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mapped onto a system consisting of many interconnected processors. This paper
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flow in a compressible fluid. Based on this analysis, some of the issues in
designing programming languages and computer architectures for PDE simulations
are discussed. The data flow model of computation is seen to provide an attrac-
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concepts can be applied to relatively simple architectures specifically designed
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Abstract
Partial differential equation (PDE) simulation provides an attractive area for the application of highly

parallel computer systems. The regular and static structures of these problems and the limited data
dependencies allow them to be mapped onto a system consisting of many interconnected processors. This
paper presents an analysis of a program for simulating the hydrodynamic motion and heat flow in a
compressible fluid. Based on this analysis, some of the issues In designing programming languages and
computer architectures for PDE simulations are discussed. The data flow model of computation is seen to
provide an attractive means for managing the complexity of highly parallel systems. Data flow concepts

can be applied to relatively simple architectures specifically designed for PDE simulation.

lntroduction

Partial differential equation (PDE) simulation
has often been proposed as an ideal area for the

application of  highly concurrent computer
architectures. The high . computational
requirements of these problems provide an

incentive for high speed computation, while the
regularity and minimal data dependencies provide
hope that this speed can be achieved through
parallelism.

Highly parailel computer architectures diverge
from traditional, sequential computers to different
degrees and in a variety of different ways. This
paper examines how a computer architecture and
high level programming language can be deveiloped
to achieve high performance at a reasonable cost,
while maintaining programmability. Saome of the
architectural considerations include: how the
processing resources are allocated, how the
~activities of the processors are synchronized, and
what forms of communication are allowed between
processors. Other potentially important decisions
such as mechanisms for achieving fauit tolerance
and for input and output will not be considered.

(1) This research was supported by the National
Science Foundation under grant MCS-7902782,
and by the University of California, Lawrence
Livermore Laboratory under contract no. 8545403.
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While the above-mentioned design issues are
directed toward the computer architecture, they
will also strongly influence the design of the
programming languages supported by - the
architecture. To provide reasonable
programmability, the architecture must support
some abstract mode! of computation which can
form a basis for a high levet programming language.
For example, traditional architectures can be
viewed as performing & sequence of updates to a
set of memory cells, forming the basis for

fanguages such as FORTRAN. Highly parailel
architectures, however, must diverge from this
model and hence will require new forms of

programming flanguages. Thus we will discuss
computer architectures and the !anguages for
these architectures together.

We will assume the system consists of a
processing elements - {or simply
"processors"), each capable of storing and
aexecuting a program and of storing data.
Examples of such systems inciude the irvine data
flow architecture [3, 8], and the Utah data flow
architectures [5, 10]. This model does not
aencompass the MIT data flow architecture [7] in
which the functions of program storage, instruction
axecution, and data storage are performed by
separate units. Nonetheless, much of the analysis
should apply to this system as welil.



The SIMPLE Code

As a focus for the study we have been
studying the SIMPLE code [4], a 1500 line
FORTRAN program developed at Lawrence
Livermore Laboratories. The SIMPLE code is a
simplified version of a pragram for simulating both
the hydrodynamics, or mechanical motion, and the
heat flow. or the conduction of heat between
regions of a compressible fluid. Most of the
simplifications serve only to decrease the total
size of the program without decreasing the
complexities of the numerical model. In comparison
to other PDE simulation programs, such as for
weather simulation or aerodynamic modeling, this
program simulates systems undergoing very rapid
changes with extremes of temperature and
pressure and atso with many shocks. As a result
this simulation requires a more complex numericai
model. The SIMPLE code may present somewhat of
a "worst case" example in terms of potential
concurrency and regularity of computation.

Although mechanical motion and heat
conduction proceed simuitaneously in the physical
system, SIMPLE separates the two during each
time step, simulating first the hydrodynamics and
then the heat flow. The fluid is represented in a
two-dimensional, Lagrangian formulation. A block
diagram for the program Is shown in Figure 1.
During the hydrodynamics phase of a cycle, the
program uses the positlons x, and velocities v of
the node points and the pressures p, artificial
viscosities (" g, and densities g of the zones to
compute new positions x° of the nodes by an
explicit difference method. Then new values for
density o’ and artificial viscosity g’ are calcuiated
along with intermediate vaiues of energy €. The
heat conduction phase takes these intermediate
energy values and transfers energy between
zones to represent the flow of heat resuiting in
new energies €° by an aiternating-direction implicit
difference method. It also computes a new set of
Zone pressures p” based on the energy. Finally, a
value for the size of the next time step Al is
calculated. The time step must be kept small
enough to maintain the stability of the computation
{11]. This requires caiculating the aliowable time
step for each zone and finding the minimum of
these values over the entire mesh. Following the

(1) Artificial viscosity [11] is a computational
technique used to smooth out shocks

time step caiculation a new cycle can begin.

Inherent  Parallelism and

Requirements

Computational

. An analysis of the SIMPLE program reveals
the gquantity of computation required and the forms
of parallelism allowed for a typical PDE simulation.
In SIMPLE: the amount of concurrency and the data
dependencies vary greatly in the different phases
of the computation, because of the different
numerical methods used. These data
dependencies have important implications for
exploiting the potential concurrency of the
program. '

Figure 2 shows the partial ordering on the
program variables imposed by the data
dependencies. This diagram omits those arcs
implied by transitivity. As can be seen, the data
dependencies Impose a nearly linear ordering on
the computations. Most of the variables, however,
are two-dimensional arrays. If we consider the
array elements as individual values to be computed
we can study their data dependencies as well.
Figure 2 shows four classes of dependencies:

locai: array element (k,/) depends only
on elements (k) of the other
arrays,
neighbor: array element (k./} depends on -
' elements (kJ), (k+10), (k=11),
(kJ+1), (kJ-1).

a scalar value depends on all
- elements of the arrays.

global:

scalar: every array element depends

on some scalar value.

As can be seen, most zone and node computations
depend only on values from neighboring nodes and
zones. In fact, many computations are fuily
jocalized. In only a few cases must the results of
one computation be received from the neighbors
before another computation can proceed. This
does not take Into account any sharing of program
or constant data between zone computations to
reduce the total storage requirements.

Figure 3 depicts the potential concurrency
and computational requirements graphically for a
100 by 100 zone mesh assuming that the two
equation of state calculations for each zone take



" two iterations on averaqe to converge. This figure
shows how the computation for one time step
would proceed it unfimited processing and
communication resources were available. The
abscissa shows the elapsed time in units of
floating point operation times (ail operations are
assumed to require the same time.) The ordinate
shows the total number of operations proceeding
concurrently, typically a small constant times“the
number of concurrent zone computations. The area
of each shaded region then shows the totat number
of operations for each section of the pragram.

As Figure 3 demonstrates, with unbounded
processing capability the heat conduction section
would require 86% of the elapsed time, even
though it represents only §% of the totai number of
operations due to the restricted concurrency of
this section. This analysis is somewhat misleading,
however, because even the heat conduction
section would aliow approximately 220 operations
to proceed concurrently. While this is substantially
less than the 24,000 to 48.000 concurrent

operations allowed by other sections of the

Program, it stil exceeds the capacity of any
existing concurrent architecture,
higher concurrency may ultimately call for a
ditfferent numerical method, but this conclusion
should not be reached too hastily. Figure 3 aiso
does not show the possible overlapping of
caiculations for two time steps. In SIMPLE this
possible is [imited, because the At calculation
requires the results from one time step before
allowing the next time step to begin.

lrreguiarities in the Computation

In most sections of SIMPLE, an identical set
of operations is performed for every zone. These
Sections could be carried out by a set of
Processors executing identical, or at least very
similar, instruction streams. Certain aspects of the
pProgram, however, perturb this re‘gularity. requiring
a different set of operations for some of the
Zones. Any Programming language or computer
architecture which cannot deal with these
irregularities efficiently may exact a large penaity
in programmability or performance.

Boundary calculations always cause
Irregutarities in PDE simulations. . SIMPLE only
allows a limited class of time-invariant boundary
conditions, and the boundaries must correspond to
the edges of the rectangular state variable arrays,
Nonetheless, these boundary caiculations ditfer in

The. desire for

their form and data dependencies from the
calculations for internat zones and typically require
more computation. In more complex programs, a
variety of time-varying boundary conditions may be
specified, and the boundaries may cause the
logical representations of the state variables to
have Irregular perimeters and holes. Calculations
for boundary conditions wiil prove the downfall of
any Ianguage or architecture which requires an
Identical set of operations over an entire array or
vector.

Any part of the program for which the flow of
control depends on data-dependent decisions may
also cause Irregularities in the program. For
example, in two sections of SIMPLE the root of an
aquation is computed iteratively for each zone.
The number of iterations required for convergence
will differ from zone to zone. Each iteration
requires a significant amount of computation,
causing flarge variations in the amount ' of
computation per zone. Similarly, another section of
the program approximates a function with a
piecewise-po!ynomlal curve., Computing this
function first requires searching a table for the
appropriate set of coefficients with a
data-dependent search time. Finally, whenever an
@xceptional condition is encountered in the
computation, such as a quantity exceeding some
upper or lower limit, the program must take steps
to correct this condition. Thus, the
data-dependent decisions in the program can
cause both small and large irregularities in the
overall structure of the computation.

- Programming Languages for PDE Simulation

Once the difference equations for a PDE
simulation have been specified, their coding in a
FORTRAN-lke language proceeds without difficuity.
The array data structures and DO ioocp control
structures provide adequate expressive power for
most applications. These programs, however, do
not run efficiently on existing high performance
computers such as the Star-100, Cray-1, or
iliac V. The programs must be carefully hand
coded (often in assembly language) and optimized
before the potential of these machines can be
realized. Smart compilers have failed to bridge the
gap from traditional languages to high performance
machines.

This disappointlng performance of FORTRAN
programs stems largely from a mismatch of
language and high performance architectures, A



FORTRAN program specifies the computation in
terms of a sequence of updates to individual
memory locations. Array and pipeline computers,
however, operate most efficiently when working
with entire arrays or vectors. Thus, the compiler
(usually augmented by a human) must try to
combine and restructure sections of code to make
full use of vector instructions. If vectors must be
stored contiguousiy in the. memory, further
complications arise. R

The difficulties in Programming existing high
performance machines is further compounded by
their restrictive architectures. . To support high
level languages efficiently an architecture must
lend itseif to a process of abstraction in which the
exact size, configuration, and speed of the
hardware components are  masked. The
architecture must then have the flexibility to
achieve reasonable performance even with less
than optimal programs. Unless the architecture
supports some abstract modal consistently and
efficiently, the programmer will be forced to resort
to machine-level coding to take full advantage of
the machine's power.

We belleve the data flow model of
computation [6] provides a suvitable basis to be
supported by highly concurrent architectures and
upon which high level languages can be built, As a
basis for high level language, the data flow model
allows programs to be written which express the
maximal concurrency allowed by an aigorithm.
Control is based solely on the availability of data
rather than on the sequential orderting of program
statements. Hence, only data dependencies
constrain the program's concurrency.

The data flow model supports functional
programming languages in  which program
statements define functions from the input
operands to the output values. In g functional
language a statement can be executed (i.e. the
function evaluated) as soon as the input operands
have been computed. Functional ianguages
contrast with imperative languages in which each
statement defines a command for altering some
memory location, and statements must in general
be executed sequentially. With imperative
languages concurrency can be achieved only by
removing the unnecessary sequencing constraints

in the program, whersas such constraints never’

appear in functional programs. Functional
languages which have been designed with the data
flow model as their basis include Id (3] and vai [1,

2].

Functional programming languages have beer
stereotyped as amusing diversions foi
academiclans rather than serious tools fo
expressing production scientific programs. The
syntax and data structures of languages such as
Lisp seem foreign to most scientific programmers.
Such difficulties arise not from their functionai
nature but rather from the purposes these
languages are intended to serve. We believe that
functional languages for scientific programming can
be developed which will actually simplify the task
of coding and maintaining programs. Attempts at
feprogramming SIMPLE in irvine dataflow ('d) have
proved quite successful.

Architectures for PDE Simulat}on

Some high performance - computer
architectures, such as the Cray-1, have achieved
remarkable success while maintaining the basic
single sequence control. Others, such as the
Star-100 and Illiac IV have failed to live up to their
expectations. While the success of the Cray-1
can be ascribed largely to the quality of -its
engineering, it also results from a greater
tolerance of the irregularities in the program
structure. The [lliac IV operates efficiently only
when performing an identical operation over an
entire array, while the Star operates efficiently
only on long vectors. Sections of the program
requiring scalar or short vector operations move at
a much slower pace. As a result, programs must be
painstakingly reworked to maximize their regularity,
often to a greater extent than is called for by the
aigorithm. For example, the holes and irreguiar
perimeter of the mesh may be filled with "nuii®
Zones to rectangularize the state variable
descriptions. The Cray-1, on the other hand,
achieves reasonable performance with scalar and
short vector computations. As a result, it can
tolerate partiaily vectorized programs.
Nonetheless, it too requires careful optimization to
achieve maximum performance.

All existing architectures have tried to
achieve high performance by maximizing the
regularity in the program and then exploiting the
parailelism allowed by this reqularity.  This
approach will always force the programmer to
carefully think in terms of how the program fits
onto the machine. This level of thinking requires
machine-level coding to provide the necessary
degree of control. Furthermore, many programs



“simply do not lend themsefves to highly reguiar
structuring.  Future architectural deveiopments
must follow a new path if they are to achieve
significantly higher performance and
programmability.

As we have seen, PDE simulation programs

potentially allow a high degree of concurrency in
their execution. To exploit this concurrency
effectively, a computer must be capable of
concurrently executing different instructions on
different data. Within this framework, one can
choose from a variety of schemes for processor
synchronization, resource aliocation, and processor
interconnection. These design decisions result in
trade-offs between cost, performance, and
programmability.

Processor Synchronization

The processors in the system must
synchronize with one another In order to
communicate. With contro/-driven synchronization,
the processors transmit and accept values at
points in time determined by external control
signals. For example, with J/ock-step
synchronization the processors are periodically
synchronized by a centrai controlier for the
purpose of exchanging data. Between
synchronization points each processor executes a
small code segment based on the newly received
data. With lock-step synchronization, a
time-consuming computation for one portion of the
mesh will cause most of the system to remain idle
until this computation is completed.

In a system based on data-driven
synchronization the processors independentty
axeacute their own instruction streams waiting only
when data is needed from some other processor. A
processor sends data to another as-soon as it has
been eomputed in a "packet" containing the data
value and some identification of the data.
Data-driven synchronization = aliows greater
autonomy of processors and greater asynchrony in
their operation. Small irregularities can be
absorbed by nearby processors rather than cause
global inefficiencies. Of course, data-driven
synchronization does not guarantee that all
processors will be fully utilized, but it provides an
important step.

Data-driven synchronization aiso helps
provide the flexibility of operation needed to
support high ievel languages. By removing the

global synchronization of processors we decresse
the severity of the penaity paid by nonoptimal
program impiementations.

Processor Allocation

A large scale computer system contains a
variety of resources for processing, storage, and
communication. These resources must be aliocated
both in time and in space, with the optimal
allocation depending on the configuration and
speed of the system components as well as on the
program itseif. Thus, the subject of resource
allocation is large and compilex. For the purpose of
this paper we will consider mainly the allocation of
processing resources.

The spatiat allocation of processors invoives
mapping the different activities to be performed
onto the processors of the system. With static
mapping, the spatial allocation is fixed before the
program execution begins. PDE simulations, with
their regular and well-defined structures suggest a
variety of static mapping schemes such as one
zone and/or one node per pracessor, or one row of
zZones per processor. As long as the size of the
problem matches the size of the system, and the
amount of computation per processor can be
reasonably well equalized, this approach seems
quite attractive,

With dynamic mapping the activities of the
program are assigned to the processors as the
axecution proceeds. This approach would in
principle maximize the utilization of the processors
and allow for highly irregular and dynamically
changing program structures. However, the
difficulty of effectively mapping tasks onto
processors and the overhead needed to perform
this allocation may negate the potential benefits.

In addition to mapping the operations onto the
processors, the operations of each processor must
be ordered in time. This scheduling of tasks within
each processor can occur either statically or
dynamically. Static scheduling occurs in
conventional processors where the order of
instruction execution is fixed in advance. While
this approach leads to simpler processor design, it
is vulnerable to the same problems as lock-step
synchronization when applied to multiple processor
systems. Unless operations can be scheduled so
that data arrives before the operation which needs
them is initiated, a processor will sit idle even if it
has other tasks to perform. Static scheduling



within a processor would require a detailed timing
analysis of the program and wouid . fail when
computations exceed their expected time. A
dynamic scheduling scheme, on the other hand,
involves simply maintaining & task list and
executing those tasks for which the data is
present. The increased flexibility and performance
of dynamic task scheduling within each processor
will easily offset its overhead.

Processor Intercomnection Schemes

A variety of interconnection schemes have
been proposed for multiple processor systems [3,
7, 8]. Rather than discussing the details of each
of these designs, we shall explore some of the
properties of these interconnection schemes in the
context of the problem at hand.

Some interconnection schemes such as trees,
rings, and Cartesian grids favor local over
long-distance communication, whereas others such
as the routing networks of the MIT data flow
machine {7] require the same communication delay
between any pair of nodes. Those favoring local
communication typicaily require fewer components
(switches and wires) and allow faster
communication in the local case but are slower in
the long-distance case. '

As was seen in Figure 2, the SIMPLE program
shows a great deal of locality between zone
computations. Many computations depend only on
data local to the zone while many others require
data from only neighbering zones. Thus a potential
does exist for exploiting the locality of
communication. The mapping of operations onto
processors, however, must match the locality in
the program to the locality in the communication
system. The degree to which this can be achieved
depends on the activity mapping scheme and the
type of interconnection network.

~ With static spatial mapping, one cap easily
imagine mapping adjacent zone computations onto
adjacent processors. If the program size and
structure does not match the system size and
structure, however, complete locality cannot be
maintained. For example, if the program has a 60
by 160 zone mesh, it cannot be mapped onto &
100 by 100 array of processors while maintaining
the focality of the program and utilizing as many
processors as possibie. If resources are allocated
dynamically, on the other hand, the- assignment
function must map operations which are likely to

communicate onto nearby processors. This wouig
greatly complicate the resource allocation probiem.

Finally, even SIMPLE requires some global
communication for finding a minimum over all zones
and for distributing scalar values. One may also
want to restrict the number of redundant copies of
data or code to save storage. thereby increasing
the long-distance communication requirements.
Thus, the delay incurred by long-distance
communication cannot be too great, aithough no
quantitative requirements have.been derived yet.

In summary, the structure SIMPLE code at
first glance suggests a simple interconnected
array of processors. Such a scheme would
minimize the cost and naturally reflect most of the
data dependencies of the aigorithm. After further
study, however, one realizes that global
communication wouid probably take too long with
such a scheme, and the configuration wouid not
tolerate program structures and processor
assignment schemes which do not match this
connectivity. Nonetheless, " a fully uniform
interconnection scheme does not seem to be
required, nor could its inability to take advantage
of locality be tolerated. Some efaboration on an
interconnected array of processors seems. the
most cost effective.

Conclusion

Research in data fiow has been inspired
largely by theoretical modeis of computation and
languages. Hence, programming languages have
been studied thoroughly, and greater consensus
has been reached on their design. Exercises in
programming scientific programs such as SIMPLE in
high level data fiow languages have proved quite
promising in terms of both ease and the amount of
concurrency which is shown. It has become clear
that programming languages for highly concurrent
systems must break away from the sequential
memory update model of the Von Neumann
computer and instead allow programs to be
expressed in a maximally concurrent, functional
form.

Research in architecture to support the data
flow model, on the ather hand, has not coalesced
into a well-defined body knowledge., Most efforts
have been directed at specific architectures with

particular biases in terms of generality,
performance, and cost. In studying the range of
possible architectures for partial differential



equation simulation, it has become apparent that
data flow concepts can and indeed should be
applied at a variety of different levels. At the
lowest levels, the architecture would be
speacialized toward the types of problems to be
solved in terms of configuration, processor
allocation, and interconnection but would employ
data-driven control and a dynamic scheduling of
activities within processors. These classes of
machines would still require a certain amount of
effort in mapping a program onto a machine but
would at least allow a much more abstract view
than do existing high performance machines. At
higher levels of sophistication the architecture
would support a very abstract data flow mode and
dynamically handle all problems of resource
allocation. These machines would allow more
general classes of programs and wouid be less
affected by irregular program structures and less
than optimal code. Which type of machine should
be built depends largely on the nature of the
problems to be solved, the sophistication of the
user community, and the acceptable cost of a
machine. For PDE simulations, with their high
computational requirements and statically-defined,
regular structures, a specialized machine with
static activity mapping and limited processor
Interconnections may indeed prove the best
choice. ‘
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Figure 1. Block Diagram of SIMPLE
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Figure 3,

Potential Concurrency
SIMPLE Code, 10,000 zones
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