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1. Inti‘odﬁclion :

We propose to continue our 'progra.m of bislc research on data flow computation --
program- structure and computer architecture -- currently funded by the National Science
Foundation under grant MCS75-04060 AOL. |

Data flow research at MIT has been funded by NSF for basic studies of

linplementation issues arising from our architectural proposals, and by the Lawrence

Livermore Laboratory (calendar 1978) for evaluating the potential of our approach to data
~ flow ;omputétion for energy-related high performance computations. For the next phase of
our research program, we antlcipate receiving funding from the Department of Energy to
support "c'c_:ns_nl-uétion and evaluation of data flow computers according to our architectural
prop_o‘sals, We wish to continue our work on the conceptual and theoretical foundations of
data flow compu'tatton and ﬁacket cdmmunir.atlon architecture with NSF support.

'Understanding of the principles of data flow compbter organization and user language
design has reé;hed the stage that we are confident that practical computer systems of .thll‘
_ kind can be built. "lln fact, interest in the subject has spread both in this country and
‘ abr_oéd ‘['Gur7‘7, Pat78, Ti?g; TreT?), and several experimental machines have been builk

(DavI8Syr77, TiTol

At the MI-T Laboraitory for Computer Science we are engaged in a long-term research
prograrh for developing the basic concepts of data flow program organization and
execution, and applying them in the design and evaluation of programming languages and
.'pmposaii of computer architecture for data driven computatlon.' The uitimate goal of this

work s to specify computerlsystems that are capable of high performance at low cost by '

exploiting advanced logic and memory technologies, and that support sound principles of
program structure and Iahguage design. To achieve this goal it is essential that the
conception of computer architecture and the design of the programming language to be
supported go hand in hand. Thus our architectural proposals are language-based in the
sense that a machine built according to our propasal will be capable of correctly and
effectively executing any program written in a well-specified base language 0 long as

I
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resource limitations are not exceeded. While language-based design is important in any

innovative computei system, it s crucial for data flow machines because they are sufficiently

. -dmeunt from von Neuman machines that conventional software methodologies simply do

ot apply.
2 The MIT Data Flow Architecture

The ;fthlteétural concepts under study in the MIT Computation Structures Group are

. based on use of packet transmission between hardware units and use of routing networks to
' epmmunldté ln'fdmtlo'n between 'se‘ctlom of the machine.

~ Our research. has led to a series of architectural proposals, uch dalgned to mpport a
speclflc fevel of prognmmlng language expressive power. The principles are best

___lntrodueed in terms of the most lmic structure, shown in Fig. I, which we call our Form 1

. data flow proceswr. |

The Form ! machlne -in_as four sections connected by packet tnnsml:ﬁon channels;
“Merory Section - consists of Instruction Cells which hold instructions and their

operands.

Processing Section -- consists of Processing Un'lts that perform the basic scalar

operations on data values,

Arbitration Network -- delivers Operation Packets from the Memory Section to
the Processing Section. | |

Distribution N etwory - delivers Result Packets from the Processing Section to the
Memory Section. | |

The overall operation of these sections s best summarized in terms of their packet
commu'n_lcatlbﬁ. Instructions held in the Memory Section are enabled for execution by the
arrival of thelr operands in Result Packets from the Distribution Network. Enabled
ln;tructponi; together with their operands, are sent as Operation  Packets to the Processing
Section through the Arbitration Network. The results of tnstruction execution are sent



Fig. 1. Form 1 data flow processor.
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through the Distrlbution Network to the Memory Sectlon where they become operands of
other instructions. A more complete description. of the operation of these sections can be
found in [Den77-1).

Form . The Form | processor corresponds to a basic language level supporting scalar
variables, and having conditional and fteration control structures. Since all data and
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Instructions reside in the Instruction Cells, this form of data flow mchltte is suitable for fast
computations invulvlng relatively small programs and data. This is the form of data flow
machine that has been studied most intensively at MIT. A comprehensive account of its
structure, operation, and application to the fast Fourier transform can be found in [Den7-1}.
This machine seems well suited to a wide Variety of numetlcal oornputatlons lncluding many
signal processlng applications. :

Form 2. A Form 2 data flow machine is obtained by adding to the Form | machine a
Data Structure Proceuor eomlttlng of a Structure Controller and a Packet Memory System.
a3 shown in Flg 2. Corretpondingly. the language supported is ‘extended to include a
general class: of data structures and operations for their construction and access. Since a

. program is still_held in the Instruction Cells, the program size llmltatlon of the Form 1

machine still applles. However, the Structure Processor my be designed to handle very
large data bases. '

A general dlscusslon’ of Form 2 data flow machines prepnred for the Symposium on
High Speed Computer and Algorithm Organization (Den77-2) outlined its spplication to
global weather simulation, a problem requiring high performance and a large data base.

Forn.t_' 2 A Form 3 data flow processor supports the same language level as a Form 2
machine, but allows the execution of large programs. This is accomplished by
implementing the lnstructton Memory (as a packet memory system), as shown In Fig. 3, and
arranging that only the most active instructions are held in Instruction Cells _during
execution of a program. Thus the Instruction Cells act as a “cache” for the Instruction
Memory. - .

The basic machinery needed to make the Instruction Cells act as a cache has been
presented in [Den75-1] as a generalization of the basic Form I architecture. This work must
be revised, extended, and evaluated in the context of more recent developments, in
particular deadiock prevention and schemes for implementing data structures.



Fig. 2. Form 2 data flow machine.
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Form 4. A Form 4 data flow computer is envisioned as supporting, at the hardware
level, all fundamental aspects of data driven computations, including procedures, recursion,
and data streams. These machines would be sufficiently general to support all services of a

general purpose computer system for a community of users.

‘ Sblving’ the conceptual ahd design problems of a Form 4 data flow compuyter is a very
ambitious task. The major problem holding up progress toward a complete specification of
a Form 4 computer is the design of a procedure execution mechanism that will aperate
effectively in the most gencral contexl. Contributions toward a solution to these problems
have heen made by Misunas [Mis78] and Miranker [Mir77) at MIT, and work at Irvine



Fig. 3. Form 3 data flow processor.
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[Arv79] and Utah [Pat78] prt-:vides a rich source of ideas. Currently, Weng is studying this

problem' as his doctoral research at MIT.

These proposed architectures differ from the proposals of other research groups in
several significant ways: -
l.  We propose -routin‘g networks as the basic means of communicating operation and
result packets. These structures have logic complexity N jog N and delay log N which
is as good as can be done while maintaining throughput in proportion to N.



2.  Communication between twe instructions has the same delay and expense regardless of
where the two instructions arc located. Thus the performance realized in an
application does not depend on partitioning the program into regions of high locality.

Consequently, code generation is more straightforward.

3 © Our structure processor concept is further developed than other proposals for

implementing data structures in a manner consistent with data flow principles.

3. Research Status

Research progress in the past two years may be divided into language design and
translation; data flow semantic theory; data flow computer architecture; prlnclp.lei of packet

architecture; and studies of application areas.
31 Language Design and Translation

With suppott from the Livermore Laboratory, a major effort during the past year has
been the design of the programming language VAL (Value-oriented Algorithmic
Langua'ge). The purpose of developing VAL is to provide a medium for expressing
applications in a form suitable for evaluating their suitability for data flow computation.
_ Our goals in the design of VAL have been to allow expression of concurrency, to support
good’ prt’;g;a‘m' structuré.- to suit the computational physics applications of interest to

'Livermore, and to be insofar as practical a "general purpose” language.

Existing languages suitable for cﬁmputatloml physics applications reflect the storage
structure of the von Neuman machine in that each language provides some means of
_ efrgctlﬁg a change in memory which ¢an not be modeled as a local effect. Such languages
permit. prégrams to be written which are verj difficult or imposslblé to analyze for parts

that may be executed concurrently.

_ . _ 1
In contrast, VAL is a functional or applicative language: each module or well formed

portion of a VAL program corresponds to a mathematical function and the entire effect of -

putting two parts together is to compose the corresponding functions. We have given

. A



-10-

careful consideration to the recently developed body of knowledge about program structures
and langusge characteristics which support program verification. We have found a natural
consistency between Ianguage design for support of concurrency and language design for
correctness and verifiability. This has made it possible in the design of VAL to adhere to
program. structures: -and language chauctermm that have been found desirable for ease of
understanding and uerlflcatlon. and ease of buikling a program by. combining separately
specified modules.

Innovative -features of VAL include: an iteration construct based on representing
 hteration in the form of tail recursion; a forall construct that permits simukaneous
obméutatlon of tﬁe elements of a new array; and value-oriented treatment of exceptions
~ through inclusion of a special error element in each data type.

While other value-oriented programming languages have been developed (pure LISP
'[McC60) and LUCID [Ash77] are carlier examples), we believe VAL is the first which is
seriously Intended for writing large sca_le.programs for efficient numerical computation on
high performance machines. A preliminary reference manual for VAL has been written
and will be published a3 a Technical Report in March 1978 [Ack78] |

Translating ‘programs written in VAL into efficient data flow machine languag'e
requires translation and optimization techniques significantly different from those used with
conventional fanguages and machines. Translation from a value-oriented language such as
VAL into a data flow graph is straightforward due to the absence of side effects. On the
~ other hand. machine fanguage programs for our Form 1 'and Form 2 architectures are not
guafantced to be "safe”: By “safe” we mean that an Instruction Cell never receives a resuit
packet when the Instruction Cell is not prepared to accept it. Machine programs't’hat are
safe can be obtained by having each instruction send acknowledge packets to predecessor
instructions as illustrated in [Den77-1). Rules for inserting acknowledge signailing to
achieve high concurrency without .:hanging the effect of executing a data flow program
have been developed by Montz [Mon79)



"~ 3.2 Semantics

The objective of our work in semantics is to devebp a sound mathematical theory for
the semantics of data flow computation. In a recent work Brock presents two semantic
specifications for a simple, determinate subset of VAL and proves their equivalence. The
operational semantics of a program in this subset is obtained by a two-step process. First,a
transléntiqn function maps the program into a data flow graph. Rules for this translation
are giiv.en in the thesis. Next, an interpreting function maps the data flow graph into the
result of executing the data flow graph. Because determinate programs may be translated
into determinate data flow graphs, the fixed point methods of Kahn {Kah74) may be used
to determine the result of graph exccution. The denotational semantics of a program lIs
defined using Scotts theofy [Sco76) by directly mapping program language elements into a
mathematical domain. The proof of equivalence for the two semantic methods is also a

"proof of correctness” for the translation and interpreting functions. The formal

development of the operational semantics I presented in (Bro78-1).

33 Data Flow Computer Architecture

- During the next two years we plan to build an experimental Form ) data flow

. processor with support from the Department of Energy. The objective Is to gain experience

with the technical issues of implementing systems using packet architecture principles, to
solve the problen{s of translating real programs for efficient data flow computation, and to

gain understanding with the development and debugging of application programs.

The envisioned form of the experimental processor is shown in Fig. 4 In contrast
with our earlier reports, each information packet will be represented as a sequence of

eight -bit bytes throughout the processor. Instruction Cells are grouped into Cell Blocks,

‘each comaining sixteen or more Instruction Cells. There are many Processing Units of K

different types which process packets in byte serial format.

In preparation for this project we have conducted design studies for the three basic
units of the architecture: the routing netwarks, the Cell Block and the Processing Units.
1
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Fig. 4. M.LT. proposed enginesring model.
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Routing N etworks -

A routing network is a packet communication system designed 3o each packet arriving
at an input port is eventually routed to the output port corresponding to a tag field of the
packet. An arbitrary routing network can be buiit using two simpler types of networks

called concentration. and connection networks. A concentration network has more inpluts .

than outpuis. and has the property that each accepted packet is eventually placed on an

output, but is not necessarily routed to a particular output. A connection network is a
' : [
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routing network with the same number of inputs as outputs. In [Bou78} Boughton has

.dEVeloped effictent concentration network'deslgns. and has shown that connection networks

which have probabilistically high throughput can be constructed from concentration

networks and switches.

A concrete design of an Arbitration Network has been developed in a recent bachelor’s
thesis [McN78). |

 Instruction Cell Bloch

A specification fer the Instruction Cell Block has been prepared and the structure of
an implementation has been developed as a thesis project by Amikura [Ami77] Deciding
on the technology and scale of integration, and completing detailed logic design for the

exﬁerimenta!'Form 1 processor remains to be done.

Processing Units

The 'd.eslgn of arithmetic processors suit‘able for on-line byte-serial operation has been
studied by Feridun [Fer78). The use of signed-digit number representation allows use of
addition algo"rithms in which carries are propagated at most one digit posltloh. and serial
data may be processed most significant digit first {Avi6l,Avié4). Similar algorithms exist for
multiplication and- division [Tri77l Based on these algorithms, archltecture: for a
floating-point adder-subtractor and a floating-point multiplier have been developed

+

We expect to extend our experlrnental Form | processor to be a Form 2 machine by
adding a Structure Processor. The basic ideas have been presented in [Den75-2], al'ld a
specific design has been explored by Ackerman [Ack77l The Structure Processor consists of
a Packet Memory System that holds represematlons of data structure values (records and
arrays), and a Structure Controller that interprets high level data structure operatlom as
commands to the packet memory. The data structure operations implemented by the
Structure Controller are value-oriented, as required for consistency with data flow semantics.

This requires copying of portions of data structures when ‘modified structure values are
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generated by a program. In Ackerman'’s design of the Structure Processor, care has been
taken_ to mi_mmue-such copying while allowing concurrency of data structure operations to
be ex'ploited. ‘The Structure Processor is designed to have high performance by handling
large numbers of structure open'tlonl concurrently, and a modular organization is proposed
" such that the system has no bottlenecks and the processing rate may be increased
- indefinitely by adding modules. |

34 Packet Architecturs

Packet system architecture is a new context in which to study the various aspects of
compuiter system deicrlbtlon. correctness, performance and reliability. Our research includes
contributions in each of these areas which will support our program to construct machines .
using thelﬁrlnclplea of packet architecture. | ‘

'Architecture Description Language

In constructing a practical data flow processor, it Is Inviluable to have a formal
description of its architecture. An architecture description should specify the major
subsystemi of an architecture, their logical connection in terms of the information passed
' among' them, and.the processing each performs on this information. An architecture
déscrlptldn Is essentially an operational modet for the semantics of machine language
programs written for the data flow processoi'. We have identified a set of concepts suitable
for this task: modules, hodule ports for- Inputloutpﬁt, data flow semantics for algorithmic
behavior speclﬂcatlon. PASCA'L-type records for data structures, module state variables for
processing packet streams, and monitors for resource sharing. These concepts have been
incorporated intc a proposal for an architectural description language (ADL) that is
explained and illustrated in [Leu79-1). In terms of this ADL, the internal structure of an
architectural unit can be specified as an interconnection of simpler units, and its external
' behavior can be expressed in ferms of receiving, prbce;slhg. and generating information
packets. Hiera rchlcal_ architectural specifications can thus be constructed. Early versions of
our ADL have been illustrated in [Leu7S, Den77-1}
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Correctness and Verification

We have begun a serious effort to develop 2 methodology for specifying and verifying
hardware systems that is analogous to recent'developments in software methodology. In
hardware systems, concurrency is an essential factor, and normal operation often continues
indefinitely without termination; an appropriate methodology must reflect these differences
from usual program characteristics. In his doctoral thesis, David Ellis has developed a’
_Jormal basis for specifying and verifying packet systems [EIiT7L As in our ADL, this theory
views a packet system both bekaviorally in terms of its interaction with its outside workd, and
structurally as a composition of smaller systems. Ellis shows how packet systems may be
proved correct by establishing that the formal characterization corresponding to these two

views are equivalent.

Fault Tolerance

In his doctoral thesis research [Leu79-2), Clement Leung is studying the problems of
designing a fault.tolerant data flow processor. The data flow processor is assumed to have
a par.k.et system architecture. and te be constructed from self-timed modules which
cormunicate via asynchronous packet transmission protocols. A survey of classical fauls
tolerance techniques and methods for constructing self-timed modules has been completed.
" This study leads to a proposed hardware structure for packet modules. An elementary
packet module contains registets for receiving inputs and a combinational circuit for packet
processing. A com pound packet module is an interconnection (cyclic or acyclic) of elementary
packet modules. Due to the use of asynchronous protocols, the appropriate fault model for
packet rﬁodules turns out to be random pulse trains on wires, as opposed to, say, the classical
stuck-at rault. models. This fault model has been used to characterize the symptoms of
hardware failures at the packet communication level and provides a basis for studying fault

tolerance techniques.



35 Application Studies

We have found many computational problems requiring high performance to be well
suited for data flow execution. The Fast Fourier transform and a global weather model
have been mentioned as attractive applications for Form | and Form 2 data flow computers.
More recei'l_tlj a_hydrodynamics code_ r'epresen_n;ive of applications at the Livermore
Laboratory has been reexpreu_ed in a preliminary version of VAL and analysis of its
potential' for data flow execution is being studied. In addition, students in an MIT
_ graduate subject have completed 15 term projects evaluating data flow eomputation for
problems ranging from differential, file comparison to radar signai analysis. |

4, Propoeed Research

** With Nationa) Science Foundation support we plan to continue our basic studies,
concentrating in four areas: program optimization and application. throughput analysis
principles of packet system architecture; semantic theory for data flow programs; and
- implemenntlron schemes for data structures, procedures and streams.

41 Pro(rqm Optimization and Analyiis

Efficlent program execution on data flow computers requires a good match between
the structure of programs and the structure of the machines on which they are to be run.
Clearly, to fully utilize the capability of a data flow computer for concurrent computation,
the application problem must offer much opportunity for parallelism. .ln our studies of
potential application areas for Iﬂgh performance data flow computation ﬁre have found no
‘shortage of parallellsm Slgnal processing computations are described by flow diagrams for
: which the computation required in each block may proceed concurrently with the others.
The important fast Fourier transform for N samples can be computed in log N time using
N-fold parallelism. The problems of computational physics often amount to independent
calculations at each node of a large two- or three-dimensional grid. The global weather
simulation used at the Goddard Institute for Space Science uses a grid of 72 x 45 x 9 points.
For each time step, independent computation is done for each point of the grid.
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In fact, the problem in many applications is to reduce the parallelism to a degree

commensurate with the capabilities of the data flow processor. In many cases the most

. natural expression of a computation is one that expresses It in fully paraliel form. For

example
old, new: array [array [real]]
new := forall i in (1, m), j in (1, n)

construct flold, i, j)

defines a rectangular matrix new in terms of a similar matrix uslng the computation
expressed by f. This computation could be carried out on a Form | data flow machine by
loading m X n copies of the machine level program for f into Instruction Cells, thereby
realizing the m x n-fold parallelism of the problem. For large computations (eg. the
weather problem) this would require ridiculously large numbers of Instruction Cells.

Using a Form 2 data flow computer, an alternative implementation is to store the
matrix o_td in the data structure memory. The matrix would be sent as a stream of element |
values by the structure processor to Instruction Cells holding one copy of the machine leve!
program for f. The stream of results computed by f would be returned to the structure
processor to be retained as elements of the matrix new. The concurrency exploited in this

~ version is the pipelined operation of the fetch, compute, and store parts of the task and the

parallelism represented in the implementation of f.

An intermediate possibility is to organize the computation so the m rows of data are
presented in_succession by Instruction Cells holding n copies of the machine level program
for f.

For a large-scale computation many choices of machine level program structure are

‘possible, and there is 3 farge space of options in which to find the best match of problem to

machine. We propose to study program transformations, such as the array-to-stream
conversion discussed above, that would make possible automatic or user-guided generation
of optimum program structure for a given application on a specified data flow computer.



The nature of program optimization for data flow computation is an interesting
cohtrast to optimization for conventional computers: for conventional machines it is the
inher loops and detalled structure of the machine level program that matters (subject t0
consideration of program size); in dﬁa flow computation, it is the outer levels of program
organization tlia_i have the most significant influence on overall performance. In view of
this contrast, new concepts and principlés are needed to guide the generation of good.
programs for Form | and Form 2 data flow machines intended for high performance

numerical computation.

The rate of computation for a data flow program on a Form 1 data flow processor is
governed by cycles in the program graph representation of the machine program. If the

transmission times for operation and result packets through the routing networks may be -
‘assumed éonstant_.' the theory of ‘timed-Petri-nets (Ram73) may be used to determine the

computation rate of a periodic data flow computation. Computation rates should provide

- useful infor_mation for balancing instruction cell allocation to different program parts to

achieve the best throughput for the entire program. The details remain to be worked out.
42 Pickel'Sy:lem Architecture

‘We have found packet communication architecture to be a very attractive form in

. which to realize a high performance data flow computer. Large data flow computers built

according to our architectural concepts will consist of hundreds or thousands of units
communicating by means of packet transmission. Since asynchronous computers of this
form and complexity have not been designed previously, we plan to continue our basic
studies related to the specification and realization of packet communication systems.

Architecture Ducripuoﬁ Language

We have already identified a set of concepts suitable for describing packet systems at
the architecturat level. The next step is to synthesize these concepts into an architecture
description language (ADL). ADL should contain language constructs to support the

~aforementioned concepts and be properly human engineered.
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A formal architecture description is just a starting point in constructing a packet
system. -The challenge is to devise a practical machine that is provably equivalent to the
one specified in an architecture description. An attractive approach to meet this challenge

is to successively refine descriptions in ADL to the point where a description can be

- systemitically_ translated into hardware. The choice of additional refinement techniques for

ADL and techniques for translating from high level descriptions into asynchronous LSI
hardware structures are both topics for research. In the course of this study we also expect
to benefit from the experience to be gained in constructing a prototype Form | data flow
processor.  Properties of an ‘ADL description can be verified mathematically, or by
interpretatioh. ‘We plan to program an ADL interpreter which can be extended to be a
packet 'syStem simulator and. used to both verify designs and evaluate the performance of

data flow computer architectures.

' qudwarc S pecification and Verification Techniques

Specification and verification techniques play important roles in a structured hardware
design methbdoiogy for ctonstructing provably correct packet systems. Consider an
implemenfation of a packet module M by an interconnection of submodules My, .. M.
Given the external behavior of the M’ i’ we need to verify that interaction among them is
indeed consistent with the external behavior desired for M. To achleve mathematical rigor
in the verification process, the external behavior of M, My, .. M, and their interaction
must be formally specified. Verification of implementation correctness then requires
exhibitlng a mathematical proof of equivalence between the external behavior specified for
M and the behavior deduced for the interconnection of submodules. Mathematical concepts
must be chosen so that ali propertles of interest can be specified and yet the equivalence

proofs are still intellectually manageable.

The fixed-point theory 6( continuous functions has provided a satisfactory framework
for specifying and verifying properties of arbitrary interconnections of determinate packet
moclules.  Ellis has demonstrated that acyclic interconnections of determinate and
non-determinate packet moclules can be studied using the mathematics of relations, but has
only been able to give an operational semantics for cyclic interconnections of

@
£

]
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non-determinate modules. Equivalence proofs based on this q:ientloml semantics tend to
‘be rather long and tedious. Many packet systems of practical interest, such as data flow
pratessors and paclr.‘et. memory systems, do contain non-determinate modules for efficient
~ resource sharing. To specify and verily these packet systems, we must develop a more
general. and 'more ‘elegant theory for non;determlmu packet systems.  Preliminary
lnvestlgatlom by Brock and Ackerman {Bro78-2] have indicated that a theory of
equivalence bued oh relations between input and output histories does not have the
' appropriate substitution properties for cyclic interconnections of non-determinate packet
modules They have also suggested 2 directlon for further study. Mathematical frameworks
for specifying and verifying non-determinate packet systems bear obvious relationship to
semantic theories for data flow programs. Research in these two areas will be mutually
© supportive.

Fault Tolerance

A picket system consists of a large number of concurrently operating units. Software
implementation of fault tolerance is a formidable programming task which can adversely
affect fauit coverige. Hardware implementation of fault tolerance is thus preferred. We
will continue our lnvestigation- in hardware fault tolerance techniques for packet systems,
using the fault model we have developed Classical fault tolerance techniques are developed
for synchronous hardware systems. Fault detection and masking are synichronized with data
‘processing activities by timing signals, which are either assumed to be failure-free or
generated by a fault tolerant clock. In an asynchronous mode of operation, | fault tolerance
mechanisms must also deal explicitly with synchronization failures in hardware modules.
An extremely fruitful area of research is studying techniques for converting well known
fault tolerance methods for use in packet systems. We must also study faul tolerance
techniques for packet systems incorporating arbitration, the primary means for hardware

resource allocation.

We have also identificd two special classes of packet systems for faul tolerance
considerations: routing networks and a pool of identical processing units. These appear to

be commonly otmrrlng subsystems in packet communication computer architectures and
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hence their practical fault tolérance implementation merits special attention. These two
classes of packet systems provide a testing ground for incorporating fault-masking and
fault-detection techniques into practical fault tolerant subsystems.

Performance Analysis of Packet Systems

The performance of a particular data flow machine on a given program will be °
limited either by the throughput capacity of the routing networks and processing units, or
by the data depe’udeﬁcies of the program. Thus the performance analysts of a program for
~ execution on a data flow machine has two pafts analysis of data dependencies in the
program to determlnp the constraints Imposed on computation rate by program structure;
and evaluation of whether the desired computation rate is supported by the routing
networks and processing units.  Our analysis of the FFT for the Form | machine illustrates
this procedure. The first part, anmalysis of limits on computation rate from data
dependencies, has been done using timed Petri nets. This technique must be extended to
permit methodical analysis of programs using data structure operations supported by our
Structure Processor. For the second part, the primary open problem is analysis; of

throughput and transit time for various routing network structures.

Work on routing networks has focused around several pr;)posed structures. One
possible design for a routing network has alternating stages of switches and arblt.ers Joined
by FIFO buffers. We have found that with the proper selection of buffer size this design
can be used to ,cons,t'ruct a large network which has a high average performance for random
input. Another désign which has a similar structure but uses a'more complicated switching
unit has also been. studied. In this design, the route a particular packet takes is a function
of the overall network traffic pattern. This design is interesting since it requires only O(N
log N) modules to construct a N Input network, and our work indicates that such a network
will have a high average performance independent of its size. The goal of our proposed
work in this area is the development of valid models for a number of network designs,
including the two above. These madels should allow us to further refine the designs to
improve their efficiency. We plan to check the accuracy of our models by comparing their

predictions to results obtained by simuiating the actual networks.
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43 Semantics

_ We propose to continue our work toward finding the but linguistic constructs for
representing data flow computations and for specifying hardware systems employing packet
communication. The focus of this work will be on deciding how support for streams and

| noﬁdetermlmte_ computation shouki be added to our language VAL.

We aiso hope to contribute to one of the most pressing problems of computer science;
finding the right mathematical foundation for the semantics of nondeterminate programs
and systems. - An elegant semantic characterization of determinate systems as mapping input
histories Intb output histories has been defined by Kahn (Kah74] and Kosinski [Kos75) and
i3 a straightforward application of Scott's work [Sco?]. A theory of similar elegance for
nqn-detérmlnate ‘syst'em‘s‘ has not | been found. However, we have demonstrated _lhat
non-determinate sysiﬁnis may not be chariczefiteq by s naive extension of Kahn's theory in

 which systems are represented by mappings from input histories into sets of output histories

(Bro78-2] - One approach has been explored by Kosinski (qu'!"l, Kos79) Presently, we are

.defining a theory of non-determinate computation in which systems are characterized by sets

of scenarios, pairs of Input hii;orié: and output histories ordered by a ciunllty relation.
Eventually, this theory will be used to define the semantics of non-determinate data flow

languages.
4.4 Implementation Schemes

The design of a Form 4 gmérnl purpose data flow machine requires the development |
of implementation schemes that encompass a complete set of programming concepts

- including data structures, procedures, and streams.

. Dara Srrﬁ,cturgs

One implementation scheme for data structures in a Form 2 data flow computer has
been developed by Ackerman as mentioned earlier. This work represents one point ih a
design space that is as yet largely uncxplored. Arrays and records are represented by binary

trees to permit storage in small units of uniform size that may be allocated anywhere in the
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phﬁic&l memory. This choice provides good support for efficiently constructing partially
modiﬁed‘;tructures created by compositions of append operations, but has disadvantages in
access time and storage requirements. A better scheme may be to store the representation of
each array or record in a localized portion of the physical memory so that local references
may be used within the representation, thus conserving space. Other aspects of our
Structure Processor concepts needing study are: Should the top level memory modules. each
serve as a cache for a.portion of or for the entire contents of the memory system? Whit
mechanism should be used to derive data streams from arrays to support pipéelined
computation? What a-re good ways of applying current and ronhéomlng device technologies
to realizing. the Structure Processor?

Procedures and Streams

A good” Irnpletﬁentat.lon for procedures, streams of data [Wen75), and the forall

construct is needed for a genera.l purpose data flow computer. In this work {Wen79] the
~ feasibility of extending data flow concepts to support these constructs is being studied.
Procedures are neccssary to support large computations and are the basis for generai'u\_ng
_ déta flow architecture concepts to apply to computer systems that serve communities of ‘users.
The notion of streams extends the_ data flow semantics to include the class of computa:tlom
which are Hlsrory sensitive in the sense that the behavior of a computation is
characterizable as a function from sequences of input values to sequences of output valuey.
This -form of computation has been conventionally expressed in languages which either
have side-effects or require explicit synchronization primitives. One _importaﬁt
-charactéfisttc of computations expressed with streams is Ehat the inherent concurrency is not
tost, yet lthey are guaranteed determinate if no explicit non-determinate primitives are used.
The l'o,ra“ constructs are intended for expressing concurrent operations on data structures,
Since this form of concurrency is very often found in many'numerlé.al applications. they are

useful language features, ‘
. ot

One form of data flow processor, which will be studied, uses recursive data ﬂov

schemas (represented by acyclic directed graphs) as the basic model of computation. This
. has several advantages over a procéssor that supports cyclic data flow schemas: the absence
f .

3
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of cycles mikee the acknowledge signals required in the Form 2 amﬁltectun unnecessary,

. and use of recursive data flow schemas enhances asynchrony of computation. A utlsfecwr'y

implementation of procedures, stream data and forall-based computation on this form of
data flow processor requires solutions 1o several problems. An appropriate mechanism for
procedure activation for use on this form of machine is required. Similarly, an eicyclh:
representation for recursive procedures is needed. Techniques must be developed Sfor
allocating and supportlng resources for procedure activations. Support for the stream data
type requires both the definition of data flow operators for expressing stream computations

.and the development of efficient mechanisms for performing those computations. Finally,

support for nondetermjnate computation is required, for example by implementing the

nondet'ermimte_fnerge operation for streams.

Hardware support of these implementation schemes will requlre extendlng of two
important uubsmems of the Form 2 machine. The instruction memory must wpport l
logical address space which Is much larger than that of the Form 2 architecture, and the
packet memory must silpport efficient storage of large data structures whose components
may be accessed at sljnlﬂuntly different rates. |
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