MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

-

A Processor Module for Data Flow
Computer Development

Computation Structures Group Memo 176
May 197921 March 198

Ephraim M. Vishniac

Thesis submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science in the Department of Electrical Engincering and Computer
Science, MIT.

j

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139




ﬁ'on’ﬁs/:ie_ce.'- A Dcd'& F/ow OPe.r'a or



Table of Contents

Title page 1

Abstract 2

Frontispiece 3

Table of Contents 4

Table of Figures 5

Table of Tables 6

Introduction 7

Design Objectives 11
Basic Design Decisions 11
Processor Module QOverview 12
Arithmetic and Logic Unit 15
Status and Shift Control Unit 15
Sequence Control 18
Input/Output 20
Main Memory 20
Timing 23
Microcode Format 24
Sample Microcode 26
Microprogram Loading 26
Alternatives 33
Summary 34
Appendix A: Am2§03 Instructions 46
Appendix B: Am2904 Instructions 49
Appendix C: Am2910 Instructions 51

Appendix D: Sample Microcode Commentary 52

Bibliography 55



Table of Fiqures

Frontispiece

1.
2.

3.
4.
5.
6.
7.

8.

9.

10.
11.
12.
13.
14.
15.
le6.
17.
18.

A Data Flow Computer

Reset Signalling

A 2x2 Router Module

Processor Module Block Diagram
ALU Block Diagram

Status and Shift Control Unit

Microprogram Sequencer and

page 3

10
13
16
17

Address Selection Logic 19

I/0 Block Diagram
Main Memory and Address Registers
Clock Cycle _
Microcode Format
Sample Microcode
Program Loading Logic
Program Loading Timing
ALU Details
Status and Shift Control Details
Sequencer Details

I/0 Details

21
22
23
25
27
31
32
35
36
37
38



Table of Tables

Table of Contents page 4
Table of Figures 5
Table of Tables 6
Table 1. Microcode-Derived Signals 40
Table 2. Microcode Field Definitions 41
Table 3. Micro-Instruction Types 44



Introduction: Data Flow Computation

A computer based on data flow principles executes instruc-
tions in response to the arrival of their operands. Thus there
need be no sequential control flow such as one finds in a con-
ventional computer. A consequence of this is the possibility
of highly parallel operation, given a suitable machin archi-
tecture and an appropriately expressed program.

Member of the Computation Structures Group are currently
working to provide both of these. A broad introductio to their
work may be found in [i]; this paper will pursue a relatively
narrow question of hardware implementation.

The design of the data flow computer currently under de-
velopment is shown schematically in fiqure 1. Each of the cell
blocks shown contains some number of cells, together with a
single bolock manager. These cells contain templates of oper-
ation packets, the units from which data flow programs are
constructed. Each cell contains an operator, space for operands,
and a list of result destinations. The block manager is respon-
sible for discovering which cells are enabled, i.e. which oper-
ators have received all their operands.

Whenever the block manager finds such a cell, it must take
action to see that the specified operation is performed. Rather
than execute the operation itself, it makes a completely self-
describing packet from the cell. It then dispatches this packet
into its associated arbitration network.

The purpose of the arbitration networks is to route oper-
ation packets, according to the operators they contain, to ap-
propriate processors. Since the packets are completely self-

-7



Cell

Ll

4

Block
.1

Cell

&l.‘o(‘f)_{_‘qu uol /o

Block.
FEnN

Figure 1l: The major components of a data flow computer.
as are the n arbitration networks and
Each of the k processors within a

cell blocks are identical,
the n sets of k processors.
set-is different, however.

ristration
Néetwork
Al

] "l'l'on
Néetwork
N

Cessor

]
-

| [

[

28

e~

ro-
&w

31

— ]

il

¥
Fa

e -
Eessor

.l

Distribolion Netoork

The n

describing, the arbitration networks are delivering to the proc-

essors a stream of executable instructions: operators, their op-

erands, and the addresses of cells for which the present results

will become operands.

After executing the operation specified by a packet, a

processor uses the result of the operation and the destination

addresses to create result packets.

These are dispatched into

the distribution network, which sorts them according to their

destinations.

The purpose of the distribution network is to effect the

distribution of results, which will become the operands of suc-

cessors of the cell just processed.

-8~

The network delivers result



packets to appropriate cell blocks; the block managers distribute
results within their respective blocks and check for newly en-
abled cells.

Two things are implicit in the above discussion: one is the
use of local control to achieve concurrent operation; the other
is the specialization of processors. Both of these present prob-
lems for implementation: local control calls for coordination of
asynchoronous activities; specialization suggests difficulties
in hardware design.

The problem of coordination is solved by use of a uniform
communication scheme. All communication between sections is by
transmission of packets, and all packets are sent in a single
byte-serial format. Transmission of each byte is coordinated by
reset signalling (figure 2); an additional data line is used to

mark the final byte of each packet.

Read
) T
ﬁc.know)ea e 3 i ! Jow

1 2 3 4

Figure 2: Reset signalling. Data is valid from the time the
sender signals "ready" (1) until the receiver signals "ackowl-
edge" (2). Signalling events must occur in the order shown,
but may take any length of time.




The difficulties of specialization are attacked by stressing
the similarities, rather than the differences, berween funtional
units. Both the arbitration and distribution networks, for in-
stance, route packets according to information contained in those
packets. Both, in fact, can be built from the same basic build-
ing block, a module call a 2x2 router (figure 3). Such a module
recieves packets on its two input ports and re-transmits them
on its two output ports. Rather than simply pass them straight
through, however, it chooses the path of each packet according
to the first bit of its first byte. If the desired path is
blocked by another packet already in progress, the router delays
the new packet until its path is free. Such a router has already

been designed and partially built by John Redford (see [é]).

iqp61‘C) : : <>6ﬁb61'C)

ot S
cknow e <JAcknowledqe
LastBate > b DLarrs,;riJ
Date. O—#% 7 ~—>Dectn
Control
. Loaic—
A dﬁwa = 3 > Réady
o L <JAck ledae
LasT BiFe > MU IS
Datn D— ‘ 7g— Dt

Figure 3: A 2x2 router module. Packets received on the two in-
put ports are routed according to the first bit of their first

byte.

~10-~



Similarly, the cell blocks and all the processors have in
common the need for some memory for cell or packet storage, and
some processing capability for cell management or instruction
execution. Also, processors and cell blocks will both send and
receive packets to and from networks built of 2x2 routers: iden-
tiacl input/output facilities seem called for.

With these similarities in mind, the purpose of the project
was to design a general-purpose processor module. This module
must be suitable for use in a packet communication architecture
and must be programmable as a cell block or as any one of several

specialized types of instruction processors.

Design Objectives

As mentioned above, the basic requirements for the proces-
sor module were programmability and some capacity for packet
communication. For a cell block, the program will involve both
logic operations (such as setting and testing of flags), and
integer arithmetic. The program for an instruction processor
might additionally involve signed multiplication and division,
and "floating point" operations. So, the processor hardware
should facilitate all of these operations. Aalso, I/0 handling
should not be toc cumbersome: the processor should be able to
devote most of its time to computation. .

More general design objectives were speed (i.e. rapid

program execution), low chip cound, and moderate cost.

Basic Design Decisions

Two basic approaches to processor module design were con-

sidered: use of a single-chip processor; and use of bit-slice

~11-



components. A single-chip processor presented advantages mostly
in ease of design. A module based on such a chip would be quite
simple, cheap, and could make some use of pre-existing software
for the processor chip chosen. Unfortunately, the fixed instruc-
tion set might prove awkward and slow for packet communication.
Use of bit-slice components, although more complicated, presented
advantages in speed and flexibility.

Processor width was the next major issue considered. Great-
er width (i.e. wider data paths) offered the potential for great-
er computational speed, but data handling was simplest with a
processor whose width matched the 1/0 port width: eight bits.

To overcome the limitation this imposes on address space, the

address register was split into two separate registers of up to
eight bits each. This provides up to sixteen bits of address at
the cost of one additional processor cycle for register loading.

Finally, the processor module was designed with the idea
that it would be programmed in microcode, not that the micro-
code would support some higher-level instruction set. This was
done to simplify the processor and to preserve its advantages

in speed and flexibility over a microprocessor-based module.

Processor Module (verview

In normal operation, a processor module uses exactly the
same external connections as the 2x2 router shown in figqure 3.
(Additional connections, used for microprogram loading, are
explained in the section on program loading, below.) Figure
4 illustrates the internal structure of the processor module.
This section presents basic information about the major data
and control paths; following sections discuss the various parts

-12-



o C
e/ by

(¥ ) sagsiCas

Poo?p [o4ued puv
UOL 20 sut-0xdH U

TenpTATPUL

o}

ﬂ...oc...wE

‘soanbTI Burpseoons UT POTTRISP 9B SUOTIODS
"ueIhRIP NDOTY STNPOW JOSS2001d § 2aInbtd

ln.ﬁbk no OEK...DO

o dﬁ B.ﬁo“wﬂ _o...t...ou
PPOD-03D1S H H
: y e
4 et [ped g o
X L0400 40400] | 0wy jody00 _
HWM o;usw 8¢ 3 7
¢ 3] bn|‘ ' i
d\ﬁ . .
v J b0y o Hllm:.ﬁv.\»
¥ wod o H §ﬁ£¢ S [ +44s 3(
[0 M0 u Il\uwadm. A .t..ou Hm.mw vQ 85 $3 &
P 3..-%.5’-& T us @
i Vi
f S A *\& ﬁ | &R\ ﬂ &\H\ H g ﬁnw.m.t“-“—m. & ’ 1’
Ly
wwwwﬂdinﬁh&ﬂﬂ dHQ\Eo..uP _o....?ou oprp H,.w\ .* wﬂmE v m.b.@_d&.m,
p . [edqu0D g/ wosf IV Wiod od | +0%H
uF ~oL.~.W..OUIII.' HMM:M .WMQ
P -ema PP (M40
TA4o0v



of the processor in detail.

The module receives packets (byte-by-byte) via two input
ports, each of which is connected to the “B" bus. The B bus
can be read both by the main memory and by the ALU, so incoming
packets can be built up in memory or processed immediately.

Besides the input ports, the ALU, the status register, and
the I/0 status lines are also sources of data for the B bus.

In addition to the main memory and the ALU, the two parts of
the address register and the sequencer selection logic are B
bus destinations. The memory address registers are loaded from
the ALU; the status register and I/0Q status can be read by the
ALU. Certain sequencer instructions use data from the B bus
for multi-way dispatches.

The module transmits packets (again, byte-by-byte) via the
two output ports, each of which is connected to the "Y" bus.
Both the main memory and the ALU can place data on the Y bus;
this bus is also used to transmit data from the memory to the
ALU. As implied above, the B bus is used to transmit data
from the ALU to the memory.

The module is controlled during each instruction cycle by
the contents of the micro-instruction register. This register
is loaded at the beginning of each cycle with the instruction
selected by the sequencer during the previous cycle. The se-
quencer selects the next micro-instruction using not only the
current instruction, but also information from the status reg-

ister and from the B bus if appropriate.

~14-



Arithmetic and Logic Unit

The ALU consists of two Am2903 4-bit processor slices. The
Am2903 was chosen for its flexible architecture and extensive
instruction set. The Am2903 contains sixteen general purpose
registers, one special register, and selection logic permitting
the use of a wide variety of operand sources for computations
(figure 5). Beyond the standard arithmetic and logic instruc-
tions, it has operations useful in signed multiplication and
division as well as in floating point arithmetic (see Appendix
A).

The various control and address lines of the ALU (EK; GE;;

IEN, IO-IB, OEB, Aadr, and Badr) as well as the direct data bits

{Direct Data 0-7) are all derived from the current micro-instruc-

tion. The four status outputs (Z, OVR, N, and CO) go to the
status and shift control unit, which is the source of the carry
in (CI) signal. The four shift I/0 lines (SI0O., SIO ’ QIOO. and
QIO7) are also connected to the status and shift control unit.
Finally, the DB and Y I/0 pins of the Am2903's are connected to
the corresponding B and Y bus lines. Thus, these busses are

actually extensions of ALU internal busses.

Status and shift Control Unit

The processor status and shift control unit consists of a
single Am2904 chip. The Am2904 contains two four-bit status
registers (only one of which is used in this design), condition
code generation logic, shift connection logic, and carry in gen-
eration logic. The effective configuration of the Am2904 is
shown in figure 6; unused portions and permanently set control

-15-



s Dat. In g| 4
Aadr [> 7~ tgdress Addr ! <3 Badr
s
A3 |(L=hnOst DO
A8 A8
Fen | LT
<) OF,
Direcl ) 1% %P‘B—QB Bus 0-7
Dt >———4 —
Sl S mux pox S0
8 A A8
N <) A Ro-? o-?
OVR ) — —\_ ALY 24 <JcT
co <3 Fo-
| £3810,
ALY ]QI a
S107 il [enifrer | EIQT0,
QT0z E5- _ s 3
62"" o rcsl"s'lh-
7 y |
TEN[~> |
To-Ty O—Fg— & 5 !
‘E 'g : 2ero Y Bus O-#
o
N ‘_}i"Q - —cP

Figure 5: Internal organization of the arithmetic and logic unit
(ALU). The ALU is built from two Am2903 chips; details of their
arrangement are shown in figure 15.

~16-~



Z NOWRC

<} <JCP
instruction
- ~Sfbfﬁus
Lo 3D_7;I__ dtcorde, Feai.s g
l l l l P- <JICE
I* OEN*
to
OVR €N M M,y Me
]’l¢ l’I., l‘z”hﬁkf\w. zf:=£58“35?
i'\S’P roction | Test /os.ig ovR
decode 3
and shift‘ { .
mex L_fvx | *&m OF,=RsR
1 ::'“_‘A’.—E-'.E;.cs
T0 [polaridy "] 2 _gf MUX
“&lazo. azodCEY Me _o ond
O _mipearilyl ——C,{to ALY CI)
1 &
5 CT
Ib
SE  ZLeup Hj
Zy Tpa

® Denstes an iffernal sijna].

Figure 6: Internal arrangement of the status and shift control

unit.
figure 16.

-17-

This unit is built from a single Am2904 chip, as shown in



lines are not indicated.

The various control signals to the Am2904 (10—13, IG_IIO'
Ill' 112, SE, CE, and OEY) are all derived from the current
micro-instruction (see Appendix B for the Am2904 command set).
The four status inputs (2, N, OVR, and C) come from the ALU:
the four status outputs (YZ, et c.) are connected to the B bus.
The single condition output (CT) goes to the condition code in-
put of the sequencer. Finally, the four shift 1/0 pins are con-

nected to the corresponding ALU pins.

Sequence Control

The sequence of microprogram execution is controlled by an
Am2910 Microprogram Controller together with some external se-
lection logic (figure 7). The single-chip sequencer provides
for a twelve bit micro-adress and includes a program counter
register, a five deep push/pop address stack, and a register/-
counter for loop control.

The Am2910 instruction (IO-IB) and condition code enable

(CCEN} come from the current micro-instruction, as does the
register load (RLD) signal used by both the Am2910 and the
selection logic. The condition code input (EE) is the Am2904

CT output. The "D" inputs (Do—Dll) are used for fixed jumps and
register loading; these come from the microcode. The B bus is
used for variable jumps (multi-way dispatches) and variable
register loads. (See Appendix C for the complete sequencer
command set.) The reset signal (E§Eﬁ, an externally generated
signal used to reset the entire brocessor, forces the Am2910
instruction to zero when active.

~18-



D, ~Dg Dy-Dy D3- Do B Bus 7-0
Y ;
by 44 B Bus 7-4 8 Bus 3-0
x4
A+H 8
3| weer
_— ¢ —
PL ‘-;L VI o L RLD
Voo Yo o [R5 (e
— ¥
{4
/2 —JCP
RED>— = Reajster, Stack
S = Covhter b Poirter
N
g=0 3 1’ 2(Eere |
' N De d S Word
\?4 | I_' Stack.
oilad 3 | oot
CEE"T\I gl l 72 in F
& | &tack O 7.
RST s's): ﬂ ck O 1 ' =}
Zo-3 D—/— ] $ ot D R Furc | ] I‘g:::: 31-4-\
20 m.d ﬁ MUX Rcsls‘t%gu
A72
Figure 7: Microprogram sequencer Trcremeter
and address selection logic. The
sequencer is an Am2910 unit; de-~ ?

in figure 17.

tails of its connections are shOWné

Y, - Yo

Nt.x"?' Micro-Address
~19-



Input/Output
The input and output ports (figure 8) are built from stand-

ard logic chips. JK flip-flops are used to hold the state of the
port and to carry out the external signalling; only a summary of
the port state is available to the processor. For each input
port, there are two status lines, one to indicate that the last
byte of a packet is ready and one to indicate that any other byte
of a packet is ready. For output ports, the single status line
is used to indicate that the port is clear, i.e. that a byte can
be sent.

Each input port simply buffers the current byte onto the B
bus when read, while each output port has a register to hold the
current byte. Reading from an input port also gener ates an ac-
knowledge signal to the sender as part of the reset signalling.
Similarly, writing to an output port sets the ready signal to the
receiver. For both types, the rest of the "handshake" sequence
requires no processor control.

Apart from the external communication signals, all I/0 con-
trol signals come from the current micro-instruction. The /0
status signals aren't used directly as processor control signals,
but can be used by the ALU to generate jump conditions or by the

sequencer to control multi-way dispatches.

Main Memory

The main memory for the processor and the associated memory
address registers are shown in figqure 9. Since the size and ac-
cess characteristics of the memory will depend on the specific
application of the module, the memory itself is shown only schem-
atically. Data is written into memory from the B bus and read

-20-



RIOS=TOENT, T, Cq

ZSVC o Z/0 shilus
ZRDYO — ‘inpcﬂ' TLSTO '

TACKO T} pg‘l’

sel,

TRDYL ~>_|inpil [EasT2
TACKL Y |porT

TLASTA o] L 78 1
LDATAL [ g A .
8 sel, D-
N
Osvco
ORDYO c]__ou"f
OACKO o— POFT 73
oLAsTO— | © i
8 Sel, L 71
asve 1
ORDY1 <y loUl
OACKL (> |pdFT | _ .
OLASTL ) [ 1 8
DATAL | :
0 8 Self 37 T8

o
>
Un THD
d20-
7%
g<3—

0

Sog A

Figure 8: Input and output ports. The detailed design of the
1/0 ports, built from standard logic chips, is shown in figure 18.
~21-



*A1TeDTIRWRYOS

g 2anbrg

Atuo umoys sT Axowaw utew ‘uorjeorTdde gernorixed ayz uo puadep

*sI0735ThoI SSDIPPR pueR AJOWSW UTER

TITA AxouDuw 2DUTS
» s0g A5
2 2NFoT + 35> '> :NIOT =31TVYM

-1 :NFOT =VH 7 B ,

5.5 D NFOT =VTT vowe

£ .7, .unlv...zm.OH =V7O a¥ ey ﬂa

5, o Jownd( ]
i 7 PPV Uro

2 ITYMO—e) 4 urepoq

8. sy
v E.Mt
H~V -
e S T e S
ST s Ippo ..530\_ 'S Lo §sapgo Lw:n.c
d2 H-v -V
! f 3,
© sng @

!

s0g 9>—

-22-



from memory onto the ¥ bus. So, data can come from either the
input ports or the ALU, and can go to the ALU or to either out-
put port. All control signals for the memory and memory address
registers come from the current micro-instruction.
Timin

An instruction cycle begins when the clock signal changes
from low to high and ends when it does so again (figure 10).
Throughout the processor module, registers, flip-flops, and
memory are written to while the clock is low and change their
outputs when it goes high again. So, the first part of the
clock cycle (when the clock is high) provides for the propagation
and settling of signals through combinational logic, while the
second part enables writing to memory elements.

Before a new instruction can be selected, all inputs to the
sequencer must be stable, including the condition code input.
If the condition code depended on the current operation, the
séiection of the next instruction would be delayed until the ALU
output was stable. Instead, the condition code is generated
from the contents of the previously loaded status register, so

the ALU operation and sequencer operation can proceed in paral-

' i ’h‘jh

Joto

]
] ]
[)
' [}
——oOne Cycle—
Figure 10: The processor module clock cycle. Most propagation
and settling delays occur while the clock is high; all memory
elements are written while the clock is low or at the rising edge.
23~



lel. One consequence of this is that conditional branches can
be made only on pre-tested conditions, but the speed advantage
of this architecture more than offsets the inconvenience. This
arrangement, known as a one-level pipeline based architecture,

is discussed and compared with other architectures in [}].

Microcode Format

The microcode is the source of the overwhelming majority of
control signals in the processor, as well as of some data sig-
nals. Signals derivéd from the current micro-instruction are
summarized in table 1. To specify each of these signals inde-
pendently in each micro-instruction would have been not only
expensive (in terms of microcode memory), but also unnecessary.

Figure 11 illustrates how the microcode format was con-
densed. First, fields that were unlikely to be specified in
the same instruction were overlapped. A full twelve-bit jump
adéress, for example, is fairly rare. Direct data removes the
need for an "A" address (Aadr field), and is unlikely to be com-
bined with a left or right shift. So, the jump address, direct
data, shift mux, and Aadr fields were combined as shown.

Another saving came from the encoding of some mutually de-
pendent control signals. A number of signals affect the state
of the B bus, but relatively few combinations of them are useful.
So, control of the B bus is exercised through the encoded "C"
field and the I/0 enable (IOEN) bit, rather than by control of
the individual signals invlolved. By these methods, the micro-
code width was substantially reduced with only a minor loss of
flexibility.

[ V. .



*oTgerara peindwos B yTm I93unco/aelstbeix ayl butpeol x03
*SPT2TF O/I 2ul TTeI8p L PUEB 9 a7Tym ‘sdunl yo sputy

JruwIoy a9yl ssaThb g aur]
SNOTI®A XOJ S3IBUIOI 2Y3 MOUs § pue
SMOUS g SUIT {UOTIONIISUT DTIBWYITI® TRIDUSL B UOC SUOTIDTIISDI 9yl S93BIISNT

=TT T {uTi
-9ATSM) TINJ ® oSN SUOTIONIJSUT BUuTuTRWeI oy3z ATUO

PeUu S3Ul3UOD JI93UN0D/I938Thax JT ‘¢ OSTVY

‘v

‘€

*Soureu preTy 3ITNRISp 8yl saaTb ( oUuTT

sauTT

‘H J0

‘pTsTI

qa ~¢ sm \@

*elRp 3J09ATP UITM OTIawWyITae

‘JBUIOT DPODOIDTW TT 2InbBTJ

Wduw 3T
‘' ION«xx

‘poA®RS °q 30U

“{TewTo®peXay) F IO ‘d ‘Y ‘8 JO Auvy

0% 9% [o(% 3 o ¢l 6 < T
[ 11 S S ou 8 "
Y EV] «qra~ 1pYg 1poly a a
kil G
m 3 PA0QO ,uﬁo up
0 /&[0
33 BAOGO uho huo
f 11 % o $ 2 a "a
() 9 wﬁ%:«@ ou hq iq
ALD
R Y
PvQ tyg
¥ * w..m..*.s{w; ou - +.u.wk€m.ﬂ
0 x
Jﬁ._ 3_ » B> 9@ Tlr Sruropnor trl°d gy | ‘r
22N 2 o ¥ pworn| P ko P g0, | apeg| spoY |35 4G,
O 5¢] © 37 Tr </ b g T

G oo

DI

C + «

=25-



The meaning of the various microcode fields shown in figure
11 is given in table 2; the different types of micro-instructions

are summarized in table 3.

Sample Microcode

Figure 12 shows a sample of microcode for the processor
module. The code fragment shown is the service portion of an
I/0 handler for the module; it polls the I/0 ports and services
(if necessary) those that are marked as active.

When called (by a "jump subroutine" to DISPATCH), this code
reads the I/0 status and masks the status with the contents of
ALU register zero. If the result is non-zero, indicating that
I/O service is needed, an eight-way dispatch to the specific
service routines follows. Otherwise, the routine returns to its
caller.

Since the two highest-order I/0 status bits are necessarily
zero, there are actually only six I/0 service routines: 10 and
Il for input bytes other than the last of a packet; 00 and 01
for all output bytes; and LIO and LIl for input bytes which are
last in their respective packets. Each routine either returns
to DISPATCH+1 (if more I/O service is required) or to the original
caller. A detailed exegesis of the sample microcode is given in

Appendix D,

Microprogram Loading

Usually, the microcode for a processor is stored in read-
only-memory, because it is only infrequently changed. Since
this processor module is designed for the purpose of implementing

an entirely new machine, however, it seems likely that the micro-
-26—



‘€ Fo 1 3aed

‘gponoaoaTuw sTdweg

ez sanbtd

(T 49 ysow (102 21y)
219, e. (0 #F~ YW IR 7)
Jo > 3y o
oy ] 3 e vy »f py
S.‘Bmt.qsﬂ YL YL
qF |Pwepl st T CTT
CL3$F~0£U ) ol (0o T Iy O 0O O 3 2O Q| ¥
O Ty Lo g pdursundilo 1 0 /] OO|ojdoo7l ¥ | 0] O[S [ D001 T
Va1 Sepos Beol Ty o 0 49 PRW| 1 0 0 0 0] = [/hnes O O Ol D] 4] T[T
XA ST PP 01T T OO VHZ[Iand[ O | O] 01 8 | D1 €10 | ©
THTY»>TY T3 Tppo | 00 { QO[ V77 T O | 1 | O K| 4| ©TlO | =0T
1 1IT
! oxT
l T O
I o
s2u11n0l da.m...dn. o/x i T
vpeisdosddo o dwag 1o 1 1 0o = |1ase 0] 0lo g |5 loz JAsar
430D 4L NIntIa IS 0! 100 T (i) O O[Ol | Dlol o ®
0£TY i ippdieZm 307 100 = (oAt | 0] 0| 8 2 T Foatox
ﬂud..d@dtoc yroy ‘o seyoLS
ool sopwys o/x VOYy ->T¥ 000009 soxy|llsndl 0| O[O | D 2| T | ol © |wwsza
:TSEEOU w.._ ﬂ_ ﬂ_ 2 m 53 .U_m_ 0-x|0-S |#-Tig| O |Fhr|S-8Tj0-Eg|o-t\y| -6 [*99/
z"o 2 ol.| ko0, S0, |8 eV 4o,

-27-



"€ 30 g 3ard ‘spoooxoTu ardues :qzy 2anbra

€991 pe fo
PPuYD ¢l Pwo 9y puv Ly
29} 8y pwo by o woyomrqos
2L Yo7 QQ G [Pt St TO Te
VJiogaas asp. 0t to00] Tlilmn olo|jols>Tolo [
o S BT oot
2459 15t (¥ yunw->g0di00)0 1 1 1 111 0 Zlolwwor & | 0] 0 | s >]lolole
T P 9 Ysow[i 0000 © Iavn) Ol ol o[> 2T TT6s
_ OYFPELINTOWIT 0 7 Qo] T (/w3 0] 0] 0l o 70 ee 007
Usa e 3512 lorro9oo T 1 0O ol o 3/ D] o O} ¥
Q¥ 1Y 7 Do) (N LY)unWi 55109m0] 0 7 7 | ]0 O /|ojgoor | © [0 3 > ol ol®
TYATHINOW T 0 000 € [fjamd O] 00 [ 51 37 T |65
09T QY ob Wy oy=9y JI{0 T 1 00| & |04 S 0| 018 ] D loox
(ory=5y 9 153) 0y@ 9y [0 1 000 T |«|aned O] 01 01 91 507 9| ¥
YISy > aeev Ay 00 1 0 0| VI7 javed O /1T ol AL 19T O T
(0 LY)Ww2w 5000 T T 0] T [THNed O] 01 O 8 ] of 0
Y400 Py FAINIO T 1 00| VIO N 0 0 O % D201 o €
m.m.vaoéqewm_go__om ﬁ\.\_pzmuo 010|181 D14 Ol T] 09
wRWWIO 2§16 S| o-tzfo-Cr (] oF [Fhy|S8r{otg|ocy 7&x [2qv
F ) w_m_n_am D m oL| ko, €0, [TY[*VY| 40, '

-28-




¢ 30 ¢ 3aed ‘spoooantuw ofdures :0ZT 2anbTd

SIS, 9% Utk upﬁ Puo
6. 03 194, Jo buoyd
2yf puv ey pvo gy o f
F¥ 00 Gy b uoyossqos 2y
Y202 OTY OF [™¥uapl SI TTY ) [

U631 B3 ) Q1100 = [/Wmml ol olols Dl olol T
O#[¥ F 9o/ Ty3Ot¥)wiwio | 1 oQlaxymojgoor] # | 0[O [ 8 [ DT o™
Sppe Rl IR Ywrt pyg Ysow| | 00 OO0 v /avn] 0] O] O D1 2| 1 [#k

Ao siEwaw [ 0 1 T o [ 100w O o[ Q[ 8 D] o]l o ™
S>> Pfylo |l 1o00| WHY|t[amd O O[O0 B[ D] | Q] C
THTY 2Ty . Ey~»9ppo-omoio 0 10 O v77[ilanmed 0 [ 1T O] K[ 4[] O] ¥

Q¥ /2 kWO SEI Y| I O I om T [Hvedl O 0| QO[O 4 mo.w\\ oxT7

U wo N x &[S Ko tr{otr || o [Fhz|F8[Eg[o A& rog

* ) u_m_m_a.m ") m oLl ko, €0, "8 "*V| ko, v

-29-




code will change frequently and significantly as it is debugged
and refined. So, provision must be made for loading the micro-
program from an external source.

Figure 13 shows the additional logic necessary to control
program loading. Most significant in these additions is the use
of the disable signal (BEEED to stop the usual operation of the
brocessor. While the disable signal is active, the sequencer
instruction will always be "continue® (unless the reset signal,
too, is active) and the sequencer will use the externally sup-
plied clock (CP2) instead of the module's clock (CP).

Figure 14 shows the timing of a program loading operation.
With both reset and disable active, CP2 is cycled once to reset
the sequencer and ring counter. Next, with only disable active,
the first byte of the first micro-instruction is placed on the
program load data lines and CP2 is cycled again. This sequence
continues, with five bytes to every micro~instruction, until the
entire microcode has been loaded. Because of the arrangement of
the sequencer carry in (CI) input and the ring counter used to
select memory bytes, the microprogram counter will increment only
after every fifth byte is loaded. when disable is inactive (i.e.
in normal operation of the module) the carry in input is always
high, so the microprogram counter is normally incremented.

When the entire microprogram has been loaded, the reset
signal is made active again and the disable inactive, so the
processor is again running with its own clock. When the reset
signal is released, the microprogram will begin execution with

the instruction in location zZero.

~30-



‘°T HIGH
ABCDE
G RsT
cP2 — ‘96 QQ
Qa Qe

i m_cD_lo €z
3

] =J,
jo Tx ™ fD— . . 70 Zo — . -

o —
ENx isHhe wrile enable ﬁr /ucode bj'i‘e. X,
The 70 indfrochion Jogic yields: Tzo=0 (reset) if AET=0

2 D (continue) if AST-DsbL=]

DsBL = I3~o 'rom/c-dc 7‘/?5_7-55—37;1

cp |

CPa — 70 clock inP‘ﬂ"

Figure 13: Additional logic for microprogram loading. If used,
the arrangements shown here supercede those shown in figures

& and 17.

-31-



buot (ubty 18sq y3TM) MoOT PTSU ST ISY ‘pepeoT uesq sey wrezbord 21T
~Uu2 a3yl o3y TUOTIDNAISUT-OIOTW puodss 43 jyo bButpeoy sy3 sjxeas

L ®sTud ‘og  -zan FO 9TDAbd 3xau Byjy butanp SIUBWSIDUT I53UNOD
ureiboxdoxoTw ay3 ‘g asTnd BurmoTTog ubTy ST 1D eouUTg ‘UoTIoNnNIISUT
—OADTW 3I8IATI BY3 JO so3kq SATI 9Y3 peoT 9~z sosTng ‘(€T 2anbry ass)
I93Unod SuTx ey3l pue xsjunoo urexboxdoxdTw 9y3 syosox ¢dd Jo e8sTnd
butoh-aatyehou I8ITF BYL “burpeoT urezboxdoroTw yog butwry :py 2anbTa

™Mo
:n.“ \

30\

ot Z 5 < Fr T z
yby TdD
30\ N\M

:nc \ LSY
™of \
:Dc / TSI




Alternatives

The processor described above is expected to be quite fast,
because it will be microprogrammed, and will be reasonably eco-
nomical in terms of chip count. There are some design alternat-
ives, however, which could improve in one direction or the other,
but probably not in both.

The first major alternative is the use of direct memory
access (DMA) techniques for I/0. Instead of a single pair of
memory address registers, there would be at least five: one for
each port and one or more for the processor. The I1I/0 port ad-
dress registers would hold the memory address for the next byte
to be received or transmitted. Additional registers would keep
track of the number of bytes received or transmitted in a par-~
ticular packet. Instead of needing service from the processor
for every byte, the I/0 ports would require service only before
each packet, relieving the processor of a great deal of work.
Méﬁory access would have to be arbitrated so as to give absolute
preference to the processor (preventing interruption of the
program) and rotating preference to the four ports (to prevent
any one from "hogging" the memory).

Unfortunately, such a DMA system would require a substantial
number of chips (perhaps about twenty) if built of standard dis-
crete logic. So, it does not appear as an economical alternative
for a development system.

A second design alternative is precisely the one that was
not pursued in this project: use of a single-chip microprocessor.
Such a chip would replace the ALU, microprogram sequencer and

selection logic, and the status and shift control unit. As was
~33-



mentioned very early in this Paper, a module based on such a
processor would probably run substantially more slowly than the

processor module described above. If the single~chip processor

‘were combined with specialized I/0 ports and a DMA controller,

however, it might regain some of that speed; how the resulting
module would compare in speed and economy to the one developed

in this project is an unresolved question.

sSummary
The processor module described above, although it has highly

specialized facilities for packet communication, has excellent
facilities for general computation. Use of LSI parts keeps the
chip count low, but the choice of bit-slice components provides
flexibility. The pipelined architecture, as well as the use of
bit-slice parts, allows for a very dquick instruction cycle.
Careful re-use and encoding of microcode fields makes the micro-
code fairly compact without greatly restricting the programmer.
In short, the design presented meets the design objectives of

flexibility, economy, and speed.

-34~



— ! —
3 ____gi 3 gﬂ- ___—2
. A 3 3
DirecrData. O —JDAe p Wi
i 5?‘\1 O % o 0 B8 8us
3 —pa O 38 3
ERA QY] 3E- OF, = C,+TOEN- €3
s 8 !
to MSS Cn ——cne “ o —
2903ingt. 0 —le E'U"s %: —
a iz e 2 ta *
3 ! 2wz
4 — 28 b s —Zow
$ is B a1 Sx0p STOp
8 1S s103
cP —lcp QX0p QIO
ITEN ____|TEN Q10
Oy ahh %
|
RD
2210
Y Bus
Aode ? Ao ) Bo ] Cl) Badr
R 3 a
_ S 83
Dicect Dato. 4 |Dﬂ§. » wE >
i‘_' o DB¢ “5"' 3305
;—oa, O 5 ¢
FA —IfA 9oy on 5z,
. co Cniy -‘L; S ©n from LSS Cnay
Q903 inst. 0 — %o S.:g;‘q. N g
a f\ﬁ' gg“ OVR
3
¥ 23 mmlow
} & L35 Hx6H
P — — 5T0,
=T = 205
S Qx00
TEn —IEN axos QxTOoz
02y Y3 Yo
| | l ‘ Figure 15: Detailed ALU con-
RD nections. The various control
# 654 inputs, as well as the direct
YBUS data inputs, come from the cur-

rent micro-instruction.



CP___]

2

C —

N ___|

OVR —_]
0%t o _
f

a2

3

Low |

HIGH __ |

2904 inst. 6
Fas

8 —

—

——d

2903 inst 8
04 ingt 11

12—

. J—

Ly
IQ
Cx

Y. | B8us2

Y L B8us1

YovR| 8 Bus 3

Ofy b——RSK= T0EN-C, C5C
CT I —cT (¥ 290 &C)
O—— LOW

QIOO “—*—QIOO
(lzgpl___JQJuby

SE b __FE*
Co

LY (940D ‘bL'"lg PUY SNPYYS HOLE W
¥

“SE= FA+ I3 (LT, + 5, (L, 0%)) + RLD,
where To-3 refer to the 2910 instroction
bf'f'.S, N6t the 904 inshuvction bits. This

disables Fhe Ghl)cf

Jines crhenThe shf

instruetion fidd (/AIR )-4) js vsed ’ﬁr
a.nsther purpose. |

Figure 16: Detailed status and shift control unit connections.
The various control lines tied HIGH or LOW reduce the usable
sections of the Am2904 to those shown in fiqure 6.

-36-



ib<6¢*ud7a\)ﬂ3ﬁc GSenifaércé)

P

MAP VECT PL
f-om selection )ojlc, /ag »{D,0
#0 inst. To g?
I° T d
?Q Y I o/uCo e
/2,
T, :-Q o= n’kmorj
I, QO 7'-“—nL°hf
- g
H e
L3 )
Ty
:‘: HIGA q
)-
A 3 ﬂ 2
Figqure 17: Detailed sequencer con- 5 :;
nections. If a loadable micropro- . ﬁ
gram is desired, some connections 3
will be slightly different (see ~ H
£i e 13). .
igur 3 ) Jﬂ
e

~37-



R-Io0S

IRpYO D_> {i
g / 8B8us O
XLASTO ]
AT T o O B Bus 4
——— ZOEN
TACKO Q T {_ ;
I——Ca
L7 ¢ cP
K
CAR
RST
ZOATAGy 5 [T>— 7% |[> 7 8 Bus 0-7
RToSs
ZROYL [ Dc —q TSVCL
» 8 B8usl
ZTLASTL [ L4572 B Bus S
| TOEN
Zacki <3—dda ¥ { For
T\ =¢
ys7s P cp
K
CAR
L RST
LDATA A [V\ . O_,?-
"h-?D 3 V 7 B Bus
-LZOEN 0
s ——OD—— RT0§
<2 —2q
C3—a
Figure 18a: Input ports 0 and 1.

Note that reading the input

Ports causes an automatic acknowledge to the sender:; the rest
of the reset signalling sequence occurs automatically.

~38w



onor0 o b 3 =
, b——CP ' 2
L5 76
K
RIToS
<& | s I“I\
* \ SVC.O
OACKO - ST Y 8us2
Low _| g_____. ¢
GuJ&STT)<:3 Q :IC: 7 Cs Y Bus
$——CP I
/_
chk °Q—‘
L RST
~-—=--7
¢ I
| Dyy : /q Y Bus 0-3
i
ODHTqus '(Q !
A
| A AL <
: } i
| "D,y : 77 Y Bus 4-7
OPATAY 3 -4 |
] I

Figure 18b: Output port 0. Output port 1 is nearly identical,
with suitable changes in signal names and the substitution of
C2 for C2, Y Bus 3 for Y Bus 2, and Y Bus 7 for Y Bus 6.

-39-



Area Signal Name # Bits

2903 A address 4
B address 4
Direct Data 8
EA, IEN, OE,, OE_ 4
IO—I8 (instruction) 9
2904 SE, OE,, CE, 3
To-3¢ Te-9’ I11-12 10
2910 10‘3 (sequence instruction)
CCEN 1
DO-ll (jump address) 12
/0 write output byte 1
write last output byte 1
read input byte 1
read I/0 status 1
select I/0 port 1
Memory load higher address 1
load/clear lower address 2
read/write 2 (total: 69 bits)

Table 1: Summary of Microcode-Derived signals.

-40=-



Field Name

1-4 '04 inst.
Iy-6

5~8 Aadr

1-8 Direct

Data

9-12 Badr

1-12 Jump
Address
Dy1-0

13-21 03 inst.
Is-0

Table 2a:

Description

Bits 6-10 of the Am2904 instruction are the
shift linkage mux instruction. However, bit
10 is the same as Am2903 instruction bit 8.
These bits are used as the shift mux bits
only if EA=0 (no direct data) and the Am2910
instruction is 8, A, D, or E.

The Am2903 "A" address, provided EA=0 and the

sequencer instruction is 8, A, D, or E.

Data for the Am2903 DA input port, if EA=l.
Used for arithmetic constants and logical
masks.

The Am2903 "B" address, if the sequencer in-
struction is 2, 6, 8, A, D, or E.

The Am2910 "D" input data. Only the first
{({i.e. most significant) four bits are used
for a variable register load:; the last eight
bits are read from the B bus. The first
eight bits are used for the JMAP (l6-way dis-
patch}) and CJV (8-way priority dispatch) in-
structions; these take their last four bits
from the B bus. All twelve bits are used
for other instructions that use the D input.

The Am2903 instruction.

Microcode field definitions. Part 1 of 3.

41—



Field Name

22-27  '04 inst.
T12-11
I3 0

28-=-31 '10 inst.
T30

32 ECEN

33-35 ¢,

36 IOEN

Description

Bits 3-0 of the Am2904 instruction select the

condition code to be generated; bits 12-11
control the carry in bit generated.

The Am2910 microprogram sequencer instruction.

condition code enable for the Am2910.

Active low.

If IOEN=0,

C_ B Source B Dest. Mnemonic
0 1I/0 status ALU (DB port) RIOS
1l status regq. " RSR

2 ALU (DB) (none) (default)
3 " (clear lower addr. reg.) CLa
4 " higher addr. regq. LHA

5 " lower addr. regq. LIA

6 " memory input WRITE
7 " 2910 counter RLD

If IOEN=1, the current instruction is an I1/0
instruction. C=Oxy is input; c=lxy is output.
For both, x selects the input or output port
to be used. For input, y indicates whether
the input byte is written to memory. For
output, y indicates whether the byte being
sent is the last one in a packet.

LI/0 enable. Indicates an I/0 instruction.

Table 2b: Microcode field definitions. Part 2 of 3.

-4 2



Field Name
37 RD
38 CE
39 IEN
40 EA
Table 2c:

Description

Selects source of Y bus. RD=1 selects main
memory (read); RD=0 selects the ALU Y port.
Enables loading of the status register.
Active low.

ALU instruction enable. Enables write to
the B address, Q register, and sign FF, if
specified by the instruction. Active low.
Selects the "R" source for the ALU (see
figure 5). EA=0 selects the "A" memory
output; EA=l selects the DA input port (i.e.
the direct data field, see above).

Microcode field definitions. Part 3 of 3.

—43—



l: General Arithmetic. The Am2910 instruction is restricted to
8, A, D, or E because these four instructions do not use the "D"
input. So, the first bits of the micro-instruction are available
for use as the shift mux field. It is possible to use 4 (PUSH)
as the sequencer instruction also, but the register/counter will
be loaded conditionally with the first twelve micro-instruction
bits. Also, the shift mux will be disabled (SE=1), so the shift
mux field will have no effect. A general arithmetic instruction
may include I/0 (see below).

2: Arithmetic with Direct Data. This is very similar to General

Arithmetic, but EA=l causes the DA input instead of the A memory
output to be used as operand "R" (see figure 5). The shift mux

is disabled and the "A" address is irrelevant, so the first eight
instruction bits are used as the source of the direct data.

3: Computed Jump (16-way dispatch). Use of Am2910 instruction

2 (JMAP) enables the MAP selection line. The eight high order
bits of the jump address are the first eight micro-instruction
bits, but the last four bits are read directly from the B bus.
Again, the shift mux is disabled. Also, since the "A" address
cannot be independently specified, the Am2903 instruction should
not use the R operand.

4: Priority Dispatch (8-way dispatch). Use of the Am2910 in-

struction 6 (CJV) enables the VECT selection line. The eight
high order bits of the jump address are just as for JMAP, but
the last four bits are a zero followed by the number of the

least significant non~zero bit on the B bus.

Table 3: Microcode Instruction Types. Part 1 of 2.

~44-



5: General Jump (or fixed register load). All other sequencing

instructions which use the Am2910 "D" inputs (D ) enable the

11-0
PL selection line, which selects the first twelve micro~-instruc-

tion bits. This allows for all varieties of jumps to fixed
locations, as well as for loading the register/counter with a
fixed number.

6: Input. I/0 instructions are marked by IOEN=1l: input is dis-

tinguished further by Cl=0. For an input instruction, C2 selects

the particular port (0 or 1) and C_, specifies if the input byte

3
is to be written to memory.

7: Output. For output, Cl=l, C., selects the particular port, and

2
C3 indicates whether the current byte is the last of a packet.
I/0 instructions may be combined with all of the preceeding in-
struction types, but not with the one following.

8: variable Register/Counter lLoad. 1If a variable load of the

Am?910 internal register/counter is specified (see "C" field
definition, Table 2), bits 1-4 of the current micro-instruction

are used the the highest order "D" inputs (D ). The remaining

11-8
eight bits are read from the B bus. The Am2910 instruction is
restricted to those codes which do not use the "D" inputs, al-
though one might be able to achieve some tricky effects by ig-

noring this prohibition.

Table 3: Microcode Instruction Types. Part 2 of 2.

—45-—



Appendix A: Am2903 Instructions ALU FUNCTIONS

The following tables summarize 'a [ 13|12 11 | Hex Code ALU Functions
b L Specnal Funcllons
: : Ll 0 SR R
the operation of the Am2903; Iy H F. HIGH
see [}] for more detailed infor- [(|L]|L|H 1 F::SwmmRMmthMSEL
. LIL{H[L 2 F = R Minus S Minus 1 Plus Ch
mation and application notes. CIC|H (A 3 F'= R Plus S Pius C,
LiH| L] L 4 F = S Plus Ch
L{H|LIH 5 F =5 Plus C,
LIR[H[L 6 F =R Plus C,
ALU OPERAND SOURCES SN HIH 7 F=FRPus G,
HiL|LlL 8 Fi = LOW
Ean i lp | OEg | ALUOperand R | ALU Operand S HiL|L[H 9 Fi = R, AND §; PI
HIL|H|L A F, = R, OR &;
L] L RAM Output A RAM Output B i I . i ;" ::CLU::L’E NR s"i
Ll H AAM Output A DBo.3 i = Ri EXCLUSIVE OR S;
L | H X RAM Output A Q Register HiHjL[tL c Fi = Ri AND §;
H | L L DAg 3 RAM Output B HiH|L]H D Fi = Ri NOR §;
H L M DAg. 0Bq. H{H[R]L E Fi = A; NAND §,
H H X DAg 5 Q Register HIHIH[H F Fi = R; OR §;
L =L10wW H = HIGH X = Don'tCare | = LOw H = HIGH i=0toa
ALU DESTINATION CONTROL FORIg ORIy ORI, ORI, OR I, = HIGH, IEN = LOW.
0 1 2 3 4
] | !
l l Sl°3 Y3 VY-‘-,‘_ : II Ii Q Feg & |
Hex ALU Shifier luo-t Sig. | Other Most Sig. Most Sig. | Other | —— J Shifter |
s 7 lg g | Code Function | Slce | Shces | Slice | Slices | Slice J Slices . ¥, I Yo | S0 ; Wrts | Function | o0, (a0,
[ l [ Anth Fi2 oY gt | inpul l Fy S0, [ s0y | F, IR f Fa | LU i Hold U HeZ | ez
L L Lt H ‘ i Log Fiz =y input I nput SI0, 80, - F, LE F2 IF‘ [ Fo i L _I Hoa "z If N
AL B R YO R Input ’ o | 1 s, L s, L N P Fo L} LogQ2~Q | mpu | Qg
R [ log Foy ( o gt ' Si0, : SO, 1 F, Foo | Fy ';. ‘ £ - | tog Gz—0 E nout | Qg
oMo ] ﬁ Foey l npd epat fy LT ! Fy [ fr, Ty 1 Pany ; L | Hoid Y 4 | oz
1 H 1 H r B} ‘ F ey [ Input {‘ gt i F, f [ ! [ ’ by : Fy ’J” I Panty ' H ’ Log 2 Input Cy
! H H B F ey ’ Injust [ gt f 1 Py L | P, : 1, ! FyooEy Pariy : H ! F=Q " z Fi-Z
L H W n ' ; F ooy inpust ' Inprat i b, Py, ‘, Ve, F E&u Paty | & | F=g Dz owez
HooLooL ¢ [ ; A ZE -y ! ¥, I My, !' £, s : fo 1505 [ mpa U e oz w2
H oL 1w f 9 J Log 2F .y l Fy ! Fy " Fa i s 1Ry ‘I Fy , Fo |5‘0u ' oput L i Howg "z oz
HoLoHoy A Arth_ 2F -+ f Fa [ &, f‘ F, J ooloE [ F, Fo (805 | mpw | L f lag ageg Gy ! ingur
LS VO ;Lug 2F v A 1 b R A S I F T S0 | wmpwt | Lo 300 - T
H H R [od I F -y ' Fs | Fy E Fy f Fs i Fas ‘ Fa ] Fi |Ffg Wiz "*._M’ﬁi_j How 77 p:.].vf_f—ﬁfz"
H H L H o Fay F, l £y Fy i ] R f Fa i F ) Taz tUTTRT i"'ll_o'g.'}'é:d—: Qs 7 inpu
H W oMo 3 { SK0g~Yg. ¥y, Y5 vy | SI0g siop | S0, | S0y | sio ’ $I10y 1'5'00 00 | Input ;'"“_ N R AT
[ w w oW Foy | F, Do, o B L F g [/ e T6 T ows U Twee 7T Rz R
Parity = Fy v Fp v Fiv FgwSI0,4 L=LOW Hi-Z = High impedance
¥ - Exclusive OR H = HIGH

-46-



SPECIAL FUNCTIONS: Ig = Iy = Ip = I3 = I5 = LOW, iEN = LOW

810,
Q Reg &
Hex Special ALU Shifter | Most Sig. | Other Shifter
g 17 fg l5 Code Function ALU Function Function Slice Slices SI(:Do Function Qlo, QIOo WRITE
. ! F= 8+Cpif Z=L Log. F/2—Y .
L L L L 0 Unsigned Muttiply F=R+5+Cp, i Z=H {Note 1) Hi-Z input Fg tog. Q/2—+Q | input | Qg L
T - - —pr e e e Ly e e
Two's Complement | F=S+Cp, it Z=L Log. F/2—Y .
L L H L 2 Muttiply F=R+S+Cp il Z=H (Note 2) Hi-Z Input fa Log. Qi2—+Q [ Input | Qg L
S Y SO PR SRR B ——— [ —
Incrament by _ . . )
L H L L 4 One or Two F=S+1+C, FY Input Input Parity | Hold Hi-Z | Hi-Z L
SignMagnituge- | F=8+Cq # Z=L | F—¥ - . ) T -
L H L H 5 Two's Complement | F=5+Cp if Z=H {Note 3) Input Input Parity | Hold Hi-Z Hi-Z L
Two's Complement |F=S+C, it Z=L Log. Fi2—Y - T
L H H L 6 Multiply. Last Cycle | F=S-Ro1+Cn#Z=H| (Note 2) Hi-Z Input Fo tog. Q/2-+Q | Input | G L
Single Length - —
H L L L a N:)“gmﬁn F=5+GC, F—¥ Fa 5 Hi-Z | Log. 200 | G Input L
Double Length ST
H L H L A Normalize and F=3+C, Log 2F Y R3¥ Fy Fx Input | Log. 20-+Q | Q4 input L
First Divide Op.
Two's Compiament | F=S+ R+C, if Z=L — -
H H L [9) n Log. ZF—Y Ry ¥ F F. Input Log. 2Q-+Q Q Input L
- Divide F=S R-1+CpitZ=H| 0~ AT 3 w . 9 Pu
Two's Complement |F=S+R+C, if Z=1. B -
H H H E Divide, Correction |F=S-R-1+C,ifZ=H| F-Y Fy F3 Hi-Z Log. 2Q-+Q | Q3 Input L
and Remainder
NOTES: 1. At the most significant slice only, the Cy,; 4 signal is intermally gated to the Y, output. L LOW Hi-Z = High Impedance
2. At the most significant skice only, F3 ¥ OVR is internally gated to the Y5 output. H - HIGH ¥ -~ Exclusive QR
3. At the most significant slice only, S4% F5 is generated at the Y3 output. X Don't Care Panty SIO;VF;¥FVF, ¥ Fa

4. Opcodes 1,3, 7, 9.8, D, and F are reserved for future use.

47—



Am2903 STATUS OUTPUTS

] ~ P/OVAR T GIN z
! (Hox)  (Hox Gi P Most Sig. | Other | Most Sig. [ Other | Most Slg. [ intermediete | Losst sig.
i_l'lyic 5 lgslaly lp ) (i-0t03) 1 Oto3) Chia Slice Siices Shice Slices Slice Siice SHes

Fi 0 H[o 1 0 [} ) Fy G YoY1¥,%, Yo¥1¥a¥q Yo¥ ) ¥ovg

X 1 x | A AS; R vs, GVPCh | ChiyyCnia| B Fy G ¥o¥,¥,7, Yot YoV, YoV, vV,

x 2 X | A AT, R v § G v PC, CniayCnis| P Fq & YoV Va7, YoV V.7, Sz

x a x | R AS, R,V 5 GVPC, ChisyCnig| P Fi [ oV Vs¥q Vo¥:Va¥y o1 Va7,

x 4 x !o s; GV PC, ChizwCnia] F Fy ] Fo¥i V.73 Fov¥aTs AESOSAAL

X 5 x|o (! GVvPC, Chi3yCnia| P Fa e} Vo¥ 1 Va¥y YoV, Va7, ¥o¥iYaVy

X 6 X {0 R; GV PG, CntawCasa] P |7 'F7 7771 ®- FT1Va¥, Vovivevs | EANAA

x 7 x |o LR Tevet, T vl FT F3 T YoV1VaV3 | VgVyVa¥s | Vovivav;

TR T TR [T 0 TTTTTTo 3 Vo¥1V275 AN AAAL
S . X RAS 1 o 0 ¢ [ [} Yov1¥275 ARAD Yo¥iv¥o¥s |

T CTATTXT R AS Ri VS 0 i D Fi g Yo¥1¥273 Yov1¥273 YoY1vavs

R S FAS LS, CEl 0 0 Fa ef Yov1¥aV¥s AAAAD AAAAL
xR TR A T o o 0 B Fa TE& T Vovyvavg YoY1¥2¥3 | Yg¥y¥ors
 x 0T X | /AT, 1 [ o o o Fa o] Yov1¥o¥s \SAAS Yor ¥2vs
[ x T TE X [ R AS; i v 0 T8 Fa [ Vo¥17275 Yov1V2%5 | ¥oT1¥av5 |
xR UTYTEA - 1 o 0 T e Fa ] Yo¥:¥o¥, Yov1¥s73 Yo¥1¥a¥s

o 0 L 2:\25:‘ b 2om i:\'; ;i:il;Z;H GVPCh | CryawCnsa| P £5 3 Input Input ‘@

2 0 L gi‘:\zs‘i t 7H g: '\'/zs'ilﬂ 2RI GVPCh | ChiayCniel B Fa ] Input input - Qg

4 0 L | See Note 1 Ses Notw 2 GV PC, CniavwCnia| P Fa G YoV Vo, Fo¥y¥a¥, Vol Vo7,

5 0 Lo g: ::§ o GVPCh | CayayCnial P FSFJ ;az"' zL Wl € 54 Input input

6 ¢ L g.df\zsi Er . 2:\';:' uLz n | 6veC, CniagCara| P Fy é Inpul nput Qg

8 0 Lt o S, Ses Note 3 a3 v Q, ] [+ 10 G 8001G.8, | T,5,5,5; 8,0,0,G;

A o L |0 5; See Noie « Faw Fy F Fa [} See Note 5 See Note 5 See Nole 5

©0 AR RV Joven Jenavend] B | n | g [smomm| o
L o clRnsien [ aveis [oven [emsvend| o [ o [T Tomeme] o

L=tOw=0 NOTES: 1. If L58 is LOW, Gg = Sg and Gy,23=0

H = HIGH = 1 U LSS is HIGH, Gg 1,53 = 0

V= OR anEmwwmusrmamga=&13

A= AND HiSSis HIGH, P; - 5,

¥ = EXCLUSIVE OR 3. At the most signiticant slice, Ch+a = Qv Q;

P = PyP,P, Po Al other siices, Cn+a = GVPC,,

G« G:VGZPJVG1P293VG0P1P2P3 4. At the most signiﬁcant stice, Cn+4 = Fsv Fz

Cnya = G2VG1P2VGP1PVE PP Py At other siices, Cnts = GVPC,

5. Z= 00010203F0F1 F2F3

-48—



Appendix B: Am2904 Instructions

CONDITION CODE QUTPUT (CT) INSTRUCTION CODES.

lLExD |3 lz |1 |° |5 = 1, !4 =0
] 0 1] 4] Q My @B Movg) + Mz
1 0 0 o0 1 {MN® Maya) * Mz
2 o] ] 1 0 Mn @ Mgyr
3 0 0 1 1 MG Moyn
4 c 1 o o Mz
5 0o 1 0o 1 Mz
6 o 1 1 o Mova
7 o 111 ova
8 1 [+] 0 0 Mg + Mz
8 1 0 0o 1 Mg - M;
A 1 0 1 © M¢
B 10 11 Mc
c 1 1 ¢ 0 Mg + Mz
D L Y R Mg » Mz
E 1 1 1 0 My
F T 111 My

Notes: 1. @ Represents EXCLUSIVE-OR

(® Represents EXCLUSIVE-NOR or coincidence.

See [4] for more information.

CARRY-IN CONTROL
@ULT{PLEXER INSTRUCTION CODES.
b2  h1 I3 12 l4 Co
0 0 X X X 0
0 10X X X
1 0 X X X Cx
1 1 0 X X Mc
1 10X 1 X Mc
1 1 X 1 Mc
1 1 1 0 M¢

CRITERIA FOR COMPARING TWO NUMBERS FOLLOWING A MINUS B OPERATION.

For Unsigned Numbers For 2's Complement Numbers
B f3.0 N [ ) o
Relation Status '_CT =H [ CT=L Status CT=H r CT =
A=8B Z=1 4 5 Z=1 4 5
AzB | z-0 5 . z-a0 5 4
Acs | cod A 8 | N®OwA=1 3 2
Ao B c o B A N@OVR 1 2 3
AB C-Z -1 D ‘¢ NGOOVA)-Z 1 1 0
A-B Tz o c b (NG OVR) + Z ~ 1 0 1

%) = Exclusive OR H = HIGH
(& = Exclusive NOR L = LOW

Note' For Am2910, the CC input is active LOW, 50 use |4 g tode to produce

CT = L for the desired tast.

Rtji,s—l’er Lood OP erac'l'fon,s

CE | Z45_p Operation
0 | 0-7 i
A-F Normal Load
O | %,9 Load with inverted carry

-

(any)

No Loag

—49-




SHIFT LINKAGE MULTIPLEXER INSTRUCTION CODES.

ho g I3 b 1g| Mc RAM Q SI0, | sio, [aw, | alo, i';:t’:dl:g
MSEB LSB MSB LSB

0 0 0 0 0| Qoef=F.f—F z 0 z 0

0 0 0 0 1 D ‘—E.. .—.E_ Z 1 Z 1

°© 0o o 1 o == | z 0 z My SIO,

0 0 0o 1 1| Q.= (=} z 1 z SI0,

°© 0o 1 o o O—_=F—-—} z Mc z SI0,

© 0 1 0 1| Qul=—[=F} z My z SI0,

o 0 1 1 o [J-=}—=F} z 0 z SI0,

0 0 1 1 1| O —a=F | z 0 z S0, QIo, .

o 1 0o o o OA=H =]z | so, |z Qio, SI0,

o 1 0o o 1| O—t=H = z Mc z Qio, SI0,

o 1 o 1 ol O == 2 S0, z Qio,

0 1 0o 1 1 Ovr{=F—=F z le z S0,

o 1 1 0 o D" =7 | 2 Mc z Sio, Qio,

0 1 1t 0 1 DT{:E——L_':'}] z QIO, z SI0, QIo,

0 1 1 1 0 O ) L'OE~—-E- Z |INSBloyr]| Z SIQ,

0 1 1 1 1 O LEI——EJ z QIo, z sio,

- MSB LSB MSBE LSB

1 0 0 0 o o =] O z 0 z SI0,,

10 0 0 1 [Fa=Fr =T 1 z 1 z SI0,

1T 0 0 1 0| [J ~[Fo-=F+| o z 0 z

00 1 | O = =] 1 P4 1 z

1 0 1 0 0 O—=1—{=73~-| aio, z 0 z 810,

1 0 1 0o 1 (=1 a0, 4 1 z Sio,

vt e 1+ v o O {=F+——{=1:{ai0, z 0 z

1T 0 1t 1 1 O == | QIo, pA 1 Z

1 1 0 o0 ¢ D—l—éj LE-J SIO,, Z QIo, z SIo,

1 1 o o0 1 tl-——-lzjj L@ M z Qio, 2 510,

1 1 0 1 o J L@ LE]J SI0,, z Qio, V4

1T 1 0 1 1 5@ LT | M z 0 z

1 1 1 0 0 [ —{ —] QIo,, z Mc 2z SIO,

1T 1 1 0 1 D‘J—E——Eg QI0, z SO, z SI0,,

11 1 1 ol O =1 = QIo,, z Mc z

T 1 1 19 O LEI—{EJ QIO, r4 SI0,, z




Appendix C: Am2910 Instructions

REG/ . FAIL - PASS
HEX CNTR | CCEN = LOW and CC = HIGH | TCEN =HIGH or CC= LOW | oo,
13lg | MNEMONIC NAME Tents Y STACK v STACK CNTR | ENABLE
0 1z JUMP ZERO X 0 CLEAR 0 CLEAR HOLD PL
R cis COND JSEPL X e HOLD > PUSH | HOwe | PL
2 IMAP JUMP MAP X o HOLD 0 HOLD HOLD | MAP
3T cwe | conpaumeel | x pc | HoLD o ] hoio  [HOwD | PL |
"4 | PusH | PUSH/COND LD CNTR “x T ke | eusH pc | PUSH | Now1 | PL |
s | ssmp | conpssBR/PL x A PUSH o PUSH HOLD pL
6 CJv COND JUMP VECTOR x Pt HOLD [ HOLD ML) vECT
7 JIP COND JUMP 1/ X it HOLD 1} HOLD HOM 1y Vi
) /0 F HOLD F HOLL DEC L
8 RFCT REPEAT LOGP, CNTH / O
0 PC POP PC POP HOLD PL
B ) /0 D HOLD D HOLD DEC PL
g RPCT REPEAT PL,CNTR / 0
o PC HOLD PC HOLD HOLD PL
A CRTN COND RTN X eC HOLD F poP HOLD PL
8 | cwp COND JUMP PL & POP X rc HOLD 5} POP HOLD PL ]
T ¢ i oLper LD CNTR & CONTINUE X PC HOLD PC HOLD Loap | PL
D LOOP TEST END LOOP X F__ | _wnowo PC POP oo | P ]
£ CONT CONTINUE X PC HOLD PC HOLD HOLD L
F TWB THREE-WAY BRANCH *0 F - HOLD ke POP DE-C L
=0 POP eC POP HOLD PL
Nate 1: If CCEN = LOW and CC = HIGH, hold; else 1oad. X = Don’'t Care
The above table summarizes the Am2910 instruction set. Addition-

ally, RLD forces loading of the internal register/counter regard-

less of the current instruction.

application notes.

~51-

See (3] for further details and



Appendix D: Sample Microcode Commentary

The microcode fragment shown in figure 12 is designed to
poll the I/0 prots and service those which are both servicable
and marked as active.

The "active list"” is maintained as a mask kept in register
zero (RO). A particular port is listed as active if the bit(s)
corresponding to its status bit(s) are set to one. Input port 0,
for example, is marked by bits zero and four; output port one by
bit three.

The first step of the microcode shown reads the I/0 status
(C=RIOS), masks it with RO (Radr=0, '03 inst.=F,C,0), and writes
the result in register one (Badr=1l). The status register is.
loaded (CE=0), and the next address (i.e. DISPATCH+l) is pushed
onto the stack ('1l0 inst.=PUSH). The PUSH instruction also con-
ditionally loads the register/counter with the first twelve bits
of the current micro-instruction, but this is an unimportant
side effect in this case.

The next step does a conditional eight-way dispatch ('10
inst.=CJV). The dispatch is made if the result of the previous
step (now the contents of R1) was non-zero ('04 I3_O=4). The
First eight bits of the destination address are the first eight
bits of the micro-instruction; the next bit is zero; and the
last three bits are the number of the least significant non-zero
bit on the B bus. Badr=l, so the contents of Rl are on the B
bus. As a result, IOSVC must have an address whose last four
bits are zero. It and the following five lines (since there are
only six status bits) constitute a dispatch table for I/0 ser-
vice.

=52~



if the dispatch is not made, control goes to the next state-
ment, which pops the address stack and jumps to that address ('l0
inst.=CRTN). The jump will be to the previous instruction, the
dispatch condition will fail agian, and on the second pass this
instruction will cause a return to the caller. The first invo-
cation clears "DISPATCH+1" off the stack; the second has the ac-
tually desired destination.

why is the extra address on the stack? So that the dispatch

step can be the first of a loop. In addition to servicing the

appropriate port, each of the six particular service routines
masks out the bit that caused it to be called, then loops back
to the dispatch step is Rl is still non-zero.

Associated with each port is a pair of registers containing
the memory address for the next byte to be written or read. In-
pur port 0 uses R2 and R3, so I0 starts by loading the address
registers from R2 and R3. It also increments R2, the less sig-
nificant half of the address, so the next byte will go in the-
next location. The assumption is made here that packets are less
than 256 bytes long, so R2 will not overflow. If overflow were
an issue here, one could add the carry out from the increment of
R2 to R3 without any additional steps.

Next, IO masks out bit zero of R1l, reads the input byte into
memory, and loops if Rl is not zero. If clearing of bit zero
made Rl zero, the routine returns to the original caller.

0 is similar to I0, but masks bits zero and four of RO as
well, to mark input port zero as inactive. It also writes R2
into memory at the front of the packet just received. Assuming
R2 was initially one, its final value will be the length of the

53—



packet plus one (by induction).

The output routines are designed to transmit Packets of the
format written into memory by the input routines. Thus, they
check in front of the packet for an indication of its length:
if the current byte is the last one, they mask the appropriate
RO bit to mark the port inactive.

-54—



Bibliography

EIE

Dennis, J.B., Misunas, D.P., and Leung, C.K.,

"A Highly Parallel Processor Using a Data Flow
Machine Language." Computation Structures Group
Memo 134, MIT Laboratory for Computer Science,
Cambridge, Massachusetts, January 1977.

Redford, J.L., "A Design for a Routing Module."
Computation Structures Note 39, MIT Laboratory
for Computer Science, Cambridge, Massachusetts,

February 1977.

The 2900 Family Data Book. Advanced Micro De=-

vices (AM-PUBQO3), Sunnyvale, California, April,
1978.

Am2904 Status and Shift Control Unit. Advanced

Micro Devices (AM-PUB077}, Sunnyvale, California,
1978.

-55—



