resumed. If the tuple has a false tag, its R components are returned as
the result of the iteration. The iteration identificrs are bound to‘ A Lexpllo on the
first iteration. 1If 1he iteration never terminutes, the iteration expression evaluates
to L. The following easily proven lemma will be used in Seétion 4 to prove the

consistency of the denotational and operational semantics of ADFL.,
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Lemma:  If A'for idlist = exp do iterbody endJlo does not equal L, then there
exists a sequence Pyr - 0, such that for all / between 1 and n-1:

Py = p[fd/lk‘t/rf'[[a\'p]]p]
Py = 0 Lidlist/ (/:'I[[:'tc'rbody]]p,.)l]

: ({'Iﬂ:imrbody]]p,-)tag = true

(F1literbodylo whag = Talse

(£ {LirerbodyTo wr = ALfor idlist = exp do iterbody endJo
3. ()-7]: The Operational Semantics of ADFL

The operational semantics of an ADFL expression is a formal
characterization of the behavior ~of the expressiqn’s data flow graph. The
translation algorithm =7 is the "compiler" of ADFL. It maps expressions into their
data flow graph implementations. The semantic function () maps graphs into
functions representing their input-output behavior. ()=5J, the composition of these

functions, is the operational semantics of ADFL.

In this section emphasis will be j)laced on the operational semantics of
iteration expressions. In Section 4, the consistency of the denotational and
operational semantics of ADFL will be proven using the productions of the BNF
specification of ADFL as the inductive structure, Recall that, in the specification
of the denotational semantics, the least fixpoint operator was used for only one
production, that of the iteration expression. Likewise, in the_ specification of the
translation algorithin, cyclic data flow graphs will be constructed for only one
production, that of the iteration cxpression.  Consequently, the iteration expression

is the difficult and interesting case of the consistency proof, thus justifying our
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emphasis. Readers interested in a more detailed description of the operational

semantics of ADFL may consult previous work of the author [5].

5] maps expressions and [ maps iteration bodies into their data flow
graph implementations. The implementation of an expression or iteration body has
an input port for cach free variable of the expression or iteration body and, if
needed, an input port trigger for enabling constants. An expression graph has an
output port, labeled by an integer, for each value returned by evaluation of exp.
Recall the domain of the tuple Sfirerbody]o. An iteration body graph has an
output port tag for the tag; a set of I output port for results to be re-iterated; and

a set of R output ports for resulis to be returned.

The semantic function (), mapping data flow graphs into their
- operational  characterization is defined using Kahn’s [10] theory of parallel
computation, which we will briefly review.

Definition:  The history of an operator or graph port is the sequence, possibly
infinite, of values received or transmitted at that port during a data flow
computation.

Theorem: Let V® denote the st of histories of data flow values. If V¥ js ordered
so that XL 17if and only if X' is a prefix of ¥, then V¥ is a domain whose least
elenient is the empty history e.

Dcfinition.  The operational semantics of a data flow operator o is given by a
continuous history function ()[o] mapping input history tuples into output history
tuples. For cach input history tuple X, represeating the history of values received
at the input ports of o, the output history tuple (J[0]J(X) represents the history of
values produced at the output ports of o in response to X.



- 15 -

Note: Not all operators may be characterized by history functions. In particular,
only determinate operators which for each input history tuple have only one
possible output history tuple may be characterized thusly. Since only determinate
operators are used to construct graph implementations of ADFL expressions, the
history function characterization is adequate for describing the operational
semantics of ADFL.

The result of graph execution is defined to be the least fixpoint (solution) to a set
of simultancous equations, inferred from the history functions of the graph

operidtors, whose variables represent the histories transmitted through the graph

links.

In the remainder of this section, we will give a recursive definition of
{)7] derived from fixpoint theory, but will omit many details of the deri.vation.
Also, the operational characterization of many ADFL expressions will be justified
more by the actions of their data flow executions than by the structure of their
data flow graph implementations. Readers desiring more detail knowledge of graph

implementations should consult Brock [5], Dennis [6), or Weng [13].

Note that the range and domain of (Do J[exp] differs from the range
and  domain of Lexp]. (Do Jlexp] maps history environments, which are
functions from identifiers to histories, into output history tuples. Viewed

operationally, identifiers of ADFL are bound to histories of values.

The expression graphs, other than those for conditional and iterative
expressions, have simple operational characterizations. Evaluation of an identifier

vields the history to which the identifier is bound.

()= Lid]IP = PLid]
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The data flow graphs "/ const]) and Jlloper(exp)] contain the data flow operators
const and opcr. The operator const his a single input port, labeled trigger;, and
produces ,_QIImnsf]] whenever it receives the input value trigger. Whenever, the
operator oper receives an input tuple x, it produces _J[oper](x).

()= lconsP = (O consd(P[[trigger])

(D=5 Loper(exp)IP = (operl((De T lexplP)

The denotational and operational semantics of ADFL differ in in their
treatment of tuple expressions and binding expressions. The denotational semantics
uscs the strict tuple concatenation operator ® and the strict identifier binding.
The operational semantics uses '1he usual tuple concatenation operator, here

denoted O, and non-strict identifier binding.
()““7[[0.\‘;7,. exp,JP = Ooﬂ[[cxpl]]P o) Oof][[e):pzllP
(Do Tlet idlist = exp, in exp,JP = ()oﬂ[[expz]]P[idlis!/Ooﬂ[[expl]]P]

SJris cvpy then exp, else expy end]), illustrated in Figure 2, contains a
predicate subgraph j7|]:e.rpl]], a then expression subgraph __7[[exp2]], a else
expression subgraph ﬂ[[c’xpu,‘]], and sevefal gates. Each input value of the then
expression must pass through a T gate and each input value of the else expression
must pass through a F gate. The T gate has a control input port, a data input
port, and a data output port. Each control value determines whether or not a data
-value may pass through the gate. If a true control value is received, a data value
is absorbed and passed through the data output port. If a false control value is
received, a data value is absorbed but not passed. In the F gate the sense of the

control value is reversed. Each matched, by label, pair of output ports, one from
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the then expression and one from the else expression, are joined by a M gate.
The M gate has a control input port, two data input ports, and a data output port.
The control value determines which data value is passed through the gate.
Connecting the control input ports of all these gates to the output of the predicate
graph insures that the predica_te can enable the execution of and select the results

of the appropriate subexpression.

Let T be the composite history function of all the T gates used to
implement the conditional expression. T maps a control history and an history
environment into a history environment.

I Pl = OITICK, Plid])
With F and M denoting similar composite history functions, the operational
seinantics of the conditional expression may be expressed as:
(=70t exp, then exp, else exp, end]P =
M(()e Tlexp, TP,
(o TLexp, IA(()>Texp, TP, P)),
(e TLexp, NE(O> Tlexp, TP, P)))

The operational semanti.cs of iteration bodies, a straightforward extension
of the denotational semantics of iteration bodies and the operational semantics of
expressions, will be discussed before the more onerous iteration expression is
exarnined. Again, except for the conditional iteration body, the semantic eqﬁations

are simple,

(o TllexpIP = dtag/()sTfalseIPYR /(Do T explP]
e Tylliter(exp)IP = eltag/ Qe T truelP1/Oe T LexsTP] |
(Do T1llbet idlist = exp in iterbody]lP = (o J{Literbody]Plidlist/ e ]LexplP]
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Because the conditional iteration body has three sets of output ports, a tag output,
I output ports and R output ports, it has three sets'of M gates, each set receiving
a different control history. Because the semantic equation for the conditional
iteration body contains many special cases, it is very large. The equation is listed

in the Appendix.

et idlist = exp in iterbody], illustrated in Figure 3, contains an
initialization  expression subgraph  “J[expl, an iteration body subgraph
“Literbody], FM gates, and FS gates. The FM gate is a M gate with an initial
false control input. The FM gates select, under control of the tag values of the
iteration body, either the outputs of the initialization expression or the R outputs
of ‘1'hc iteration body. The selected values are sent to the iteration body input
ports labeled by the iteration variables. The other iteration body inputs pass
through FS gates. The FS gate absorbs, produces, and stores its data value
whenever it receives a false control value. It produces its stored value, without
absorbing a data value, whenever it receives 2 true control value. The FS gate has
an ntitial false control value. Succeeding control values are the tag values of the
iteration body. Thus, the FS gates store new values oniy when a "new" execution

of the iteration body commences.

Let FMS“ st pe the composite history function of the FM and FS gates.
FN1§edlist maps a quadruple consisting of the iteration body tag output, the
iteration body I outputs, the initialization expression outputs, and the iteration
expression history environment into the history environment input to the jteration

body.
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EMS™ st x, ¥, z, PLid] = O[FM](X, Y, Z),
| if id is the i-th element of id/ist

OUFSI(X, PLidD,

if id is not an element of idlist
The operational characterization of the jteration expression is obtained by deriving
the least fixpoint 1o an equation constraining the outputs of the iteration body
subgraph,
()eF5ltet idlist = exp in iterbody]P =
(YQX. e »T1literbodyJEMS i, ., X1, O TexplP, PY)r

The operational semantics of ADFL are certainly more complicated‘ than
the denotational. Furthermore, this complexity is not entirely the fault of our
presentation, but rather largely the fault of the unusuai conditions in which graphs
containing non-terminating computations may produce results. Consider the
following ADFL expression with one free variable Ik

let k = for j =i do if j = O then iter(j) else j end In
if i =0 then i else k end
end

which we abbreviate "IDENT(@)". Clearly, if i is not zerb, IDENT(i) evaluates to
i. However, if i is zero, although the iteration expression within IDENT(i) does
not terminate, the graph implementation of IDENT(i) *"ignores" the
non-ferminating computation and produces zero. But, IDENT() is not, even
opemtmn.llh, a true identity. If the graph 7{[IDE\IT(1)I| receives the input
sequence 0 - 1, it mll only produce the output sequence 0. The second output
cannot be produced until the iteration expression internal to IDENT(i) terminates

its "computation” of the first output. Consequently, the ADFL expression:
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let 1 =01in
if IDENT(i) = 0 then iter(i+1) else { end
end

does not terminate, although it would if IDENT(i) were the true identity.

The  preceding example illustrates the intrinsic complexity of the
operational semantics of ADFL and demonstrates the need for the simpler
denofational semantics. In the next section, we will prove the consistency of the

operational and denotational semantics.

4. The Consistency of ADFL

The  operational and denotational characterizations of ADFL are
consistent if they agree on all expression and iteration body evaluations defined to
be non-terminating by the denotational semantics. We believe that it is quite
reasonable to expect VAL programmers to only' consider expressions which
donomtionull;- terminate to be correct. Expressions which terminate operationally,

but not denotationally, waste resources in unnecessary computation.

Formally, the consistency requirement may be stated as:

Alexplo = 1 implies (. Do JLexpllo = £lexpllo, and
A1iterbodylo = 1 implies ( ')o_,:]IE:'rcrbady]]p = Lliterbody]o

To prove, by induction on the syntax of ADFL, the consistency requirement, a

_Stronger consistency requirement is needed for the induction hypothesis, namely:
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Given a sequence Py» - 4@, of environments such that, for all /, /_f'[[exp]]pi * 1t

(e TMexplog « .. = p, = £lexplo { ot Elexplo,

- Similarly, if, for all i, A1literbody]lp = 1:

(Do {Literbodylo LRy =7 TLiterbodyllo, » ...+ £ 1literbedyllp,

The proof of consistency is straightforward, but often tedious, for all
BNF productions except the iteration expression, the only expression semantically
chuaracterized with the least fixpoint operator. For the simpler productions, the
weaker consistency requirement easily implies the stronger. We will sample the
inductive proofs of the simpler productions by proving the weaker consistency

requirement for the binding expression.

Let p be an environment such that:

FMet idiist = exp; in exp, endJo = L.
The strictness of the denotational specification of the binding expression implies
that /£ ‘[[m'pzﬂp = L. Consequently, using the weaker consistency requirement as
the induction hypothesis, we know that:

()="Tlexp,o = £lexp,To
With successive applications of the definition of (J<5], the weaker consistency
reduirement, the preceding equality, and the definition of £, the desired case is
proven.

()= T(let idlist = exp, in exp, endJp
= { )“,_:7[[(11‘p2:ﬂp[fd/l'sf/( )oj7[[expl']]p]
= Alexp,Jolidlist/ O Tlexp, To]
= Lexp,olidlist) / Texp, To]
= AL'[let idlist = exp, in exp, endJjo
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Now we shall show how the stronger consistency requiretnent, used as an
induction hypothesis, implies that the weaker consistency requirement holds for
iteration bodies. Lct p be an em-ironmgnt such that:

AMfor idlist = exp do ir('rbody]]p. * L
From, the lemma stated at the end of Section 2, we know that there exists a

sequence o, ..., p, such that for all / between 1 and n-1:

p, = plidlist/ X Texplp]
Py = plidlist/ (£ 1LérerbodyTp PN
(7 LiterbodyTp Jae = true

tag
(F'{LiterbodyTp nhag = false

(F 'I[Ifr:'rba({;»]]pn)R = Alfor idlist = exp do irerbody endJpo
Recall the operational characterization of the iteration body. Let:

F =X O lliterbods HEMS (X, X, Qe TLexplo, p))
Consequently: |

() for idlist = exp do iterbody end]o = (Y(P)g = WF(L))g
By induction on i, we may prove that:

Fly = /f '1Literbodyllo |+ o ALiterbodyllo i = Oo_?lﬂl'terbody:ﬂp 1° P
if i< n
F(ly =/ 'I[[irf'rbrmiy]],oI o L 1literbodyo n= Oo_:]lﬂ:t'terbody_'ﬂp [* P

ifi>n
We prove for 7/ = | with successive applications of the definition of Fl(1), the
consistency requirement, the definition of FMS/@list (recall its initial false control

vilue), the definition of p ;» and the consistency requirement that:
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FL(1) = () FylLiterbody](EMSHistce, ¢, ()=Tlexplo, p))
= O=TlliterbodyJ(EMS“5(e, ¢, S exp]o, p))
= (o I Literbodylolidlist/ £ explo]
= () LiterbodyTp,
= /£ 'I[]::]rc.'rbc:vafy}];o1

For { < n, the induction hypothesis and the lemma of Section 2 imply that:

(F()y,. = (LliterbodyTo Dug * -+ (L1lliterbodyTo )., = truel

By successive applications of the definition of P» the induction hypothesis, the
definition of FMS™5t and the preceding equality, we may conclude that:
Py Ry
=P e p [idlist/ £ Texpllo « (/ '1LiterbodyTio P 0 o (Lylliterbodylo M
=0« - p lidlist/ Klexpllo - (F(L))]
= EMS“@Utrue’, (F(1)),, Llexplo, p)
= EMS“S(F(L)) .0 (F(L))yy O Tlexslo, 0)
The definition of F*I(1), the preceding equality, and the consistency requirement
imply that:
PR = O Ty Literbody LEMS (P (L)), , (1), O« TLexplo, o))

= (f)oﬂﬂ]ffterbody]]pl ORI
= Klliterbodylp, - ... - Ellirerbodylp,, |

Similarly, for 7 > _
Fr(1) = ()°f71[[t'!erbodyll(!‘li'ii"””((ﬁ(i))tag, (F(L)p O Tlexplp, p))
= ()1 Literbody(FMS#st(tryen! . false, (F(1)),, Llexpllp, p))

= O=iLiterbodsTo, + ... p,,
= Zilliter bodylp, « ... + Lilliterbodylp ,

Thercfore, the definition of @, implies:
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(o Tlltor idlist = exp do iterbodyTP = (Y(F))p = (UF(1)g
= (L 1Lirerbodylo, + ... - £ 1Lirerbodyllp ,)p
= ['[for idlist = exp in iterbodyTp
This proof can be extended to the stronger consistency requirement by
observing that the control input true™! . false of FMS@/ist pas reset FMS§list 1o
its original state of waiting for inputs from outside the iteration expression. The

extended proof completes the inductive proof of the consistency of the operational

and denotational semantics.
S. Summary

We have defined ADFL, an Applicative Data Flow Language, given its
denotutional semantics which demonstrate its simplicity, given its operational

semantics which demonstrate is concurrency, and proven their consistency.

This research is best extended by extension of the data flow language.
Procedures are an obvious, and easy, addition to the language. The addition of
constructs for programming .re:ll-time systems is a difficult, though rewarding,
extension. In the data flow language of Weng {13] program identifiers may have
strcams (histories) as their values. Interprocess communication, similar to that
obscrved in real-time systcms, s accomplished by the passing of streams.
Dennis [7] has defined a stream operator which non-determinately merge two input
stream and has used it to specify the inherently non-determinate airline reservation
system.  While the non-determinacy of this language limits the simplicity of its

semantic  characterization, the elevation of. process communication and
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synchronization to the level of parameter passing results in programs which are

_easier to comprehend and verify.
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Appendix I - (e J[if exp then iterbody, else iterbody, end]P

We will not detail the computations of control histories for the M gates
of the graph, but will denote with IC, the T output port control history function,
and with RC, the R output port control history function.

()=7][if exp then iterbody, clse iterbody, endJP =
Altag/M(()e ][ exp]P
(()o_"]I[[irfrbodylj]P)tag,
(( ')of]I[If{erbaa{yz]]P)tag)]
(I/MAC(()- T exp]P,
(e T Literbody, IP),, o
((_)°~:71ﬂ:l'ft’rbod)’2]lp)tag)
(O lLiterbody, JP),,
(O)e Ty [literbody,IP),)]
[R/M(RC(()e /[ exp]P,
(( )oﬂlﬂ:f'l('rbodl’l ]]P)wg,
(()=FylLiterbod 'v,1P)
(O°f71|]}'terbodyl]]P)R,
(O=Ty[literbody,]P)y)]

tag)
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Figure 1. A Sample Data'Flow Program

Xxx + L‘#LS?

Figure 2. 7J[if exp; then exp, else exp, end]
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Figure 3. “J[let idlist = exp in iterbody end]

( f7,l[i{er64d_y:ﬂ )




