MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

r

—

Expressiveness of the Operation Set
of a Data Abstraction

Computation Structures Group Memo 179-1
June 1979
Revised January 1980

Deepak Kapur
Srivas Mandayam

A condensed version of this paper was presented at the Seventh ACM
Symposium on Principles of Programming Languages.

This research was supported in part by the Advanced Rescrach Projects Agency of
the Department of Defense, moaitored the by the Office of Naval Rescarch under
conteact NOOO14-C-0661, and in part by the National Science Foundation under
grant MCS 74-21892 A01.

~

L
545 TECHNOIL.OGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

1. Introduction

An important feature of a data abstraction is the constraint that the values of
the abstraction can be constructed and observed only by the applications of its
operations. .This feature, by decoupling the use of a data abstraction from its
implementation, supports modular development of software [5, 10, 17). It also aids
program verification by helping to decompose proofs into small and independent units
[5, 4} However, the very same feature can make the use of a data abstraction
restrictive if the operation set of the abstraction is not designed carefully. This is
especially so in a programming environment where a programmer is encouraged to build
on the abstractions provided by other programmers. If the operation set of an
abstraction is not expressive enough to discover all the properties of the values of the
abstraction,.it might be impossible or inconvenient to implement several useful functions
on the values. ‘

Consider the following design of the familiar immutable [10] set [N]
abstraction where N stands for the abstraction natural number. (The definition of set

[N} is given in Appendix I. An algebraic specification of it appears in Appendix II.)
(1) set [N] is null, insert, remove, has, empty, max, equal.

null returns the empty set; insert returns the set obtained by inserting a given number
into a given set; remove returns the set which is obtained by removing a giveﬁ number
from a given set; has tests the membership of a given number in a given set; empty
tests if a given set is empty; max returns the largest number of a given set; equal tests
if its two given sets are identical. With a little bit of thought it is possible to convince
oneself that the above set of operations is adequate to discover all the pfoperties of
set [N] values.

Now, consider the following two alternative designs of set [N] which are
obtained by dropping some of the operations from the above design. The operations
common among the three designs have the same meaning. Note that all three designs

have the same value set, which is the set generated by mull and Insert, since all the

-2.

values are distinguishable by the operations in each of the cases.

(2) set [N] is null, insert, has

(3) set IN] is nuil, insert, equal

In the second design the operation set is not expressive enough to discover all properties
of the set values; for instance, it is impossible to implement the remove operation in
terins of the given operations. (Note that termination becomes a problem for any
algorithm that atteinpts to construct the required set by using the has operation to
include all the elements except the one that is being removed.) The third design can be
shown to be logically as powerful as the first one, but in this case, the implementations
of even simple functions not provided as primitives, such as remove, turn out to be so
inconvenient and unnatural that the design is uninteresting from a practical point of
view.

How can one characterize this notion of expressiveness of the operation set of
a data abstraction ? How docs one determine if the operations of a data abstraction
form a fully expressive set or not 7 Can one distinguish between the expressiveness of
the operation sets of different designs of the same data abstraction, such as designs (1)
and (1) 7 Morris [13] is the first one to have posed some of these questions. He
proposed thut "a new data type should be transferable in the sense that the primitives
(i.e, the operations) ure adequate to translate between the new type and any other
existing type, such as integers." He introduced write and read transfer functions from
the new type to integers. The difficulty of implementing the primitive operations of the
new type in terins of the existing type using the transfer functions gives an indication of
how expressive the operations of the new type are. His characterization is very‘
informal, and it does not distinguish between situations such as design (1) and design
(3) in the above example.

In this paper, we formally characterize what it means to say the operation set

of a data abstraction is fully expressive. We define two properties of a data abstraction

related to the expressiveness of its operation set - expressive campletene.r.r‘. and expressive
richness. The second property is stronger than the first. We will be able to distinguish

among the three designs of set [N] mentioned earlier using the above two properties.

We will sce that the second design is not even expressively complete, while designs (1)

and (3) are. Howcever, design (1) is expressively rich, but design (3) is not.

The purpose of introducing the notion of a design is to compare the
expressiveness of subsets of the operation set of a data abstraction. A design of a data
abstraction is defined so that it has the same behavior of the data abstraction, while its
operation set is a subset of that of the data abstraction. The properties of
expressiveness discussed in the paper are, strictly speaking, the properties of a particular
design of a data abstraction. However, at several places in the paper, the reader may
find the properties being associated with a data abstraction. When we do this, we
actually mean the expressiveness of the design whose operation set is identical with that

of the data abstraction.
1.1 An Extended Overview

In the next chapter, we discuss a few preliminary concepts and state the
assumptions made in the paper about the behavior of a data abstraction. We precisely
define the value set of a data abstraction, and describe what we mean by different

designs of a data abstraction.

In the third chapter, we formalize the notion of expressive completeness. We -

wish that the operation set of an expressively complete data abstraction allow us to
discover all interesting properties of the values. Since programiners are going to be
interested only in computable propertics, we require that the operation set of an
expressively complete abstraction be cxpressive enough to implement all computable

functions over the value set of the data abstraction. We specify what it means for "a

1. This notion of completeness should not be confused with the completeness property of a
specification of a cata abstraction. The properties discussed in the paper are properties of data
abstractions, and are independent of the specification technique used to specify data abstractions.

-4 -

function 1o be implementable” by stipulating the mechanisms from which the function
ought to be built.

The remaining step in the process of formalization, therefore, is to define
computability and computable functions over the value set of a data abstraction. We do
this by reducing the computability over an abstract domain to computability over the
set of natural nmumbers. For this we use a scheme to encode the values of the data
abstraction us natural numbers. Every function on the abstract value set can then be
mipped 1o a corresponding function on natural numbers. A function over the abstract
value set is considered 10 be computable if its image function is computable over the set
of natural numbers.

The main result of this chapter is Theorem 2, which states that if the
operation set of a data abstraction D consists of computable operations only, and the
equal predicate on I, which computes the identity relation on the value set of D, can
be implemented in terins of the operation set, then D is expressively complete. The
theorem enables us to define a minimal set of operations that makes an abstraction
expressively compiete.

In the fourth chapter we introduce the notion of expressive richness of the
operation set of a data abstraction. The motivation for this arises because of the
existence of several expressively complete data abstractions whose operation sets are not
versatile enough te be of any practical use. We wish that an expressively rich data
abstraction be expressively complete with an operation set that is rich enough to extract
all relevant information from a value conveniently.

" To formalize this notion of richness, we identify a set of functions, called
distinguished functions, associated with every abstraction. The distinguished functions
permmit one to extract from any given value, all information required to reconstruct it.
There arc two kinds of information that one needs to know to construct a value.
Firstly, we.need to huve a set of values of other types which is used in the construction
of the value. Sccondly, we need to know the constructors and the order in which they
should be used in creating the value. We define two kinds of distinguished functions -

the d-functions and the p-functions - to extract the above two pieces of information,

respectively.

An expressively rich data abstraction is defined as one in which every
distinguished function can be implemented in terms of the operation set using only
composition and conditional expressions. We believe that if the distinguished functions
can be conveniently implemented in terms of the operation set, then so can most of the
other useful functions on the data abstraction. We show that a data abstraction that is
expressively rich has the desired logical power by proving that it is also expressively
complete. | |

The final chapter discusses a few practical applications of data abstractions

that are expressively rich according to our characterization.
2. Assumptions and Preliminary Concepts
2.1 Assumptions

Informally speaking, we view a data abstraction (abstract data type, data type,
type) D as consisting of a set of values, and a finite set of operations to create and
manipulite those values, In this paper, we consider only immutable [10] data types. We
denote the operation set of D by . Normally, the definition of D involves other data
types; these data types appear as the domains and/or range of the operations of D. We
call these types the defining types of D, and denote their collection by A. We refer to
D itself as the defined iype.

We assumne that every operation in § yields exactly one value. The operations
that yield values of type D are culled constructors ; the remaining operations are called
observers. Constructors which do not take any arguments of the defined type are called
basic constructors ; the remaining constructors are called non-basic constructors.

We assume that every operation of D is total and does not signal any
exception [11]. This asswmption is made only for convenience, since the properties
proposed in the paper can be extended to handle exceptions once a suitable model for
characterizing the exceptional behavior of a data type is adopted. In the examples

discussed in thé paper, we have arbitrarily decided on some normal behavior for an

-6

operation on certain inputs on which the operation would otherwise have signalled an

exception.
2.2 Definition of a Data Abstraction

Heterogencous algebras are a natural way to model the behavior of a data type
[18, 2, 3). A heterogeneous algebra for a data type D consists of (i) a domain
corresponding to D and a domain corresponding to every defining type in A, and (ii) a
function corresponding to every operation in Q.

We take a behavioral view for defining the semantics of a data type, first
advocated by Gurtag [3], and later developed by Kapur [8]. Accotding to this view,
every value of D is created by finitely many applications of the constructors of D, and
the values arce distinguishable only by means of the operations of D. A data type is
defined as a set of behaviorally eqm'vaicmr heterogeneous aigebras.2 Every algebra in
the set is called a model of the data type. Two algebras are, informally speaking,
behaviorally cquivalent if they have the saine observable behavior as expressed by their
observers. The domain corresponding to D in a model defines a value set of D. In the
context of & model, by a value of D we mean an element of the value set.

The observable behavior of a model is characterized in terms of the
distinguishabiliry relation on values. The distinguishability relation is defined inductively
in terms of the distinguishability of the values of the defining types. (The basis of this
induction is the data type bool that does not have any defining types;. the only two
values, true and false, of bool are assumed to be distinguishable.) ‘Two values of a
moclel are distinguishable if and only if there is a sequence of operations of D with an
observer as the outermost operation, that produces distinguishable results when applied

separately on the values. If two values are not distinguishable, they are observably

2. This view is a further abstraction on the view of ADJ [2] and Zilles [18] which merely abstracts from
the representations of the values in an algebra: a data type in their view is defined as a set of isomorphic
heterogenecus algebras. The behavioral view is closer to the view taken in programming languages
supporting data types,

equivalent. Observable equivalence is an equivalence relation, and hence can be used to
define a quotient set (a set of equivalence classes) on every domain of a model;
furthermore, the observable equivalence relations are preserved by the functions in the
model. Two models are behaviorally equivalent if the quotient models induced by the
observiable equivalence relations are isomorphic to each other.

We cun specify the behavior of a data type by presenting a model for it. Data

types used as examples in the paper are all defined in Appendix I in this fashion.

2.3 A Standard Value Set

In this paper, when we discuss an arbitrary data type D, we use a standard
model for it whose value set is constructed in terms of sequences of constructors of D.
The advantage in using this value set is that its method of construction is generally
applicable and is also well suited to the formalization of computability on data types.
The construction of this value set is explained below.
 Every sequence (composition) of constructors of D creates a value of D, and
hence can be used to denote that value. We call a sequence of constructors a word,
- several different words may create observably equivalent values. Let Wy ~dehote the set
of all finite words of D (we drop the index whenever it is evident from the context).
W is constructed inductively by assuming that the word set is given for each of the
defining tvpes; a data type with no defining types serves as the basis.” Let E stand for
the observable eguivilence relation on W. We use the quotient set W/E as the
standard value setd (also denoted as V). Except in case of the models given in
Appendix I, whenever we refer to the value set of D, we mean its standard value set.
By a function of D, we mean a function on the word set W that preserves the

equivalence relation E. So a function f on W that preserves E can’ be viewed as a

3. In ADJ and Zilles's view, the distinguishability of values is not defined in terms of the behavior of
the operations. instead an equivalence relation on words is independently defined: if two words are not
related, they are distinguishable irrespective of whether they can be distinguished by the operations in
the behavioral sense. The discussion and the results of the paper can be applied to this view as well by
using the given equivalence relation in place of the observable equivalence reiation E.

. 8-

function ' on V (= W/E) such that 1*([w]) = [(w)], where [w] is the equivalence class
containing w. ([w] is a value of D.) The sume view can be extended to functions with
several arguments, For example, the equivalence relation E : W X W -> bool can be
viewed as the equality predicate on V that tests whether two values are identical.

Henceforth, we denote the equality predicate on D by equal, or =.
2.4 Different Designs of a Data Type

Given a definition of D, a designbf D is a variant of D whose operation set Q' -
is a subset of ©; the operations in Q' should be such that they can create and distinguish
all the values in W/E. We will present a design by giving its operation set. For
example, for set{N] with Q = {null, insert, remove, has, empty, max, equal}, the

following arc somme of the possible designs.

Q is 1tself a design
Q14 = {null, insert, has}

1, = {null, insert, equal}

However, 13 = {null, inscrt, remove, max} is not a design because it cannot
distinguish all the values of W/E. For instance, two different sets with identical
maximal elements are not distinguishable by 9. |

The idea behind the definition of the design of a data type is to capture the
evolutionary nature of the designing process of the data type. When a designer designs
a data type, he normally starts out by visualizing a value set for it and a set of
constructors to generate the values; then he starts designing other operations. Since
operations are the only means of creating and observing the values, the designer at the
least needs to provide enough operations to distinguish among the values. Later, with
increasing experience, the designer enriches the operation set by adding more operations.
All along his initial conception of the value set remains unchanged. We study the
expressiveness of various operation sets by comparing the expressiveness property of
different designs of a data type.

As pointed out earlier, the properties of expressiveness are. properties of a

. 9.

particular design of a data type. At several places in the paper, when we are not
comparing the expressiveness of subsets of the operation set of a data type, we simply

associate the property with the data type and make references, such as "an expressively

.complete data type", etc. When we do this we actually mean the expressiveness of the

design whose operation set includes ali the operations of the data type.

3. Expressive Completeness

In this chapter, we discuss the expressive completeness of the operation set of a
data type. In the first section, we formally define expressive completeness in terms of
computability over the value set of a data type. In the second section, we characterize
coinputability over an abstract domain by reducing it to computability over the set of
natural numbers. The third section proves a useful result about éxpressive completeness.

The last section illustrates the definitions and results by discussing several examples.
3.1 Definition of Expressive completeness

We wish an expressively complete data type D to permit all computable

functions of D to be implementable in terms of its operations.

Definition 0 A function is implementable in terms of a set of functions F iff its
definition can be written using the mechanisms of functional composition, conditional
expression, and recursion in terms of functions in F and a set of auxiliary functions, if

any, also implementable in terms of F.

Let G(F) denote the collection of functions implementable in terms of F.

It is important to notice a subtle difference in the method of definition for
functions used by us and the one widely used in the literature on computability. In the
latter, functions are defined using a scheme that assumes a pattern matching mechanism
to reveal the top level structure of the argument value. For example, the addition

function, denoted by +, on N is defined as :

x+ 0 & % (x)

-10 -

x + S(y) 2 S(x +y)

We instead take an abstract view, which indeed is the view taken by a
progranuning system supporting data types. The internal structure of a value is not
explicit; any information about a value must be obtained through its operations. Every'
operation we use his to be either an explicit part of the operation set of D, or be
implementable in termns of the operation set. In our approach, for example, + would be

implemented in a programming-language-like manner as :

0 ihen x else S(+(x, p(y))), where

+(x, 'y) 2 ify

p(x) 2 jf x = 0 then 0 else p'(x, 0)

p'(x, 2) 2 if x = S(z) then z eise p'(x, S(z))

Natice that the above implementation of + is given in terms of 0, S, =, and p;
p and p* are defined as an auxiliary functions in terms of 0, S, and =. However, it
seems that the definition (*) of + above did not need = and p. In fact, these functions
are implicit in the pattern matching mechanism used by the definition (*).

Let Comp(D) denote the class of all computable functions on the value set of

D. (Computability on I} is defined in the next section.) Then we have
Definition 1 A data type D is expressively complete if Comp(D) = G(R)
For example, it is known that Comp(N) = 6({0, S, =}) [9, 12}. Thus

Corollary 1 The data type N whose operation set @ = { 0, S, = } is expressively

comnplete.

Using the definition of computability over s_expression (of nils) [12], we also get the

following :

Corollary 2 The data type s_expression whose operation set

fl = { nil, car, cdr, cons, null? } is expressively complete.

We were able to obtain the results in the corollaries readily because
computability over N uand s_expression has been formally characterized in the

literature. However, the notion of computability has not been formaily characterized

<11 -

for an arbitrary data type D. The next section addresses this issue.
3.2 Computability over Abstract Domains

If the value set V is finite, the notion of computability is tr'iv'ial since every
function on D cun be specified as a finite table, and is thus computable. Below, we
shall concentrate on a D whose V is infinite.

Qur strategy is to recfuce compufability on D to computability over natural
numbers [14]. We define computability on W; a computable function on W that
preserves E is a computable function on D. |

We define computability on W by means of an effective bijective function
n': W -> N that encodes every word into a natural number. We call 9 an encoding
function for D; and #~' a decoding function for D. Every function on W can be
viewed via 9 as a function on N. An n for D is constructed inductively using an # for
each of its defining types. The basis of this induction is a data type having no defining

types for which an » can be constructed in a straight forward manner.

Definition 2 Given a function f: W -> W, its 't'mage-f: N -> N via 9 is defined as
T(n) = »(f(x~"(n))).

The concept of un image of a function on D can be extended to functions defined over
several domains by similarly muking use of an encoding-decoding scheme for each of the

domains involved in the definition. Using Church’s thesis, we have

Definition 3 A function f : W -> W is computable if there exists an encoding n such

that the image T of f via y is computable over N.
The above definition of computability on W has the following desirable property.

Theorem 1 The set of all computable functions on W is invariant with respect to the

encoding function chosen.

Proof We show that any two different encoding functions define the same set of
computable functions on W. We show that for every pair of encodings #4 and n, there

exist computable functions T4, and T4, on N which behave as follows: T4, maps the

-12 -

code of a word associated by n, to that associated by n5; T4 does the mapping in the
opposite direction. It can be shown that the image of a function f via g, can be

constructed from the image of f via #, and vice versa using T4, and To4.

Definition 4 A function f of D is computable if f on W is computable and f preserves

the equivalence relation E.

Weihrauch [16] defines computability on V directly; his abstract computability
thesis can be shown to be equivalent to our definition of computability. We believe our
approach is simpler and maore natural.

Henceforth, we concern ourselves only with data types having computable
operations, as the ones with noncomputable operations are of no practical interest.
Furthermore, if a data type has noncomputable operations, it cannot be expressively
complete. Since the word set of a data type is always recursive, having all the

operations computable makes the value set recursively enumerable.4
3.3 A Useful Result

Here, we prove a useful result about the expressive completeness of the

operation set of a subclass of data types for which equal is decidable.

Theorem 2 Assuming that (i) for D and for each of its defining types the equal
predicate is decidable, and (ii} every defining type of D is expressively complete, D is
expressively complete if the equal predicate on D is implementable in terms of its

operition set §.

The proof of the above theorem follows immediately from the following Theorem,
which states that if equal is an operation of D, then D is expressively complete. This
is so because if equal € (@), then @) = C(Q u { equal }) = Comp(D).

4. A set § i recursive if its characteristic function, which checks whether an arbitrary element is in S or
not, is total computable. 8 is recursively crumerable (r.e.) if it is the range of a total computable function.
In other words, an re. set S can be generated by a total computable function.

- 13-

Theorem 3 Assuming that (i) for each of the defining types of D the equal predicate
is decidable, and (ii) every defining type of D is expressively complete, D is expressively

complete if the operation set of D includes the equal predicate on D.
Proof See Appendix III

Theorem 3 can be used to show the following :

Coroliary 3 A minimal set of operations that makes a data type D expressively
complete is @ = Q, U { equal }, where @ is a minimal set of constructors sufficient to

generate the value set of D.
3.4 Examples

In the following examples we investigate the expressive completeness of
different designs of stack [N] and set [N] data types. (See Appendix-I for definitions of
these data types.) The operation set of each of them includes only computable .
operations. This can be inferred by intuition, as well as shown formally using the -
method discussed above. In each of the following cases, we just need to seec if it is
possible to implement the equal predicate for the type or not.

The following designs are expressively complete.
(1) stack [N] is null, push, pop, top, empty
equal(v1, v2) = if empty(v1) then empty(v2)
eise if empty(v2) then false
else (top{v1) = toplv2) &
equal(pop{v1), pop(v2)))

(2) set [N] is null, insert, remove, has, empty
equai(vl, v2) £ check_in_order(vi, v2, 0)

- 14 -

check_in_order(v1, v2, i) &
if empty(v1) then empty(v2)
else if empty(v2) then false
else if (has(v1, i) = has{v2, 1))
then check_in_order(remove(v1,; i),
remove(v2, i},
i+ 1)
else false

The following designs are not expressively complete because equal is not implementable
in terms of their operations. In both the following cases it is possible to apply the
above algorithm to find an answer when the two sets are unequal; however, when the
sets are cqual, the algorithm does not terminate because of the absence of the operation
empty in the first case, and the absence of the operation remove in the second case.

(3) set [N] is null, insert, remove, has
(4) set [NIis null, insert, has, empty

4. Expressive Richness

In this chapter we introduce the notion of expressive richness. The motivation
for this stems from the existence of several expressively complete data types whose
operation sets are not rich enough to be of any practical use. For such types,
implementation of even simple and useful functions that are not provided as operations
of the types can turn out to be extremely tedious and unnatural. For instance, consider

the following design of set [N].

set {N] is null, insert, remove, has, empty
This design has been widely used in the literature. It is an expressively
complete design, as was shown in section 3.4 above, since the equal predicate is
implementable in terms of the operations. Note that the implementation of equal
required enumeration of N upto the minimmum of the maximal elements of the two sets.
The following is an implementation of the function size that computes the size of a set.
This implementation also needs an enumeration of N. The auxiliary function count in

the implementation does this job; every time it finds a number that belongs to the set it

- 15 -

removes the number from the set, and increments the count (accumulated in the
variable cnt) by 1.
size(v) = count(v, 0, 0)
countlv, i, ent) = if empty(v) then cnt
else if has(v, i)
then count{remove(v,i), i+1,cnt+1)
eise count(v, i+1, ent)

The enumeration in the above example would be more complicated if the
elements of the set were of an arbitrary type that does not have a ﬁatura! ordering
defined on it. In that case we would need to encode the values of the element type to
perforin the enumeration.

The enumeration was necessary in the above implementation Because the data
type sct [N} does not provide any operation to pick an element of a set conveniently. -
In general, this problein arises when the operation set is not rich enough to extract all
relevant information from a value conveniently. We wouid like an expressively rich data
type to avoid the need for such enumeration while extracting all relevant information
from a value. To characterize this aspect of richness of the operation set, we first
introduce the concept of distinguished functions. We later formulate a definition for

expressive richness in terms of them.
4.1 Distinguished Functions

The distinguished functions for every data type D are defined corresponding to
a minimal subset @, of constructors of D that can generate the whole value set of D.
A family of distinguished functions defines a set of manipulations sufficient to extract
all relevant information from a given value, necessary to reconstruct the value back
from scratch.

In peneral, there can be more than one minimal subset of constructors, i.e., L
for D. So D can have more than one family of distinguished functions, with every
family being associated with a particular Q.. Furthermore, D can have more than one

family of distinguished functions corresponding to the same 8. We will illustrate this

- 16 -

point by means of an example later.

There are two kinds ‘of information that one needs to know to construct a
value. Firstly, we need to have a set of values of the defining types which is used in
the construction of the value. Secondly, we need to know the constructors, and the
order in which they should be used in creating the value. Based on which of the above
two kinds of information they extract, the distinguished functions are classified into two

kinds - the d-functions and the p-functions.
4.1.1 The d-Tunctions

The d-functions permit us to extract from an arbitrary value of D, a set of
values of the defining types necessary to reconstruct the value using the constructors in
Q.. The d-functions are such that evefy such value of the deﬁnihg type can be
extracted by means of a finite composition of the d-functions.

4.1.1.1 Definition

Let ¢, be an nary (n > 0) operation of D in e such that
v, : 71"), X...XD,>D D,,...,D, are either D or the defining types of D.
Associiated with a, there are n d-functions, d! , . . . 4", such that for every 1 £k <n,

d': D - > D, und d* satisfies the following property:

(P1} For every value of D, there exists a family of finite compositions of d¥s,
denoted by € = (S,,. . . , S,), where every §, is of the form §; = di - . d'i‘: . |
such that

(i) §(v) = a, is a value of one of the defining types of D, and

(i1} it is possible to construct v from {a, . . ., ay} using the constructors of 2.

If ¢, is O-ury, then it does not have any associated d-functions.

217 -

4.1.1.2 Explanation

To keep the exposition simple, we first explain the definition of d-functions for
the simple case of a data type where every constructor in its 1. takes at most one
argument of a defined type. (We discuss the general case in a subsequent section.)

In the simple cuse, every value of' the defined type can be constructed using a
sequence of Constru‘ctors from @; we call such a sequence a constructing sequence for
the value. The first constructor in every constructing sequence is a basic constructor,
and the rest of them are all non-basic constructors, Every constructor in the sequence
uses a set of values of the defining types as arguments to it. For instance, consider the

following design of stack’ [N].
stack [N] is nuli, push, pop, top, empty

For stack [N], i, = [null, push}. A stack value with n elements has the (unique)
constructing sequence that has the form (push)” - null. ((push)™ denotes a sequence
of n push operations.) |

The d-functions associated with a constructor o; can be viewed as functions

- acting as "inverses” for a,; they can be considered as functions that "undo” the effects

of a particular instance of the constructor ¢; in a constructing sequence for the given

value. The d-functions for every constructor are designed by fixing the instance of the

Constructor (in the constructing sequence) one wishes to undo by a single application of
the d-functions. The design should be such that all instances of the constructor are
undone after a finitely many applications of the d-functions on the value.

For stack [N], there are no d-functions associated with null, since null is a
Zero-ary constructor. The operation push has two associated d-functions - d} . and
dZ.. By selecting the d-functions to undo the effects of the latest instance of j)ush in

the constructing sequence, we require the two d-functions to satisfy the following

properties.
d. o (push(v, e)) = v
d2, . (push(v, e)) = e

- 18 -

Note that pop and top satisfy these properties, and hence can be used as the
d-functions.

To see how the d-functions can be used to extract all the values of the
defining types, we clussify the d-functions into decomposers and extractors: a decomposer
yields a value of the defined type, and an extractor yields a value of a defining type. In
the case of stack [N], d sush is the decomposer and d2.., is the extractor for push.

To extract the values of the defining types we go through a reverse process
using the decomposers and extractors instead of the constructors. We first find a
sequence of decomposers to "decompose” the given value to a basic value (i.e., a value
constructed by a basic constructor in Q) we call such a sequence a deca)npasing
sequence for the vilue. A decomposing sequence can be easily derived from a
conétructiug sequence for the value: it is the reverse of the sequence of decomposers
that is obtained by substituting every constructor in the constructing sequence by its
corresponding decomposer. Every initial subsegment of the decomposing sequence (when
applied on the value under question) yields a value of the defined type that was
generated at some point during the construction of the value under question. The
values of the defining types are obtained by applying appropriate extractors to each of
these values. For instance, for stack [N], there is only one way of decomposing a stack
value using pop; the decomposing sequence for a stack of depth n is pop". The
following set of sequences of d-functions extracts ail the numbers used in the
construction of the stuck :

{ top . top - pop,..., top - (pop)™-13.

The set of d-functions associated with a particular fl, need not be unique. For
instance, for stack [N], a function remove _first that removes the last element of a
stack, and a function get_first that fetches the deepest element of a stack could just as
well have acted as d-functions for push. Notice that these d-functions undo the effect

of the carliest instance of push in the constructing sequence.

-19-

4.1.1.3 The File Example

We further elucidate the definition of d-functions by designing a set of
d-functions for u reasonably sophisticated file [t] example. The definition of file [t]

appears in Appendix I; the following is an informal description of it.
file [1] is nuil, insert, rewind, skip, delete, read, pos, empty, eof, length

A file value can be considered to be a sequence of records with an imaginary pointer,
where every record is of type t. The pointer could be pointing to one of the records in
the file, or to an imaginary position, called end_of file, beyond the last record in the
file; the pointer in an empty file is always at the end_of_file. skip moves the pointer
forward by a specified number of records, rewind resets the pointer to the first record.
insert inserts a record into the file immediately before the record to which the pointer
is pointing (it leaves the pointer pointing to the same record.); if the pointer is at the _
end_of_ file, the record is inserted at the end. delete deletes the record (if any) pointed
to by the pointer. read fetches the record pointed to by the pointer. pos returns the
current position of the imaginary pointer. empty and eof are predicates which have the
behavior naturally implied by their name. length returns the number of ‘records in the
file.

For file {t}, @_ = { null, insert, rewind, skip }. In this case, it is not very
obvious what the d-functions can be. The difficuity arises because the constructors in
{lo can, in general, be used in several different ways to create a file value. (In contrast,
for stack [N], there is exactly one constructing sequence for every value.) In such cases
it is. useful to select a canonical constructing sequence for the values, and then design
d-functions to undo the effects of specific instances of the constructors inside the
canonical sequence. Every non-empty file value with n records can always be
constructed by a constructing sequence of the form skip + rewind - (insert)" . null.
The integer argument to skip is the position of the pointer in the file. Based on this

canonical sequence, we propose the following design for the d-functions.

(i) The d-functions corresponding to skip are chosen to undo the effects of the single

=20 -

instance of skip in the canonical sequence. So the d-functions have to satisfy the

following properties.

dl, (skip(rewind(v), n)) = rewind(v)

dzk,p(skip(rewind(v). n)) sn

It is easy to see that the operations rewind and pos satisfy the above properties; hence

they can serve as the d-functions.

(ii) Assuming that the effects of skip are already undone, the d-funcﬁon of rewind can
expect to receive only values that have a constructing sequence of the form
rewind - insert™, ie., the file is rewound. The operation rewind is many-to-one; it
resets the pointer no matter where the pointer was (even if the file is already reset)
prior to its application. d!,,.4 should be.designed such that it acts as an inverse of
rewind. We choose to design it as an identity function since that leads to a more

natural set of distinguished functions. So we have the following trivial definition for
drownﬂd

d! . na(rewind(v)) = rewind(v)

(iii) Assuming that the effects of skip and rewind are already undone as explained
above, the d-functions of insert can expect only values that have a constructing
sequence of the form rewind - insert". We choose the d-functions to undo the effects
of the rightmost instance of insert in the above constructing sequence. Informally, we

want d-functions for insert to behave as follows:

d !ns,,,(rewind(insert"'1(insert(null, r1),...en))) =
rewind(insert"'1(null. r2), ... rn})

d?ns,,|(rewind(insert"'1(insert(null, r1), ..) =
The ubove properties can be expressed algebraically as follows :

d ! ncen{rewind(insert(rewind(v), r))) = rewind(v)

d? .. (rewind(insert(rewind(v), r))) = r

221 -

The operations delete and read can serve as the two d-functions, respectively.

The decomposers we have chosen for the file [t] type are such that there are,
in general, several decomposing sequences for a file value. For instance, since d!, ., is
an identity function, it can be applied an arbitrary number of times at any point in the
decomposition. However, the canonical form we have chosen suggests an obvious
decomposing sequence. This is to undo the effects of the constructors in the order in
which they appeur in the canonical form; this strategy will decompose a file starting
from the leftmost record. Since d!,,,.4 is deliberately chosen to be an identity function
it need not be used in the decomposition process at all. A possible set of sequences of
d-functions that extracts all the records from a non-empty file of length n is
{ dgkip * d?nsavl * d;kip) d?nsart * (d!mrt)n-‘l * d;liip}

The design of the d-functions above was guided by the particular canonical
form of 2 file value we chose. If we had chosen a different canonical form for a file
for a different application, it would have i)erhaps led to a different set of d-functions.
Note that the definition of d-functions does not requife that they have to be designed
with respect to any canonical form of a value;'however, the methodology based on a

canonical form simplifies the design process for d-functions, as illustrated above.
4.1.1.4 Discussion

In the gencral case of a data type, where the constructors can take more than
one argument of the defined type, a value might have to be constructed starting from
arbitrarily many basic values. A binary tree is an example of such a situation. Then
we need a set of décomposing sequences' to decompose a value; every decomposing

sequence in the set will be generating one of the several basic values needed to construct

the given value. We have to use each of these decomposing sequences in a manner

expliined before to get all the sequences of d-functions that extract the values of the
defining tyvpes. o

In the above definition of d-functions, we associate n d-functions for every
n-ary constructor in @ : however, this association is not essential. The only requirement

needed is that the set of d-functions satisfy the property Pl. The advantage of having

-22 -

this association is that it encourages the methodology for designing d-functions that was
discussed in the preceding sections. We believe that the methodology is simple and

elegant.
4.1.2 The p-functions

The property (P1) in section 4.1.1.1 that defines the d-funciions guarantees the
existence of a set of sequences of d-functions that extracts all the values of the defining
types from a given value. Given the information about the structure {i.e,, a constructing
sequence) of a value, we saw how the values of the defining types can be extracted from
it. But, for the d-functions to be useful in itplementing other functions on the defined
type, we should be able to extract the values of the defining types without any a priori
knowledge about the structure of the value of the defined type. For this, we need a
device that can help us extract the structural information of a value. We introduce a
set of functions, called p-functions, as a part of the set of distinguished functions for
this purpose.)

P-functions take the form of predicates. They are defined so as to guide us in
the decomposition process; they help us pick the appropriate d-functions in an
appropriate order to decompose any given value to a basic valye. For this, the
p-functions have to satisfy the following two properties:

(2} They should help us terminate the decoinposition process. That is, they should
help us determine whether we have decomposed the given value to a basic value.

(b) At every step in the decomposition process, they should heilp us pick a
decomposer which makes us move "closer” to a basic value. Note that in the absence of
this information, the decomposition process cannot be guaranteed to terminate.

The first requirement can be handled easily by having predicates to test if a

value is a basic value. So we have :

(P2} Associated with every basic constructor'a, in 1, , there exists a p-function, P »
such that p(v) iff v is the value constructed by o,

To formalize the second requirement, we need to define a relation on the value

-23-

set of the data type that reflects how "close" a particular value is to a basic value. We
call this- relation is_closer_than. For ease of exposition, we first define the relation
for the simple case where every constructor in 1, of the data type takes at most one
argument of the defined type. We extend the definition to the general case later.

For the simple case, we need only a single decomposing sequence to decompose
a value to a basic valve. We define the distance of a value to be the least number of
decomposers necessary to decompose a value to a basic value, ie, the length of a
shortest decomposing sequence for the value. Then, v is_closer_than v' iff the
distance of v is less than the distance of v'. We défine a set of p-functions that helps to

pick the uppropriate decomposer.

(P3) Associated with every nonbasic construétor o, there exists a p-function, p;,
such that p(v) iff d*(v) is_closer_than v |

Assuming that stack [N] and file [t]lhave d-functions as chosen earlier, we

define p-functions for them below. For stack [N], the p-function associated with null

should test if a value is the one created by null, ie, if a stack is empty. The

decomposer associated with push, i.e., pop, reduces the distance of a stack value if it is

non-empty; so pg, his to determine if a stack is non-empty. We have the following -

implementations.

Prai{V) 2 empty(v)

Ppush(V) & not{empty(v))

For file {t], there are several decomposing sequences based on the d-functions
we have proposed in section 4.1.1.2 Let us design a set of p-functions that guides us
through a decomposing sequence of the form dip © (ls)™ According to this
strategy, we want dj,, to be applied right at the beginning but only when the file is not
rewound, i.e., when the position of the pointer is greater than one. Secondly, we do not
intend to apply dl,,..e at all; so p,...g can always be false. Lastly, ou r intention is to
decompose the file starting from the leftmost record; so d},,. should be applied if the

file is non-cmpty and the file is rewound.

Psip(V) 2 (pos(v) > 1)

=24 -

Pinsert(¥) £ not{empty(v)) & (pos(v) = 1)

Prowng(V) = false

For the general case, we need a set of decomposing sequences to decompose a
value, since a value could be constructed from a set of zero or more basic values. Every
value may have several such sets of decomposing sequences. So, we have to change the
definition of the distance of a value. The length of a longest decomposing sequence
inside a set of decomposing sequences for a value is called a relative distance for the
value. We then define the diszance to be the minimum of all relative distances for the
value. (Note that the definition of distance in the general case reduces to the definition
given before in the simple case.) The rest of the definitions for p-functions remain as
before. So (P3) above would be interpreted as folloyvs: if p(v) is true then the set of

decomposers associated with o; could be applied to v successfully.
4.2 Definition of Expressive Richness

Based on the notions of d-functions and p-functions, we capture the informal
notion of richness of the operation set of D by means of the following definition for

expressive richness.

Definition 5 The operation set of a data type D is expressively rich if every function
in a set of distinguished functions with respect to a minimal subset of constructors, Q.
can Dbe implemented in terms of the operations in 9 using only the mechanisms of

composition and conditional expressions.

The above definition satisfies both the goals that motivated the extension of
the notion of expressive completeness. The theorem to follow shows that the definition
maintains the logical power of a type as before. The richness aspect is taken care of by
the distinguished functions. The distinguished functions characterize all desirable basic
manipulations that one might want to perform on values. All useful functions on values
can be implemented conveniently in terms of them, since they permit one to extract ail
relevant information from a value easily. The requirement that the distinguished

functions be implementable in terms of the operation set without the use of recursion

.25 .

avoids the use of enumeration in the implementation of the distinguished functions.

Theorem 4 Assuming that every defining type of D has a decidable equal predicate,
and is expressively complete, if D is expressively rich, then D is also expressively |

complete.

Proof We show that the equal predicate for D can be defined in terms of the
distinguished functions of D, and the equal predicates on the defining types of D.
Then the required result foliows from Theorem 2.

Let us suppose the following: 8.={en. . . o0} n(i) is the arity of
o ;0 ...,0c are the basic constructors (i.é., constructors that do not take arguments
of type D); oy,, . . . , oy are the non-basic constructors.

For convenience, in the following implementation, we use = to denote the
equal predicate on all types inside the body of the code. The first k main clauses
constitute the basis condition. The remaining clauses form the recursive step, since they

involve recursive invocations of equal on D.

equal(vi, v2) & .
if p(v1) then p;(v2) & di(v1) = dl(v2) & ... & diMv1) = dM(v2)
else if py(v1) then py(v2) & dj(v1) = di(v2) & ... & d3v1) = d3¥(va)

else if p,(v1) then p,(v2) & d}(v1) = d)(v2) & ... & di%(v1) = 4]%(v2)
else if py, (v1) then py, (v2) & d,.l(v1) = d,,}(v2) &... & 6, 1% (1) = d,,} ™ (v2)

else py(v2) & di(v1) = di(v2) & ... & dﬂm’ (v1) = d§™ (v2)
Q.E.D.

- 26 -

4.3 Examples

In this section we investigate the expressive richness of the designs of the data
types we have discussed so far. The method we use is to design a set of distinguished
functions for the type, and then see if the functions are 1mplementable in terms of the

operations of the type without the use of recursion.

(1) stack [NJ is null, push, pop, top, empty

(2) file £t] is nuil, insert, rewind, skip, delete, read, pos, empty, eof, length

The above two designs are expressively rich; for each of them we designed a family of

distinguished functions in the preceding sections which were démonstrated to be

implementable as simple compositions of the operations the type.

(3) set [N] is null, insert, remove, has,‘ empty, equal

ﬂc = {null, Insert)

One possible set of distinguished functions is :

42 cei(s) 2 max(s)
d}rsen{s) 2 remove(s, max(s)),

where max returns the maximum element in the set.
Pouti(s) 2 empty(s)

Pinsert{S) 2 not{empty(s))

Another possible set of distinguished functions is :
42, ceni{sS) 2 min(s),

where min returns the least element of the set.

8! ceni(s) = remove(s ,min(s))

Proit 4nd p ey are the same as before.

set [N] is not expressively rich as it is, because it is not possible to implement without
using recursion a function to extract some . element from a set. However, if we include
max or min as an additional operatlon of set [N], then the modified design is

expressively rich.

-27 -

5. Concluding Remarks

In a strongly typed system with abstract data types, the designer of a type
ought to be careful in choosing the operations for the type. If the operation set chosen
is not rich enough, it might be impossible or inconvenient to discover certain useful
properties about the values of the type. In this paper, we have provided a formal
characterization of the expressive power of the operation set of a data type. We defined
two properties related to the expressiveness of a data type - expressive completeness and
expressive richness. We believe that such a characterization can help one gain a better
‘insight into the intuitive aspects of the design of a data type. In the following, we
discuss a few situations m which requiring a data type to be expresswely rich proves to
be beneficial.

An important advantage of a data type is that it delineates the use of the type
from its implementation. Among other things, this enables one to provide several
versions (implementations) of the same data types; each version can be made suitable for
a particular class of applications. In such a cohtext, the user might often want to
convert among the values belonging to different versions. Having the data type
expre':m ely rich (or, at least expressively complete) can be very helpful for the user in
such a situation. The user will be able to ‘easily write conversion routinies himself, since
the operations of an expressively rich type can be conveniently used to extract all the
information needed to reconstruct any given value; there is no need to divulge any
information about the representation for this purpose. The property of expressive
richness of a data type also enables its user to convert any of its values to an external
representation of his choice. This makes it possible to write output routines to either
store i value efficicntly in a backup store or to display the value in a suitable format on
a peripheral device.

An elegant way to incorporate protection [6] for data objects in a system that

supports abstract data types is to control the set of operations that is made available to -

the user. Buased on the kind of information that needs to be protected from the user

s

1/
J!\

some operations are made inaccessible to him. In such a context, comparison of 1

Pl
R

L

Vi

s

-28-

expressive power of different sets of operations of a data type becomes essential. “The
expressiveness praperties discussed in the paper are of help here. For instance, one
should muke sure that the subset of operations that is accessible to the user is not
expressively complete. The distinguished functions can be used as a guide to determine
which operations of the data type ought to be made inaccessible to the user.

Another interesting situation where the property of expressive richness plays a
useful role is in automatic synthesis of an implementation of a data type in terms of
another data type (representation type) from their algebraic specifications. The
synthesis procedure under investigation in [15] derives implementations for the operations
by transforming the axioms of the type in two stages. In the first stage, the axioms are
transformed into a form in which they are expressed as formulas on the values of
represcotation type. In the second stage, the axioms are converted into implementations
involving the operations of the representation type. The concept of distinguished
functions are helpful in the second stage. The axioms in the intermediate form can be
systematically converted into implementations involving the distinguished functions of
the representation type. This is because the distinguished functions provide the
information that is implicit in the pattern matching mechanism used by algebraic
axioms. So the job of the synthesis procedure is reduced to one of finding
implementations for the distinguished functions of the representatlon type. Although
this is a non-trivial task, it turns out that the task can be automated with relative ease
for expressively rich data types.

In this paper, we have only concentrated on immutable data types. It would
be interesting to conduct a similar analysis for mutable data types also. We imagine
that the requiremment in the mutable case has to be stronger, since the ability to

distinguish object identity also ought to be taken into consideration.

229

Acknowledgements

We are thankful to Carl Seaquist for his insightful suggestions throughout the
development of this paper, and to Craig Schaffert for bringing to our notice a mistake
in an earlier draft of the paper. We are aiso thankful to Valdis Berzins, John Guttag,
Barbara Liskov, Eliot Moss, and N. Natarajan for their helpful comments.

230 -

REFERENCES

1. Greif, 1.G., Induction in Proofs about Programs. MAC TR-93, M.L.T,,
Cambridge, MA, Feb,, 1972,

2. Goguen, J.A., Thatcher, J.W,, Wagner, E.G,, "Initial Algebra Approach
to the Specification, Correctness, and Implementation of Abstract Data
Types," Current Trends in Programming Methodology, Vol. 1V, Data
Structuring, (Ed. Yeh, R.T.), Prentice Hali (Automatic Computation Series),
Englewood Cliffs, New Jersey, 1978.

3. Guttag, 1.V,, The specification and Application to Programming of
Abstract Data Types. Ph. D. Thesis, University of Toronto, CSRG-59, 1975.

4. Guttag, J.V,, Horowitz, E., Musser, D.R,, "Abstract Data Types and
Software Validation," Comm. ACM Vol. 1 No. 12, 1048-1064, Dec. 1978.

5. Hoare, C.A.R., "Proof of Correctness of Data Representations,” Acta
Informatica Vol. 1, No. 4, pp 271-281, 1972.

6. Jones, AK, Liskov, BH. "A Language Extension for Controlling Access
to Shared Data," IEEE Tran. on Software Engg Vol. SE-2 No. 4, pp.
277-285, Dec. 1976,

- 1. Kapur, D, Srivas, MXK., Expressiveness of the Operation Set of A Data
Abstraction. Computation Structures Group Memo 179-1, Lab. for Computer
Science, M.I.T,, Cambridge, MA, June, 1979, Revised Nov., 1979,

8. Kapur, D, Towards a Theory for Abstract Data T; ypes Forthcoming
Ph.D. Thesis, Dept. of EE. & CS, MIT, Cambridge, Mass., Jan., 1980.

9. Kleene, S.C., "General Recursive Functions of Natural Numbers,”
Mathematical Annals 112, pp. 721-742 (1936).

10. Liskov, B.H., Snyder, A., Atkinson, R., Schaffert, C., "Abstraction
Mechanisms in CLU," CACM Vol. 20 No. 8, pp. 564-576, 1977,

11. Liskov, B.L., Snyder, AS., Exception Handling In CLU. Computation
Structures Group Memo 155-2, Lab. for Computer Science, M.I.T,,
Cambridge, MA, Dec., 1977, Revised March 1979. To appear in JEEE Trans,

on Software Engineering.

12, McCarthy, J., "A Basis for a Mathematical Theory of Computation” in
Computer Programming and Formal Systems, (Eds. Braffort and Hirschberg),

-3 -

North Holland Publishing Co., Amsterdam -London, pp 33-70, 1963.

13. Morris, J.H,, Jr., "Towards More Flexible Systems," Lecture Notes in
Computer Science 19, Springer-Verlag, pp. 377-383, 1974,

14. Rogers, H., Jr., Theory of Recursive Functions and Effective
Computability. McGraw-Hill Series in Higher Mathematics, McGraw-Hill,
Inc., 1967.

15. Srivas, MK, "Draft of a Thesis Proposal on Automatic Synthesis of
Abstract Data Types," LCS, M.LT., December 1978.

16. Weihrauch, K., "A Generalized Computability Thesis," Lecture Notes in
Computer Science 56, Springer-verlag, pp. 538-542, 1977.

17. Wulf, W, London, R.L., and Shaw, M., Abstraction and Verification in
ALPHARD: Introduction to Language and Methodology. Carnegie-Mellon
University Technical Report, also USC Information Sciences Institute
Research Report, 1976.

18, Zilles, S.N., An Introduction to Data Algebra. Draft Working Paper,
IBM San Jose Research Lab., Sept. 1975.

-32-

Appendix I - Definitions of Data Types

We present the definitions of various data types discussed in the body of the paper. We
first give the syntactic specifications of the operations of a data type, and then we give
a model of the data type. We usually use the first two letters of an operation name to
stand for its interpretation in the model. The definitions of the functions are presented
in any convenient mathematical notation. A data type is the set of all algebras
behaviorally equivalent to the given model.

set [N] is null, insert, remove, has, empty, max, equal
null : > set [N}

Insert : set [NJXN --> set [N]
remove : set [N]X N --> set [N]

has : set [NJX N -> bool
empty : set [N] --> bool
max : set[N] -> N

equal : set [N] X set [N] --> bool

The model %, is a natural model of set [N] in the sense that its value set is the set of

all finite sets of natural numbers, and the interpretations of its operations are defined in
terms of the standard set operations.

Wen =[{StN, N, B }; { nu, in, re, ha, em, ma, eq 11
where B = { true, false), a value set of bool,
N f0,1,2,3, ... } avalue set of N, and

SN = { &, {0}, {1}, (2}, (0, 1}, {0, 2}, {1, 2}, (3}, {0, 3},
{1, 3,12,3,{0,1,2}, ... },a value set of set [N].

n

nu = ¢

in(s, 1) = s u {i}

re(s, i) = s - {i} ; - is the difference operator

ha(s,1) = i € s

em(s) = true if s is the empty set
false otherwise

ma(s) = 0 if s is the empty set
nlnesa(Vi)ies==>f<n otherwise

eq(sl, s2) = true if 51 and s2 are the same set
false otherwise

-33-

stack [N] is null, push, pop, top, empty, equal

null : --> stack [N]

push. stack [N} X N --> stack [N]
pop : stack [N] --> stack [N]

top stack [N] -> N

empty : stack [N] --> bool

equal : stack [N] X stack [N] --> bool

"

"

The model W, of stack [N] has sequences of natural numbers as the values of stack
[N).
e =[{ SqN, N, B }; { nu, pu, po, to, em, eq}),
where SqN is the set of sequences of natural numbers.
SqN = € ¢, <0, <1, <2), <0, 03, <0, 1), <0, 2>,
<1, 0>, <1, 1)), <1, 2>, €2, 0), <2, 1),
{2, 2>, ¢3>, €0, 3>, ...).

The interpretations of the operation names are defined as follows (<eyy ..., ep is the
empty sequence if j < i) :

nm = <>

pu(<e;, ..., e>,) = <&y sy By &>
po(<>) = <> _
Po(<e;, ..., e>) = <ey...,€,,> if m>0.

to(<>) = 0

to(<e), ..., e>) = e, ifm>0.

em(<>) = T

em(<e,...,e>) = F ifm>0

eq(<e;), ..., e > <ty ...,8,>) =T if m = n and for each i, ¢, = e,

F otherwise.

-34.

file [t] is null, insert, rewind, skip, delete, read, pos, empty, eof, length

null : --> file [t]

insert : file[t] Xt --> file [t
rewind : file [t] --> file [t]
skip : file[t] X N --> file [t]
delete : file [t] --> file [t]
read : file [t] --> ¢

pos : fileft] -> N

empty : file [t] --> bool

eof : file [t] --> bool
length : file{t] -> N

The model %, has a set of 2-tuples whose first element is a sequence of records and the

second element is a natural number, as the value set. ‘We assume that the function
corresponding to read returns the element 7o when the pointer is at the end of file.
The functions corresponding to rewind and read are denoted as re and rd respectively.

uﬂ:[{Fl!N!B}:
{ nu, in, re, sk, de, rd, Po, em, eo, le } |

where Fl is a subset of <SqT, N>, where SqT is the set of sequences of elements of
type t, such that every member f = <<r,, . . ., > k> of Fl has 1 S k < n+l. Lets
stand for a sequence <r,, . .., r.> of n records.

n = <>»
in(f, r) = <<r,..., Picts Py Py o o 0y 1>, KH1>
skif, m) = <s, k+m> if k+m < n+l
<s, n+1> otherwise
rw(f) = <s, 1>
de(f) = <<ry, ..., 1, TP & 3 '3 ifk <n
f otherwise
re(f) = r, ifk <n
o otherwise
po(f) = k
em(f) = (n=0
eo(f) = (k = n+l)
le(f) = n

-35.

Appendix II - Specifications of Data Types

This appendix gives the algebraic specifications of the data types that were defined in
Appendix I. :

set [N] is null, insert, remove, has, empty, max, equal
Operations

null : ==> setN]

insert : set[NIXN --> set[N]
remove set (NI XN --> set[N]
has : set[NJ XN --> boot
empty : set[N] --) bool

max ¢ setiN]l --> N

equal .: set [N] X set [N] --> booi

"

Axioms
insert(insert(s, 1), e2) = it el = e2 then s else insert(insert(s, e2), e1)

remove{(null, e) = null
remove(insert(s, e1), e2) = if et = &2 then remove(s, a2)
eise insert(remove(s, e2), ¢1)

i\as(null, e) = false
has(insert(s, e1), e2) = if et = ¢2 then true eise has(s, e2)

empty(null) = true
empty(insert(s, e)) = false

max(null) = 0

max(insert(null,) = ¢

max(insert(insert(s,e1),e2)) = if e2) max(insert(s, e1)) then e2
else max(insert(s, e1))

equal(null, nuil) = true
equal(null, insert(s, e)) = faise
equal(insert(s, e), null) E true .
equal(insert(s1, e1), insert(s2, e2)) = has(insert(s4, e1), e2)
A has(insert(s2, e2), et)
A equal(remove(remove(st, ¢1), e2),
remove(remove(s2, ¢2), e1))

-16-

stack [N] is null, push, pop, top, empty, equal

Operations

nuil t ==)> stack [N]

push : stack [N] X N =~-)> stack [N]
pop : stack [N] --)> stack [N]

top : stack [N] --) N

empty : stack [N] --) bool

equal : stack [N] X stack [N] --> bool
Axioms

pop(null) = null
pop(push(s, e)) = s .

top(nuil) = 0
top(push(s, e))

empty(nuil) = true
empty(push(s, e)) = false

equal(null, null) = true

equal(null, push(s, e)) = false

equal(push(s, e), null) = faise

equal{push(s1, e1), push(s2, e2)) = equal(e!, e2) A equal(s1, s2)

file [t] is null, insert, skip, rewind, read, pos, empty, eof, length

Operations -

null @ =-> file [t] as N
insert : file[t1 Xt --) file [t] as in
skip : file[tIX N --> ftile (t] as S
rewind : file (1] --) file [t] as Rw
delete : ftile [t] --) file [1] as D
read : file [t] --> 1t as Re
pos : file[t] --) N

empty : file [t] -~) bool as E

eof : fiie [t] --) bool
length : file [t] --> N as Ln

-37.

Axioms
S(f,0) = ¢
S(N,n) = N

8(s(f, n1), n2) = S(f, n1+n2)

Rw(N) = N
Rw(Rw(f)) = Rwl(f)
Rw(S(f, n)) = Rw(f)

f = S(f, pos(f) -1)

 In(S(Rw(In(f, r1)), n), r2) = if n = pos(f) -1 then S(Rw(in(in{f, r2), r1)), n+1)
else if n < pos(f) -1 then S(Rw(In(S(Rw(In(S(AW(f), n), r2)), pos(f)), r1)}), n+1)
else if n > pos(f) -1 then S(RW(In(S(RwW(In(S(Rw(f), n-1), r2)), pos(f)=1), r1)), n+1)

D(N) = N I

D(S(Rw(in(f, r)), n)) = if n > Ln(f) then S(Rw(In(f, r)), n)
else if n = pos(f) -1 then S(Rw(f), n)
else if n ¢ pos(f) -1 then S(Rw(In(S(RW(D(S(Rw(t), n))), pos(t)-2), r)), n)
eise if n > pos(f) -1 then S(RW(In{S(RW(D(S(Rw(?), n-1))), pos(f)~1), r)), n)

Re(N) = ro

Re(S(Rw(In(f, r)), n) if n =z pos(f) =1 thenr
else if n ¢ pos(f) -1 then Re(S(Rw(f), n))

eise Re(S(Rw(f), n-1))

pos{(N) = 1

pos(in(f, r)) = pos(f) +1

pos(S(f, n)) = min{pos(f) + n, La(f)+1)
pas{Rwi(f)) = 1

E{(t) = tn() =z o0
Ln(N) = o0

Ln(in(f, r)) = Ln(f) +1
Ln{S(f, n)) = Lnlr)
Ln(Rw(f)) = Ln(f)

eof(f) = if pos(f) > Ln(f) then true else false

.38.

Appendix III - Proof of Theorem 3

Theorem 3 Assuming that (i) for each of the defining types of D the equal predicate
is decidable, and (ii) every defining type of D is expressively complete, D is expressively
complete if the operation set of D includes the equal predicate on D.

Proof A function f in Comp(D) is a function on W preserving E; as explained in
chapter 2, f can also be viewed as a function on V,ie, W/E. In the following we take
this latter view of f, so that we do not have to continually consider the equivalence
relation E.

We already know that for any D it is possible to construct an encoding function v that
can be used to map every function of D to a function on natural numbers. Because of
our change of view of functions of D, it is convenient to come up with a similar scheme
that encodes values as numbers. The two premises of the theorem guarantee the
existence of a computable bijective function 8 : N -> V. We call & a numbering for D,
let n* be the inverse of §'. We show later how one such numbering scheme can be
constructed from a pair of encoding-decoding functions (and 8) for D. We use
#'-f -8 as the image of f. For convenience, we define the inverse image of a function
Ron N as the function §'-F-4'. Note that if f is computable (ie., f € Comp(D)) then
$0 is its image (via <v*, §*>), and if g on N is computable, so is its inverse image.

To prove that D is expressively complete, we have to show that Comp(D) =00). We
do this in two parts:

PartI 6(0) ¢ Comp(D)

Every operation in @ is computable and the mechanisms of composition, recursion, and
conditional expression preserve computability; so it is obvious that (@) < Comp(D).

Part II Comp(D) ¢ ¢()
Let the functions 0p , Sp , and =p on D be the inverse images of the natural number

functions 0, S, and =, respectively. The proof of Comp(D) < G() follows from the
following two claims:

(i) Comp(D) < 6(f 0, Sy, =p)
() C({0p, Sy, =p) s 6@

To prove (i), let f € Comp(D). So there exists a computable function T on N such that
f=8-f-n: £¢0({0,S,=). Let f(x)aDel(T)(x), where Def(f)(x) is the
implementation of T, expressed using composition, recursion, and conditional expression,
possibly using a set of auxiliary functions. Now consider the function f':D -> D whose
implementation is obtained by replacing every occurrence of T, 0, S, =, and the auxiliary

functions in Def(T) by their corresponding inverse images. ' obviously belongs to
¢({ Op.Sp, =p }). Lemma 1 below shows that £ s indeed the inverse image of f,

-139.

and hence is functionally equivalent to f.

Lemma 1 f'(x) =8 -?-n(x).s

Proof We prove the equivalence of the two recursively defined functions using
Morris’s truncation induction rule [1]. We augment the value set of every data
abstraction D by the wndefined element, denoted by iy and order the augmented

domain such that 1y <v, where v is any non-lp, value, and the non-1p, values are
non-comparable. The functions on D are assumed to be defined on the augmented
domains. The numbering function & is also extended so that 8(1y) = 1. Let 1P

denote the constant function on D that returns 1p, and AN denote the constant
function on N that returns 1N Then we have 1P =g J.N-n'.

Let g; stand for the i truncation function of g. We can show the lemma by proving
that

@ Folx) =8-Toen(x), _
(i) if (Vi< j) Pi(x) =8 -T,- (),
then f°) = & - 1, 9'(x),
where fy(x) = 1P(x), —f;(x’) = 1”({'_), -
and for i > 0, F',(x) = Def’(F,)(x), and f(x") = Def(f._,)(x").

The proof of (i) is trivial. (ii) can be proved by induction on the structure of the
definition Def, where Def being 0, S, or = serves as the basis. The inductive step
involves two cases - (a) when Def is a composition, and (b) when Def is a conditional
expression.

o ' Q.E.D.

We prove claim (ii) constructively by giving implementations for Op, Sp, and =y in
terms of the equal operation of D in conjunction with a minimal set of constructors of
D. Note that the latter is the least we can assume about Q.

Let R denote a minimal subset of constructors of D; so . Ufequal j c . Without
any loss of generality, we assume that every constructor in 3 takes '

(i) at most one argument from D, and
(ii) at most one argument from the value set of a data type other than D.
We classify 1. into the following four subsets.

ﬂg'°={cl.. . s .C‘},Whel'e c"ﬁ ")D-

3. In order to simplify the proof, we have not considered the case when f is defined mutually
recursively using a system of recursive definitions. For this case also, the proof can be worked out along
the similar lines, '

- 40 -

B2'=Ca;.. .. ,4q),where q : D; -> D and D, different from D.
DC=Cr,. .. » 7} ,wherer, : D -) D.
B s (s ,s,), where 3, : DXD, -> D, where D, is different from D.

We define a numbering scheme that induces a total ordering on the value set of D.
The least element of this ordering is chosen to be Op. The function Sp is defined so

that when Sp is passed a value v of D, it returns the value whose number is one greater
than that of v. We implement® Sp such that it has the following behavior:
(Vv e DIISH(v) = 3'(n'(v) + 1)]. The predicate =p, is the same as the predicate equal

of D. Below we sketch the numbering on which the implementations of the functions
are based, and then give an implementation for Sp. Later, for the sake of completeness,

we also give the obvious implementations for ' and &' in terms of Sp.
QE.D.

(1 A Numbering Scheme for D

In order to simplify the presentation, we assume that the cardinality of each of the sets
a2°, ad', 0.°, L is 1; the approach discussed below easily extends to the general

case where the cardinalities are arbitrary.

B2°=2Ce), e:->D

Q' = ¢q), D ->D
8°=¢r>, DD

0L =Cs)>, s:DxD,->D

Let <4, 84> and <5, 85> denote the encoding-decoding pairs for D, and D,

respectively. The following table depicts the encoding function for D. An
implementation of " maintains a counter; it increments the counter while enumerating
the words formed out of the constructors in f3. in the order indicated below until it hits
the word which is to be encoded; the value of the counter at this point is the code for
the given word. ,

6. In a condensed version of this paper that sppeared in the proceedings of the 71" POPL Conference,
we mention (by mistake) that SD is implemented (in this paper) in terms of %' and 8*. Instead, here we

provide a direct implementation for SD which is bssed on a numbering scheme since such an
implementation is more interesting,

-4] -

v _ 9lv)
c
q(&,(O))

r(3(0))
5(3(0), 3,(0))

Q1)
r(3(1))
s(8(1), $,(00)
5(8(0), 3,(1))
$(3(1), §,(10)
q(8,(2))
r(8(2))

© ® ~N O b BN =-O

-h
[~

A numbering for D can be derived.from the above table by grouping together all words
that yield equivalent values. For example, let us suppose that among the first 10 words,
the following set of words represent the same value,

c, 9(8,(2)), s(3(0), 3,(1))

q(t“(o)). r(8(0)), s(8(0), 62(0))

q(8,(1)), s(d(1), $,(0))

r(3(1)), r(8(2)), s(8(1), 52(1))
Then the first 4 values are encoded as depicted in the following table. An

implementation of #' is also based on the enumeration of all the words formed out of
the constructors in flc. It enumerates the words in the same order as an

implementation of 4 would, but it increments the counter selectively; it increments the
counter if and only if the next word generated in the enumeration is the first word to
be generated from the equivalence class to which the word belongs.

v n'(v)
(cl (4]
Lq, (0N 1
Cad,(10)] 2
[r(3(1))] 3

(2) Implementation of Sp

The strategy employed in the impletnentation is the following. We generate the vajues
of D in the order specified in the second table shown before until we hit the value v,
the argument to Sp- Then the required result is the value generated next in the
sequence. Note that the ordering on values is induced by an ordering on the words that
construct those values. The algorithm used in the implementation enumerates the values

-42 -

by generating all the words in the order depicted in the first table shown before. But
an enumeration of words can result in repitition of values of D. The algorithm avoids
this repitition by checking every time it generates a new word if the value constructed
by the word was already constructed by a word already generated. The function seen
does this checking in the implementation.

The enumeration inside Sp can be considered to be conducted in two distinct states -
the pre-terminal state and the terminal state. Enumeration begins in the pre-terminal
state, and remains in that state until a word that constructs a value equal to v is
generated; so it is not necessary to bother about repititions of values in the pre-terminal
state. Enumeration in the terminal state continues until a word that constructs a "new"
value (ie, a value that was never constructed by any word generated before) is
generated; so the enumeration in the terminal state uses the function seen.

The definition of Sp uses several auxiliary functions. Two sets of functions are used to

do the enumeration in the two states. q_preterm, r_preterm, s_preterm1, and
s_preterm2 do the enumeration in the pre-terminal state. q_term, r_term, s_term1, and
s_term2 do the enumeration in the terminal state. The enumerating functions in each
set are setup in such a way that they call each other cyclically to generate the words in
the desired order. The auxiliary functions D1_to_p, D2_to.D, and D2_to_D1 are used to
convert values that have the same encodings from a source domain to a destination
domain. ‘

SD H D -) D
Sp(v) 2if v = ¢ then q_term(v, OD,) eise q_preterm(v, OD,)

q_preterm : D XD, -> D
q.preterm{v, d1) aif v = q(d1) then r_term(v, D1_to_D(d1))
eise r_preterm(v, D1_to_D(d1))

r_preterm : D XD - D
r_preterm(v, v') & if v = r{v') then s_termi(v, v*, ODZ) else s_pretermi(v, v', ODZ)

s_preterm1 : D XD x D, -> D
s_pretermi(v, v', d2) =

if v = s(v', d2)

then if v* = §;,(D2_to_D(d2))

then s_term2(v, OD , Snz(dz))
else s_termi(v, v', SDz(dZ))

else if v' = SD(DZ_to_D(GZ))
then s_preterm2(v, OD R Snz(dz))
else s_pretermi(v, v', Snz(dz))

. 43.

s_preterm2 : D XD xD, -> D
s_preterm2(v, v*, d2) =
if v =z s(v', d2)
then if v' = D2_to_D(d2)
then q_term(v, SDI(Dz_to_D‘I(dZ)))
else s_term2(v, SD(v'). d2)
else if v' = D2_to_D(d2)
then q_preterm(v, SD|(Dz_to_D1(d2)))

else s_preterm2(v, SD(V'), d2)

q-term : D XD, -> D |
q_term(v, d1} 2 it seen(v, q(d1)) then r_term(v, D1_to_D(d1)) eise q(d1)

rterm:DXD->D
r_term(v, v') a if seen(v, r{v')) then s_termi(v, V', Onz) eise r(v*)

sterm!i : DXDXxD,->D
s_termi{v, v, d2) &
if not(seen(v, s(v', d2))) then s(v', d2)
else if v' = SD(DZ_to_D(dZ))
then s_term2(v, 0, , Snz(dz))

else s_term1(v, v', Snz(dz))

sterm2:DXDXD,->D
s_termi(v, v', d2) a -
It not(seen(v, s(v', d2))) then s(v', d2)
else if v' = D2_to_D(d2))
then q_term(v, SDI(Dz_to_,Dl)))

else s_term2(v, SD(v'), d2)

In the following definitions Ppy and Py, denote the predecessor functions on D, and
D, respectively.

D1_t°_,D H D| -2 D
D1_to_D(d1) & if dt = 0D| then OD else SD(DLto_D(Pm(dﬂ))

D2_to.D:D,->D
D2_t0_D(d2) 2 if d2 = Oy, then Oy else S;(D2_to_D(Pp,(d2)))

02 to D1 H Dz ->» D|
D2_to_D1(d2) & if d2 = OD then OD else SD (D2_to_| D1(Pp,(d2)))

. 44 -

(3) Implementation of seen

seen is a predicate that takes two arguments v and v' of type D. It finds out if v* is
ever generated before v is generated for the first time in the enumeration sequence.,
The strategy is to enumerate the values of D in order until we hit either v or v'. If we
hit v* before v then seen returns true; otherwise, it returns false. It uses a similar set
of functions to enumerate the domain as before except that the enumeration is done
only in one state. We use the suffix gen for the auxiliary functions which do the
enumeration.

seen(v, v') & If v= v' then true
eise if v = c then faise else q_gen(y, V', Onl)

q_gen : D X D x D, -> bool
q.genlv, v', d1) & if v = q(d1) then false else r.gen(v, v, D1_to_D(d1))

rgen: D XD XD -) bool
r.gen(v, v', v1) & if v = r(v1) then false
else if v' = r(v1) then true else s_geni(v, v, vt, Onz)

s_gent : D XD XD XD, -> bool
s_geni(v, v', v1, d2) &
if v = s(vt, d2) then faise
else if v' = s(v1, d2) then true
else if v1 = Sp(D2_to_D(d2)) then s_gen2(v, v', Op) , Sp,(d2))

else s_geni(v, v', v1, Snz(dzl)

s_gen2: D XD XD XD, -> bool
s_gen2(v, v', v1, d2) &
if v = s(v1, d2) then false
else if v' = s(v1, d2) then true
else if v1 = D2_to_D(d2) then q_gen(v, v', SDI(DZ_to_Df(dZ)))

else s_gen2(v, v', SD(v‘I), d2)

(4) Implementations of §' and '

Given below are definitions of & and y'. They make use of Sp to do the required

enumeration of the values of D. They maintait a counter count to halt the
enumeration.

$':N->D
8(n) & & _aux(n, Op .0

- 45 -

$' _ aux :NXDXN->D

8" _auxt(n, v, count) 2 ifn = count then v eise §'_aux(n, Sn(v). count + 1)

":D->»N
7"'(v) & »'_aux(y, Op. 0)

" aux : DXDxN-N i
n'_aux(v, v', count) & if v = v' then count eise n'_aux(v, Sp(v'), count + 1)

