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ABSTRACT

Certain types of programming languages are suitable for expressing programs to be executed
on data flow computers because of the similarity between the languages’ execution model and that
of the computers. The principal feature of the execution model of data flow computers is the
absence of a conceptual “global memory” and a reliance on jocal transmission of data values among
instructions. The main characteristics of data flow languages are locality of effect and freedom from
stde effects. These characteristics are discussed in the context of the evolution of data flow

languages from conventional ones.

While locality of effect is not difficult to achieve, freedom from side effects requires a
fundamental alteration in the execution model of the language. Among the visible characteristics of
programs written in data flow languages are the “single assignment” principle, an operator-based
(rather than action-based) handling of array and record structures, and 5 restriction on the

appearance of assignments within iterations.

Key words and phrases: data flow, paralielism, applicative programming,

single assignment, side effects, definitional languages
I. INTRODUCTION

There are several computer system architectures which have the goal of exploiting parallelism:
multiprocessors, vector machines, and array processors. For each of these architectures there have
been attempts to design compilers to optimize programs written in conventional languages (eg.
"vectorizing” compilers for the FORTRAN language). There have also been new languagé designs
to facilitate using these systems, such as Concurrent PASCAL for multiprocessors [6], and languages

that utilize the features of such systems directly, such as GLYPNIR for the Iiliac IV array processor



(19 and various "vectorizing” dialects of FORTRAN. These languages almost always make the
multiprocessor, vector, or array properties of the computer visible to the programmer, that is, they
are actually vehicles whereby the programmer heips the compiler uncover parallelism. Many of
these languages or dialects are "unnatural” in that they closely reflect the behavior of the system for
which they were designed, rather. fhan reflecting the way programmers think about problem

solutions.

Data flow computers also have the goal of taking advantage of parallelism. As will be seen
below, the parallelism in a data flow computer is both microscopic (much more so than in a
multiprocessor) and all-encompassing {much more so than in a vector processor). Like the other
forms of parallel computer, data flow computers are best programmed in special languages. In fact,
their need for such languages is stronger -- most data flow designs would be ex.tremely inefficient if
programmed in conventional languages such as FORTRAN or PL/I. However, languages suitable
for data flow computers can be very elegant. The language properties that a data flow computer
requires are beneficial in their own right, and are very similar to some of the properties that are
known to facilitate understandable and maintainable software, such as the absence of undisciplined
control structures and module interactions. In fact, Ianguiges having many of these properties have
been in existence since long before data flow computers were conceived. The principal property of
a language suitable for data flow is freedom from side effects, which will be described below. The
(pure) LISP language [20] is the best known example of a language without side effects. The
connection between freedom from side effects and efficient paraliel computation has been known for

over ten years [25).

To see why data flow computers require languages free of side effects, we must examine the
nature of data flow computation and the nature of side-effects. A detailed description of the

mechanism of data flow computers is beyond the scope of this paper. The interested reader is



referred to [2, 12, 15, 21, 22, 23}

There are three "data flow” languages that will be discussed in this paper. VAL [1) and ID [3]
were developed by the data flow projects at the Massachusetts Institute of Technology and the
University of California at Irvine, respectively. LUCID [4] was developed for program verification,
not for programming data flow computers. It nevertheless is a suitable language for data fiow

computation.

Let us begin by examining a simple sequence of assignment statements written in a
conventional programming Janguage such as FORTRAN:

P = X+Y
Q=P/Y
R = XxP
S =R-Q
T =RxP
RESULT = §/7
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A straightforward analysis of this program will show that many of these instructions can be
executed concurrently, as long as certain constraints are met. These constraints can be represented
by a graph in which nodes represent instructions and an arrow from one instruction to another
means that the second may not be executed until the first has completed. So the permissible

computation sequences include, among others:

(3,52 4,6)
(1,235 4, 6)

(I, {2 and 3 simultaneously], [4¢ and 5 simultaneousiy], 6)



Figure L.

DP=X+Y

(5) T = RxP

(6) RESULT =5§/T

This type of analysis (commonly called data flow analysis, a term which long predates data
flow computers) is frequently performed in two situations: at run time in the arithmetic processing
units of high performance conventional computers such as the IBM 360/9], and at compile time in
optimizing compilers. In optimizing compilers, data flow analysis yields improved utilization of
tempor.ary memory locations. For example, on a computer with high-speed general purpose or
floating point registers, this program can be compiled to use the registers instead of core memory
for P, Q, R, S, and T, if it can be determined that they will not be used again. (This determination
is very difficult, principally because of GO TQ's, which is one of the reasons why it is very difficult

to write optimizing compilers for languages such as FORTRAN.)

In the graph representation, an instruction can be executed as soon as all the instructions with
arrows pointing into it have completed. On a multiprocessor system, we could allocate a processor
for each instruction, with appropriate instructions (such as semaphore operations [13]) to enforce the
sequencing constraints, but execution would be hopelessly inefficient because the parallelism of this

example is far too "fine grained” for a multiprocessor: The overhead in the process scheduling and



in the wait and signal instructions would be many times greater than the execution time of the
arithmetic operations. A data flow computer, on the other hand, is designed to execute algorithms
with such a fine grain of parallelism efficiently. In these machines, parallelism is exploited at the
level of individual instructions, as in the above example, and at all coarser levels as well: In most
programs the;'e are typicaily many parts, often far removed from each other, at which computation

may proceed simultaneously.

To exploit parallelism at all levels, the instruction sequencing constraints must be deducible

from the program itself. Let us refer again to the previous program to see how this may be done.

The sequencing constraints in Figure i are given by arrows. 1t is not difficult to see that these
arrows coincide with data transmission from one instruction to its successor through variables. In
fact, the graph could be redrawn with the arrows labeled by the variables that they represent, as

shown in Figure 2.

In a data flow computer the machine level program is represented essentially in this form: a
graph with pointers between nodes, the pointers representing both the flow of data and the
sequencing constraints. Each instruction is kept in a hardware device (an extremely simplg
“processor”) that is capable of "firing” or executing an instruction when all of the necessary data

values have arrived, and sending the result to the processors that hold destination instructions.]

I Although the language concepts presented in this paper assume that the computer exploits
parallelism at a microscopic level, not all "data flow” or "data driven” computers do so. Designs of
data flow computers that exploit paralielism only at the subroutine level may be found in [0} and
[24). ‘



Figure 2.

T

{(6) RESULT = /T

|

RESULT

The programming language for a data flow computer must therefore satisfy two criteria:

) It must be possible to deduce the data dependencies of the program
operations.
2) The sequencing constraints must always be exactly the same as the data

dependencies, so that the instruction firing rule can be based simply on the

availability of data!

I Not all designs for data flow computers accept the second of these criteria or its consequences.
The LAU language [9] is intended for execution on a data flow computer, but it was designed to
support data base updating and retrieval, so it has side effects on certain operations. The
sequencing of these operations must therefore be constrained by means other than data
dependencies, and so it does not satisfy the second criterion. The extra constraints in LAU are
specified by path expressions [7] written into the source program.
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There are two general properties of a language which make it possible to meet these criteria:

locality of effect and freedom from side effects.
2. LOCALITY OF EFFECT

Locality of effect means that instructions do not have unnecessary far-reaching data
dependencies. For example, the FORTRAN program fragment given previously appears to use
variables P, Q, R, S, and T only as temporaries. A similar program fragment appearing elsewhere
in the program might use the same temporaries for some unrelated computation. The logic of the
program might be such that the two fragments could be executed concurrently were it not for this
overuse of names. (Unfortunately, many conventional languages encourage this style of
programming.) Any attempt to execute the program fragments concurrently would be irhpossible
because of the apparent data dependencies arising from overuse of these temporaries, unless the
compiler can deduce that the conflict is not real and remove it by using different sets of

temporaries.

In languages such as FORTRAN and PL/L, this is not so easy to determine. A reference to a
variable in one part of the program does not necessarily imply dependence on the value computed
in another part: the variable might be overwritten before it is next read. Careful analysis is
required to determine whether a variable is actually transmitting data or is "dead”. This analysis is
made much more difficult if unrestriced GO TO's or other undisciplined control structures are

atlowed.

The problem can be simplified by making every variable have a definite "scope”, or region of
the program in which it is active, and carefully restricting the entry to and exit from the blocks that
constitute scopes. It is aiso helpful to deny procedures access to any data items that are not

transmitted as arguments, though this is not really necessary if global variables are avoided and
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procedure definitions are carefuily "block structured” as in PASCAL.
3. SIDE EFFECTS

Freedom from side effects is a necessary property to ensure that the data dependencies are the
same as the sequencing constraints. It is much more difficuit to achieve than locality of effect. This
is because locality only requires superficial restrictions on the language, whereas freedom from side

effects requires fundamental changes in the way the language's "virtual machine” processes data.

Side effects come in many forms -- the most well-known examples are procedures that modify
variables in the calling program, as in the following PASCAL example:

procedure GETRS(X, Y : real) ; _
begin RS := XxX + YxY {(* RS is declared in an outer block )

end ;
Absence of global or "common” variables and careful control of the scopes of variables make it
possible for a compiler to prohibit this sort of thing, but a data flow computer imposes much
stricter prohibitions against side effects: A procedure may not even modify its own arguments. In

fact, in a sense nothing may ever be modified at all.

To determine what kind of prohibitions against side effects are needed to achieve concurrent
computation, we must examine programs that manipulate structured data such as arrays or records,

since the problem does not arise when only simple data values are used.

Consider the following procedure which modifies its arguments by a conventional “call by
reference” mechanism. SORT? is a procedure to sort two elements, J and J+l, of array A into

ascending order by exchanging them if necessary.



(1)
(2)
3)
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procedure SORT2(var A : array[1..10] of real ; J : integer);

var T : real ;

begin if A[J] > A[J+1] then begin
T := AlJ];
A[J] = AlJ+1);
AlJ+i])=T;
end

end ;

SORT2(AA, J) ;
SORT2(AA, K) ; -
P := AA[L];

Statements | and 2 might interfere with each other and with statement 3. Since the values of

J. K, and L are not known te the compiler, it must assume that the statements wilt conflict, and

execute them in the exact order specified. Any attempt at parallel execution might result in the

incorrect results, depending on }, K, L, and unpredictable fluctuations in timing.

A phenomenon known as “aliasing™ makes the problem even more difficult. This occurs when

different formal parameters to a procedure refer to the same actual parameter, that is, they are

"aliases” of each other:

procedure SORTREAD{var A, B : array[1.10] of real ; I, J : integer) ;

begin SORT2(A, I) ; {* SORT2 is defined above =)
RESULT := B[J];

end ;

In this program it would appear that, since A and B are different arrays, the invocation of

SORT2 and the reference to B{j] could proceed concurrently. However, if this were part of a

larger program and SORTREAD were invoked in the statement

SORTREAD(Q, Q, M, N} ;

the arrays A and B would actually be the same.
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Languages such as FORTRAN and PL/], in which external procedures are not avaitable to

the compiler when the calling program is being compiled, make the problem harder stitl.

Facilities for manipulating data structures by pointers, such as the “pointer” data type in PL/I

and the record manipulating operations of PASCAL make it possible for all of these problems to

arise without using procedures.

Even if procedures and pointers are not used, the sequencing constraints may be far from
clear, as in

(N AlJ] =3 ;
{2) = A{K];

If the convention is made that any statement modifying any element of an array constitutes a
“writing” of the array, then statement 1 clearly passes array A to statement 2. But then a statement
such as the assignment in

for J:= 1 to 10 do
AfJ+1] = A[J]+ 1

depends on itself!

The inescapable conclusion is that, if arrays and records exist as global objects in a memory
and are manipulated by statements and passed as procedure parameters, it is virtually impossible to
tell, when an array element is modified, what effects that modification may have elsewhere in the

program.

One way to solve some of these problems is to use "call by value” instead of the more common
“calt by reference”. This solves the aliasing problem and the problem of procedures modifying their

arguments. In a “call by value” scheme, a procedure copies its arguments (even if they are arrays),
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This way it can never modify the actual argument in the calling program. Call by reference has
traditionally been used instead of call by value because it is a more natural way of thinking about

computation (and is more efficient) on von Neumann computers.

4. APPLICATIVE LANGUAGES

For data flow languages, a scheme is used which goes far beyond call by vatue: all arrays are
values rather than objects, and are treated as such at all times, not just when being passed as
procedure arguments. Arrays are not modified by subscripted assignment statements such as

All]:=5;
Instead, they are processed by operators which create new array values. The simplest operator to
perform the nearest equivalent of modifying an array takes three arguments: an array, an index,
and a new data value. The result of the operation is a new array, containing the given data value

at the given index, and the same data as the original array at all other indices.

In the VAL language [}, the syntax for this elementary operator is
AfJ:S]
In the ID language [3), it is
A+[J]S
This operation does not modify its argument. Hence in this VAL program:

(1) B:=A[J:S];
(2) C:=A[K:T];
(3) P:=A[l);
(4) Q = B[M];
(5) R := C[N];

statements | and 2 do not interfere with each other or with array A. Statement 3 may be executed
immediately, whether | andfor 2 have completed or not, since they would have no effect on

statement 3 anyway. Statement 4 can be executed as soon as statement | completes, whether



statement 2 has completed or not. In fact, the sequencing constraints are those shown in Figure 3.
Note that this situation is similar to the one in the simple FORTRAN example of section I. The
sequencing constraints are exactly the same as the data dependencies, which is the property we seek

for data flow.

An operator-based handling of arrays and records automatically accomplishes call by value.
As in a call by value scheme, a routine such as SORT2 wouid not accomplish its purpose. SORT2
must return the new array as its value. It could be written in VAL (omitting type declarations) as:

function SORT2(A, J)
if A(J) <A(J+1) then A
else (A [J: A[J+1]D{J+1 : A[J]] % No temporary needed during this
end % exchange because A is not modified.
end

Note that the array construction operator may be composed with itself and with other operators in

the same way as arithmetic operators.

In conventional languages, procedures do most, if not all, of their work through side effects: A

procedure might be designed to aiter dozens of variables in the calling program. Functions, on the

.other hand, are typically limited to returning a single value, which typically may not be an array or

record. To make functions as powerful and flexible as procedures in conventional languages,

Figure 3.
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applicative languages often aliow functions to return several values, or entire records or arrays, or
both. If a function returns several values, its call can be used in a “multiple assignment” such as
X, Y, Z:=FUNC(P, Q, R) % FUNC returns 3 values

Treating arrays and records as values instead of objects is perhaps the most profound
difference in the way people must think when writing programs in data flow Ianguages instead of
conventional languages. The customary view is of arrays as objects residing in static locations of
memory, and being manipulated by statements that are executed in some sequence. As we have
seem, this view is incompatible with detection of parallelism among the statements. The correct
view for data flow is of arrays and records as values manipulated by operations just as simple
values (integers, reals) are. Then the parallelism among the operators can be deduced from the

data dependencies just as for simple values.

The value-oriented approach to arrays is confusing to some at first, but it need not be. An
integer array should be thought of as a string of integers, just as an integer can be thought of as a
string of digits. 1f J has the value 31416, the statement

K:=J-400;
leaves K- equal to 31016; no programmer would expect the value of J to be affected. If A is an array
with elements (3, 1, 4, 1, 6], the statement

B:=A[3:0]

is'completely analogous; it leaves B with elements {3, 1, 0, 1, 6] and of course does not change A.

Languages which do all processing by means of operators applied to values are called.
applicative languages, and are thus the natural languages for data flow computation. The earliest
well-known applicative language implemented on a computer is LISP [20). (It is applicative only if
RPLACA, RPLACD, and all other functions with side effects ate avoided; this subset of the

language is often called "pure” LISP.) The connection between applicative languages and the
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detection of parallelism has been reported by Tesler and Enea [25] and by Friedman and Wise [14]
The development of LISP and other applicative languages, and the Tesler/Enea paper, all predate
the data flow computer concept by several years. The concept of computation by applicative

evajuation of expressions goes back to the invention of the lambda calculus in 194} [8)
5. EFFICIENCY CONSIDERATIONS IN APPLICATIVE LANGUAGES

Applicative languages have recently given rise to controversy concerning their time efficiency
in practical situations. It is claimed that many algorithms cannot be executed as efficiently in-
applicative languages as in conventional statement-oriented languages. The issue is only one of
exploiting parallelism, not any fundamental limitation in the computing power of applicative
systems. This is because any program written for a conventional von Neumann computer can be
rewritten in an applicative language by treating the entire memory space as one array. Statements
that manipulate the memory th-en become operations-on that array. The array must be passed from
each operation to the next, so execution in such an applicative System must be strictly sequential --
no parallelism can be exploited. However, in the original program written in a conventional
language, a knowledgeable programmer might be able to explicitly specify parallelism, making the

program run more efficiently than in the applicative system.

Consider the conventional program

() Al)=S;
2)  AK)=T;
(3 P=AM];
{4) Q = A[N];

If the programmer knows that the set of indices for the array A can be divided into two disjoint
sets, with J and M in one set and K and N in the other, then statements I and 2 could be executed
simultanecusly, 3 would only need to follow I, and 4 would only need to follow 2. If the

programmer has the ability to contro} paralielism explicitly (say, by semaphores, monitors, or path
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expressions), he could specify exactly those constraints. This is not possible in a data flow language
without some additional mechanism. However, the problem can often be avoided by dividing the
array into separate parts, manipulating them separately, and combining them only when necessary.
For example, suppose array Al contains only those elements that ] and M are known to index, and
A2 contains those that K and N index. Then

Bl := Al {J:S]);
B2 := A2 [K: T];
P := B1[M];
Q := B2[N];

exploits the parallelism exactly.

There are other ways of overcoming the tendency for arrays to limit parallelism, which will be

discussed later.

The question of how to exploit parallelism in applicative languages for a wide variety of

programming problems is an active area of research.
6. DEFINITIONAL LANGUAGES AND THE SINGLE ASSIGNMENT RULE

Having accepted an applicative programming style and a value-oriented rather than
object-oriented execution model, we next examine the implications of this style upon the meaning of

assignment statements.

Except in iterations, (which will be discussed later), an assignment statement has no effect
except to provide a value and bind that value to the name appearing on its left hand si;ie. The
result of the assignment is accessible only in subsequent expressions in which that name appears. If
the language uses blocks in which all variables are local to the block for which they are declared,

the places where a variable is used can be determined by inspection. If the expression on the right
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hand side of an assignment is substituted for the variable on the left hand side in ali places where

that variable appears within its scope, the resultant program will be completely equivalent.

S 1= X+Y;
D= 3%5; is equivalent to D = Ix(X+Y) ;
£ 1= S5/2+F(5); E := (X4Y)/24F(X4Y);

(The program on the left is clearly more efficient, requiring only two additions instead of four. We

are not proposing that the substitution be made in practice.)

Now this situation is the same as a system of mathematical equations. If a system of equations

comtains "S = X + Y", it is clear that "3%S” and "Ix(X+Y)" are equivalent. Hence the statement
Si=X4+Y;

means the same thing in the program that the equation "S = X + Y™ means in a system of
equations, namely that, in the scope of these variables, S is the sum of X and Y. The
correspondence can be thought of as holding for all time; it is not necessary to think of the
statements as being executed at particular instants. (In fact, perhaps the word "variable” is an
inappropriate term.) Of course, the addition of X and Y to form $ must take place before any of
the operations that use S can be performed, but the programmer doesn't need to be directly

concerned with this.

Hence the statement S := X + Y should be thought of as a definition, not an assignment.
Languages which use this interpretation of assignments are called definitional languages as opposed
to conventional imperative languages. Such languages are well suited to program verification
because the assertions one makes in proving correctness are exactly the same as the definitions
appearing in the program itself. In conventional languages one must follow the flow of controf to
determine where in the program text assertions such as "$ = X + Y" are true, because the variables

S, X, and Y can be changed many times. Assertions must therefore be associated with points in the



program.

In a definitional language the situation is extremely simple: If a program block contains the
statement )
S=X+Y;
then the assertion S = X + Y is true. Of course, care must be taken to prevent circular definitions
such as

X =Y,

Y = X43;

We can either have the compiler allow definitions to appear in any order as long as there is
some consistent order, or we can require them to appear in a consistent order. A consistent order is
one in which no name is referred to (on the right hand side of a definition) before it is defined.
This condition is easily checked by a compiler. So the actual proof rule is: If a program bilock
contains the statement

S:=X+Y;
and the program compiles correctly, then § = X + Y is true. Strictly speaking, it is only true in the
statements after the one defining S, but, since S does not appear in any earlier statements, the

assertion can be treated as being true throughout the block.

The power of definitional languages for program verification is well known outside of the
data flow field. LUCID [4) is an example of an applicative definitional language designed

expressly for ease of program verification.
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There is a problem that could ruin the elegance of definitional languages: multiple definition
of the same name. Definitional languages almost invariably obey the single assignment rule: a
name niay appear on the left hand side of an assignment (definition) only once within its scope.
The single assignment rule prevents program constructs which imply mathematica! abominations
such as

Ji=J+1;

Since the appearance of J on the right hand side precedes the definition of J, it implies an
inconsistent statement sequencing that the compiler would diagnose. The prevention of such
abominations is of course necessary if the definitions in the program are to be carried directly into

assertions used in proving correctness, because the assertion ") = J#+1" is absurd.

It is not actually necessary that a data flow language conform to the single assignment rule. A
data flow language with multiple assignments could be designed in which the scope of a variable
extends only from its definition to the next definition of the same variable. The next definition in
effect introduces a new vériable that simply happens to have the same name. A program written in
such a way can be easily transformed into one obeying the single assignment rule: simply choose a
new name for any redefined variable, and change ali subsequent references to the new name.
However, the advantages of single assignment languages, namely, clarity and ease of verification,

generally outweigh the “convenience® of re-using the same name.
7. ITERATIONS

There remains one area in which statements such as

I=]-1;
or
A e ALD: X4Y];

seem to be necessary, explicitly or implicitly, in conventional languages, and that is in iterations.
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The technique of renaming variables to make a program conform to the single assignment rule only
works for straight-line programs: If a statement appears in a loop, renaming its variables will not
preserve the programmer’s intentions. For example:

forl:=1to 10 do cannot be for I ;= 1 to 10 do
Ji=J+1; transformed to J=J+1;

If the language allows general GO TO's, with the resulting possibility of complex and
unstructured loops, the problem is indeed difficult. However, data flow languages generally have
no GO TO statement, and require loops to be created only by specific program structures such as
the “while..do..” and similar statements found in PL/I and PASCAL. This makes the problem easy

to solve, and makes it possible to give iterations a very simple and straightforward meaning.

To develop the data flow equivalent of a "while..do..” type of iteration, we must consider what
the "do” part of such a structure contains. Since there are no side effects, the only state information
in an iteration is the bindings of the loop variables, and the only activity that can take place is the

redefinition of those variables through functional operators. An iteration therefore consists of

) definitions of the initial values of the loop variables

2)  a predicate to determine whether, for any given values of the loop variables,
the loop is to terminate or to cycle again

3) if it is to terminate, some expression giving the value(s) to be returned. These
values typically depend on the current values of the loop variables.

4)  if it is to cycle again, some expressions giving the new values to be assigned to
the loop variables. These also typically depend on the current values of the

loop variables.
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An iteration to compute the factorial of N couid be written (omitting type declarations) in
VAL as follows:

for [, J:=N, 1; X Give loop variables 1 and J initial
% values N and 1 respectively, [ will
% count downward. J will keep

% accumulated product.

doifl =0 % Decide whether to terminate.
then J % Yes, tinal result is current J,
else iter [, J := 1-1, Jxi;
% No, compute new values of 1 and J,

end ‘ % and cycle again,
It could be written in ID as follows:

initial I <- N;J <~ 1

while [ = 0 do .
new ]l <- [-1;
new J <- Jxi;

return J

Its representation in LUCID is similar to that in ID.

Although the values of the loop variables do change, they change only between one iteration
cycle and the next. The single assignment rule, with its prohibition against things like "I«I-I" is
still in force within any one cycle. All redefinitions take place precisely at the boundary between
iteration cycles (though they need not actually occur simultaneously). This is enforced in VAL by
allowing redefinitions only after the word iter, which is the command to begin a new iteration cycle.

In ID and LUCID, the “new" values become the "current” values at the boundary between cycles.

Since the single assignment rule is obeyed, and names have single values, within any one
iteration cycle the mathematical simplicity of assertions about values still exists, The assertions

typically take the form
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"In any cycle, S = X + Y"
Assertions used in proving correctness of an iteration are usually proved inductively. Because
assertions take such a simple form, such proofs are usually simpler than in conventional languages.
For example, the assertion

I >0and Jx(I' = N!
is used to prove correctness of the previous program. The basis of the induction is that it is true
for the initial values [ = N and ] = 1. (We assume N > 0) The induction step is that, if another
cycle is started with the values [-1 and JxI, they will obey the assertion, that is,

I-1 > 0 and (JxDx{(I-1)") = N!

which is clearly true if we observe that a new cycle will only be started if I > 0 and hence 1-1 > 0.
8. ERRORS AND EXCEPTIONAL CONDITIONS

Locality of effect requires that errors such as arithmetic overflow be handled by error values
rather than by program interruptions or manipulation of global status flags. If an error occurs in
an operatiﬁn. that fact must be transmitted to the destinations of that operation and nowhere else.
This can be easily accomplished by enlarging the set of values to include error values such as

overflow, underflow, or zero-divide.

If the intention is to abort the computation when an error occurs, this can be achieved by
making the error vaiues propagate: if an argument to an arithmetic operation is an error, the result
is an error. When an error propagates to the end of an iteration body, that iteration always
terminates rather than cycling again. In this way the entire computation will come to a stop
quickly, yielding an error value.as the result. If the computer keeps a record of every error
generation and propagation, that record will provide a detailed trace of when and where the error

occurred, and what iterations and procedures were active.
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If the intention is to correct an error when it occurs (perhaps keeping a list of such errors in
some array), that can be accomplished through operations that test for errors. For example, a
program to set Z to the quotient of X and Y, or to zero if an error occurs, could be written in VAL
as follows:

IZ = X/Y;
Z:=if is_error(ZZ) then O else ZZ end ;

9. METHODS OF OBTAINING MAXIMUM PARALLELISM

To achieve the greatest parallelism, it is necessary that computations not be performed
sequentially uniess necessary. The iteration constructs described previously imply a sequential
execution of the various cycles. If the values of the iteration variables in one cycle depend on those
of the previous cycles (as they do in the factorial example given previously), ﬁothing can be done
about it, although a data flow computer can often execute part of a cycle before the previous one
has completed. If the values in one cycle do nor depend on those of the previous cycles, the cycles
can be performed in paraliel. In VAL this is accomplished with a forall program construct which
does not allow one cycle to depend on the others, and directs the computer to perform all cycles
simultaneously. In ID the same effect is achieved automatically by tagging the values of the
iteration variables with their cycle number, and aliowing them to be processed out of sequence, or

simultaneously, whenever they do not depend on each other.

Another potential "bottleneck” in data flow computation is the requirement that ali elements of
an array be computed before any element of that array may be accessed. If function 'F'; creates an
array value by filling the array one element at a time, and then passes the array to "G", which reads
the elements one at a time, G cannot begin until F completes. In many instances this delay is
unnecessary, and various technigues have been proposed for eliminating it without departing from

the principle that the sequencing constraints are exactly the data dependencies. One method,
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mentioned in section. b, is to explicitty divide the array into pieces, or use separate data items
instead of an array. This method is quite general, but it requires specific calculation by the

programmer of which parts of the array are needed at which time.

91 Streams

A method of overcoming the array bottleneck is the use of "streams” [3, I{, 261. A stream may

be thought of as an array that is fragmented in time and is processed one element at a time.

In the previous example of F creating an array one element at a time and passing it to G, a
stream would be the natural way to do this. G would receive each element as soon as F created it,
so G would be processing the NP element while F computes the N+I%, resulting in parallel

"pipelined” computation of F and G.

The constraint that stream elements be created and consumed in strict sequence may be
enforced by placing some restrictions on the source program to prevent “random access”. A
program to manipulate streams may be written in a recursive style [ll, 26}, in which a stream is
treated like a list in Lle’, or in an iterative style [3] in which the rebinding of an iteration variable
denoting a stream causes that stream to advance to the next element. Either method enforces the

sequencing constraint if certain rules are followed regarding the permissible recursions or iterations.

When streams are viewed not as temporally separated arrays but as sequences of data items,
functions that process streams have a few interesting and useful properties that pure mathematical
functions do not have: they can emit mare (or fewer) outputs than their inputs, and they can exhibit
"memory” from one element to another. This makes stream functions suitable for “on-line”
applications such as updating a data base. Stream functions are also useful for operations normally

performed by coroutines, such as a function to remove all <newline> characters from its input, or
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insert a <newline> after every 80 characters. A stream function is equivalent to a coroutine that
communicates by transmission and reception of data values. A data flow program using streams is
a network of parallel communicating coroutines, a computational mode! that has been.of some

theoretical interest in the last few years (16, 17, 18).
9.2 Streams and input/output operations

Streams form a natural mechanism for handling input and output. By treating the sequence
of characters read in from an external medium as a stream, it is possible for a program to operate
on the data as it is read in. The program can generate an output stream, which is printed as it is

produced.
10. CONCLUSION

There have recently been calls for the abandonment of the traditional "von Neumann”
computer architecture as a good way of realizing the enormous potential of VLSI technology (51
There has also been widespread recognition that proper language design is essential if the high
cost of software is to be brought under control, and that most existing languages are seriously

deficient in this area.

Fortunately, the implications of these trends for language design are similar: languages must
avoid an execution model (the "von Neumann™ modet) that involves a global memory whose state is
manipulated by sequential execution of commands. Such a global memory makes realization of the
potential of VLSI technology difficult because it creates a "bottieneck” between the computer’s
control unit and the memory. Languages that use a glabal memory in their execution model also
exacerbate the software problem by allowing program modules to interact with each other in ways

that are difficult to understand, rather than through simple transmission of argument and result



values. Future language designs based on concepts of applicative programming should be able to

help control the high cost of software and to meet the needs of future computer designs.
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