MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

Computation Structures Group Memo 180

An Abstract Implementation for

Concurrent Computation With Streams

by

Jack Dennis
Ken Weung

This paper will appear in the Proceedings of the 1979 International
Conference on Parallel Processing.

July 1979

AN ABSTRACT IMPLEMENTATION

CONCURRENT COMPUTATION WITH STREAMS®

Jack 8. Dennis
Ken K.-S. Weng
Laboratory for Computer Science
Massachuseits Institute of Technology
Cembridge, Massachusstts 02130

Abstract -- This paper Is a contribution toward
developing practical general-purpose computer systems
embodying data flow ptinciples. We outline a hardware
atructure capable of high concurrency and present an
abstract modet of data flow program axecution which could
be implemented within the proposed hardwara structure,
Our abstract model supports a user programming janguage
that includes recursive function modules and provides
straams of values for inter-modute communication.

introduction

We present here & conceptual model of program
axecution that can serve as the functional spacHication for
a distributed or highly concurrent computer system based on
data tiow principles. The programming language supported
by our conceptual model or "abstract Implamentation” Is an
applicative or value-orianted language that Includes
streams of values as & basic programming tool. Streams are
attractive because use of streams for communication
between program modutes leads to programs whoas modules
have functional semantics and whose overall meaning can
be exprassed as functional components combined using
composition and a fixpoint operator [12] - thus avelding use
of side effects. In the prasent discussion we only consider
determinate programs. The extension of this work to
nondeterminate computation I8 a subject of current
rasgarch.

Specificalty, we introduce a value-oriented language
and discuss representation of its semantics by transiation
Into recursive data fiow schemas [8]. Wa sketch an
operational semantics (formal intarpreter) for these data
tiow schemas and outline the structure of a hardware
system capable of highly concurrent sxecution of
value-oriented programs. A more detalled and complete
presantation of this work i3 glven In the thesls of Weng
{17}

(a) This research was supported in part by the National
Science Foundation under research grant MCS765-04000
AO1 and in part by the Lawrence Livermore Laboratory of
the University of California under contract $6545403.

A Simple Value-Oriented Language

OQur textual language departs from conventional
languages In several ways. There Is no notion of sequential
control flow and there are no explicit primitives for
Intraducing parallelism. The concurrency of a computation is
determinad by the data dependency within the program
rather than by explicit crestion of concurrent processes.

The language Is valua-oriented In the sense that each
syntactic unit defines a mathematical function that maps
input values into result values: thera are no sida effects or
other spurious interactions in the evaluation of axprassions.

Tha language does not have the notion of memory
locations or varlables commonly found In conventional
sequential programming languages; instead names are used
to denote valyas defined by expressions in much the same
way as in mathemstics. With value-oriented semantics, it Is
natural to write programs in a form that exhibits the Inherant
concurrency of an algorithm. The data types of the
tanguage'®) are intager, real, boolean, character-atring,
structure, and procedure. We shall call thess data types
simple data types. The operations for types Integer, real,
boolaan, and character-string are the ususi operations and
nead no comment. The operations for valves of type
structure wre defined below. The only operation for
procedure velues is procedure application.

The syntax of the language Is given n Fig. 1. A
procedure consists of a set of procedure definitions
followed by an expression. A procedure definition Is of the
form

P = procedure (ay:Tq,..., & Ty) yields Ry....Ry;
<{procedure dc_l')

.

{procedure def)
{axprossion?
angd P

{a) The langusge described here Is cldsaty related to the
language calied VAL in developmant at MIT [3].

Notation :

{<CE>)}* means <ED>|CED, {<¢ED>}*

{<E>) means { <E>}*|empty

< progtam » ::= program { € procedure def > } < expression > end

< procedure def » ::= { name > = procedue { <input list >)
yleld < output ist 3;
{ C procedurs def > }; < expression >
end ¢ name > :

C input fist 3 1= { < type declaration > }
< type declaration > ::= { name > : { type
Coutput liat > = { < type) }

< expression > ¢ < primitive expression >
| € < expression > }*
| Clet-block expression >
| < conditional expression >
| < application expression >
< let-block axpression > ::=

let { ¢ type declaration) }; { < name def > }; in ¢ sxprassion > end

< name def > = { (name > } = ¢ axprassion >

< conditional axpreasion > .=

I ¢ expression > then < exprassion > alsg < sxproavion > end

¢ application expression > ::s < name) { ¢ expreasion >)

¢ primitive expression) ::=

¢ axprassion > < primitive operation > < axpression ¥
| € primitive operation > { < expression > }

| < name >
} € constant >

< simple data type > := |nteger | real | booisan | character-string | structure
C typa ¥ u» ¢ simple data type > | stream of < shmple data typa >

Figure 1. Syntax of the language

This defines a procedurs P that requires m input vahies
64,8y of types Tyl respactively. The names
ay...8y Mmust be distinct and cen appear free In
Cexpression). The avaluation of the procedure yleids an
ordered set of valuss of types Ry..R, resutting from
{expresasion}.

Each exprassion danotes an ordered set (n-tuple) of
valuea whose arily Is n. We gpive a recursive definition of
the arity A(E) of sach of the five types of exprassions as
follows:

A{ Cprimitive expreasion}) = 1

Al <expyd, ... expyd)
w A{ <oxpq>) + .. + A(Caxpy>)

A{ <lat-block exprassion? }
= A(jet <definitions) in <exp> end)
= Al <expd)

A(Cconditional expression)
= A If Coxp> then <expy) gias {expp> end)
» A{ Caxpy>)
= A(Coxpp>)
Al <procedurs application))
= A{ <name} (Caxpression)>))
= the number of ¢laments In the {output ket)
of procedure {name>.

For a {procedurs def> ta be correct, the arty of the
expression which Is Ha body must match the number of
rasult types specified In its {output liat).

Often it Is convenient to Introduce names for
sxpressions because they are common subaxpressions of
larger exprassions. The let-block exprossion is used for
introducing names such that each neme stands for an

axprassion of arlty one. A let-block expression Is of the
form:

let { <type declaration? };
(name-listy> = {axpy¥;

<name-listy)> = {oxpy);
in <exp)> end;

The names in type declarations of a let-block are focat
names meaningful only within the block; these names must
be distinct from each other and may appear free in
Caxpy?,.. . {expy), and Cexp>. Name contlicts In nested
let-blocks are resolved by the scope rule that inner
definitions take precedence over outer definitions.

Wae require that the number of names In a name-list be
aqual to the erity of the expression to the right of the
equality sign. The value of a name In a name-liat Is the
value of the corresponding expression appearing on the
right hand side of the equal sign, and muat be of the type
specified by the type declarstion. The value of a let-block
axpression {s the value of (exp).

A conditional expression i of the form:
i <expq? then (expy? else {expy> end;

The expression <exp4> is a boolsan value of arity one. The
expressions {expyp) and <expy? have the same arity and
the cofrasponding value in each axpression must be of the
same type. The value of a conditional exprassion i3 the
value of <(exps> Hf <expy> Is the boolean value true;
otherwise It is the value of {exp3>.

A procedure application expression Is of the form:
P(<exp>);

where the expreasion <exp> has the same arity as the
number of input values required by the procadure P and the
type of each value matches that of the input specification.
The rasult of the procedura application s an expression of
the arity and types defined by the yield cleuse of the
procedure heading.

As a simple example of a program in our value-criented
language, Fig. 2 shows a procedure that defines a parabe!
computation of the factorial function.

Data Structures

For the purpose of the presant exposition, we wit
Introduce a simple but very general data structure type. A
data structure can be sither nif which denates the atructure
having no components, or a strycture having n component

* values vy,..,v, whosa selector names are respectively

The selectors are either character strings or
Intagers and each selactor name must be different from all

!1....,8,,.

Factoriat = procedurs (n : Integer)
ylelds Integer;

Product = procedure (ny : Integer, np : integer)
ylelds Integer;
K np =Cny then ny
gise let middle : integer;
middia = {nq + ny) quotient 2;
In Procuct(ny, middie)
* Product(middis+1, n,) and

£
=
I-§

:

and Product;
If n < O then error else Product(d, n) end;

end Factorial;

Flgure 2. An Example Program

others in the same data structure. We represent such a
structure valus by the notation

(8 :Vqi---18q: V)
The operations on data structures are detined balow, where
d and @' are data structures, s is a salector nate, and ¢ is
a value of any type:

{1} create ()
The create operation yields the nil data structure.
(2) append (d, s, ¢}
The result |s a data structure d' which is identicel
to d except that the s component is G regardless of
whether d already contains a component with
selector name s.
{3) delete (d, 5)
The resutt ls a data structure d' which does not
have an s component.
(4) gelect (d, &)
f d has an s component, the rasult is the value of
that component. Otherwise, the result is the valu
undetined. ‘
{8} nil-structure (d)
This Is a predicate whose value is true if d is pi;
otherwise its vaiue Is false.

Notice that the effects of

detete (d, 5)
and
append (4, s, nil)
are different, since tha the delete operation would remove

the component (s, d*) while the append operation would
raptace it with (s, nil). 1t ahould be mentioned that an array

reverse = procedure (x : structure)
ylelds structure;

{f nii-atructure (x) then x eise
let left, right : structure;
left = reverse(selact(x, "r*));
right = reverse{ select(x, "I"));

in append(append
{ creata(), "1, loft), "r*, right)
end
and
end reverse;

Figure 3. reverse

Is simply a data structure whose selector names ara ab
intagers.

The data structlure operations are lustrated by the
raecursive procedure "reverae” in Fig. 3, which interchanges
the role of selector names | and r n & given data structure
of arbitrary depth.

Streans

A stream |s a sequence of valuss, alt of the same type,
that are passed In succession, one-at-a-time between
program modules.

The use of streams of data In programming Is an
alternative way of expressing computations that have
conventionally been expressed as coroutines or a set of
cooperating processes. For example, a complier may be
organized into phases which are Implemented as a set of
coroutines [8].

The operations on values of type stream of T are
defined below whara a and 8' are atreams, and c I3 & v
of type T. :

M[] i

Tha result ls the empty atream which is the
saquence of length zero.

(2)gona (e, 8)
The result s a stream 8' whoae first element Is ¢
and whoae remaining slements are the elaments of
the stream s.

(3ytiest (s)
The result is the value c which Is the first slement
of 3. If s Is ampty, the result is yndefinad. '

(4)rest(s)
The rasult is the stream left after ramoving the first
element of 5. If & = [], the resutt Is undefined.

(6) empty (s)
The result is true if s = [], and Is false otharwise,

prime__generator = procedyre (n : integer)
ylelds stream of integer;

generate = procaedure (|, n : integer)
yields stream of Integer;
it1<nthen[)
else cons (i, generate(i¢1,n)) end;
end generate;

sisve = procedurs (s : stream of integer)
ylelds stream of integer;
It empty (s) then []
eise let x : integer,
82, 83 : stream of integer;

x,8p = first (s), rest{s);
sy = dulete (x, 82);
In cona (x, sieve(83)) end:

and sleve;

delate = procedure (x : integer,
® : stream of Integer)
yleids stream of Integer;
if empty (s) then{]
@lap let y : intager,
By, 82 : stroam _O_f MI
y.sgntirst(s) test(s)
35 = delete (x, 83)i
In |f divide [x, ¥) then 85
"'_'_CQ".!(L 'a)ﬂ'

end;
ond:
end delets;

sleve (generate (2,n));

qng prime__ generator;

Figure 4. A Prime Number Genaer

The tollowing Identity is satisfied by the stream operations:

It empty(s) then ssf]
olag = = cons(tirat(»), rost{ » })
ond

The problem of generating el prime numbers lesa than
a given integer n Is a good example of the use of atreams in
constructing & modular program so as 1o exposa many
independent actions for concurrent exacution, The sieve of

Eratosthenes expressed in our textua) language is
presented in Fig. 4. The procedure "generate® produces
the sequence of successive integers beginning with 2. This
stream |Is processed by "sieve' to remove nonprime
elements. Procedure "sieve” operates by taking the first
alement of its input and removing alf multiples of the first
alement (using "delete"} and applying “slave” recursively to
the remaining elements. (The firat use of stream concepts
for the prima number siove, as far as we know, was m[16]).
t seems the axampla has been discovered indepandently
by several authors.)

Data flow schemas

A data flow schema Is an operational model of
concurrent computation. The form of achemas used here
derlves from the work of Dennis and Fosseen [@] and Dennis
{7]. A data flow achema I3 a directed graph composed of
nodes called actors and arcs connecting them. An arc
pointing to an actor is called an input arc of the actor; and
an output arc is an arc emanating from the actor. Each
actor has an ordered set of input arcs and output arcs.
There are five types of actors: link, operator, switch, merge
and sink. The five types of actors are shown in Fig. 5. An
{m, n) data flow schema must have m links which do not
have Input arcs, and n links not having output arcs. These
links are respactively called /nput Hinks and output links of
the {(m, n) schema. Further, we raquire that the schema
must be proper in the aense that afl other actors must have
the required arcs of its actor type, end each arc must be
connected at both ends.

(a) link (d) merge

M

A

{b) cperator {e) sink
1 m
1 n
{c) switch (data)
Ve {comtrol)
_<\ T \I\—‘ IR
/_')“ o
»~ LS

Figure 5. Data flow actors.

(a) link {b) operator

v \?/r\(
J o NE
N R 1

Li u = falae

=
/N

(c) swltch

if u = true

t

\Y] '

~ R /}-.
RENI RN

o g
Figure 6. IExamples of firing rules.

/,\ oy

Stating the operational semantica of data flow
schemas requires additional concepts. A configuration of a
data flow schema is the graph of the schema together with
an assignment of labaled tokens ta some arcs of the graph.
An assignment of a token to an arc ia reptesented by the
presence of a solid circle on the arc. The label denotes the
value carrled by the token and may ba omitted when the
particular value is irrelevent to the discussion. Informaly,
the presance of a token on an arc means that a value is
made available to the actor to which the arc points. For the
present, tokens carry valuas of type integer, teal, boolean,
structure, or stream.

Firing Rules

Execution of an (m, 1) schema advances It from one
conflguration to another through the firing of soma actor
that is enabled. The firing rules for the principal actor types
are specified In Fig. 6. A necessary condition for any actor
to be enabled is that sach output arc does not hoid & token.
An actor ls enabled when a token Is present on each input
arc -- with the exception of & merge actor. The firing of an
actor causes the tokens to be absortbed from the input arcs
and completes by placing a token on each of the output
arce. The values of the output tokens are functionally
related to the values of the Input tokens. A jink simely
roplicates the value recelvad and distributes it to the
destination actors indicated by output arcs. The effect of
firing an operator Is to apply to the Inputa vy the
function associatad with the operation name writtan inside
the operator o yleld the outpuls uy..Up The pwitch and
merge sra used for controlling the flow of tokans. A gwitoh
raquires a data input and a controt input which {e & boolasn
value, Tha firing of a switch replicates tha Input token on
one of tha output arcs according to the boolean control
valua. The arrlval of a token on elther Input erc enables a

mérge, and upon firing, a token conveying the same value Is
placed on the output arc. The behavior of & merge Is
Inherently nondeterminate: when two input tokens reside on
the input arcs, the firing rute does not specify in which
order the output tokens wili ba generated. A sink absorbs
the input tokens upon firing and places a speclal token
s_.jgial on the output arc. The purpose of a sink actor is to
absorb unwanted velues; the signal output token I»
necessary for the implementation of schema application to
be dascribed.

The set of functions commonly assoclated with an
operator includes the scalar arithmetic operationa and
constant functions.

Waell Formad Data Flow Schamas

Unrestricted use of actors In data flow schemas is
undesirable since an arbitrary interconnection of these
actors may form a schema which deadlocks or has
nondeterminate behavior. Bacause these properties are
undesirable for reliable programming we choose a subclass
of schemas which will satisfy the naeds of programming.

An (m, n) well formed data flow schema Is an (m, n)
data flow schema formed by any acyclic composition of
componant data flow schemas, where each component (1]
slther a link, 8 sink, an operator, of & conditional subscheme.

t
t
o

,‘_ \:‘lv(“ h \-)—
1
erip (result)

Figure 7. A conditional schema.

Fig. T is an example of a conditional schema which computes
tha value of the expression

fa>bthena+helseb-3

Here, the trig output provides a completion signal indicating
that the sink actor has absorbed the unused copy of a. The
structure of a conditionai schema corresponds in an abvious
way to conditional expressions.

The Apply Actor

The class of wali formed data flow achesmas cannot
axpress program features such as procedures, procedure
applications, and lterations. Wa Introduce an sctor apply
whose meaning Is explained In Fig. 8. The firat input to an
apply actor Is & token assoclated with an (m, n) well formed
data flow schema. An apply actor Is anabled when a token
is present on each input arc. The effect of firing an apply
actor !s to replace the actor with the specifiead (m, n)
schema as shown in the figure. The (m, n) achema replacing
the apply actor may Itself contain apply actors, aflowing
recursion to be expressed.

We have not included atructures of data flow schemas
which correspond to language constructs such as white
loops In Algel 60 or Do statemente in Fortran. Such
structures necessarlly Invoive cyclic connections of actors
which do not correspond to actual data dependencies, and
Introduce unnecessary delays. Furthermora, the semantics
of cyclic schemas Is mora complicated, since issues of
safety and liveness must be dealt with. We choose to
support these language faatures in the equivelent form of
racursive application of data flow schemas. This alowa
simultaneous axecution of instances of a date flow schema
which correspond to successive iterations of a white loop.

An example of the use of actors is given in Fig.
9. This recursive schema imptements the "reverss® function
stated earlier in Fig. 3. The input link actor tabeled trig Is
an Input ink whose function Is to trigger those actors that
generate constants, in this case the create actor that
produces the empty data structure,

The apply actor presented requiras that ali Input
values be present on the input arcs to become enabled. A
language implamented In terms of the apply actor wit have
#call by value" semantics, that is, the resuit of application is
wall deflned only when the computations producing
arguments to the procadure all terminate. This is in contrast
with a more genetal form of procedure applicstion which
allows procadure application lo begin aven though
computation of some arguments is not complate.

Data Flow Processor

Tha atructure of a data flow processor suitable for
supporting execution of recursive data flow schemas |s
shown Fig. 10. It consists of six subsystams: Functional
tinits, Structure Controller, Execution Controller, the
Arbltration and Distribution Networks, snd the Packet

Y1
The apply . -

Figure 8.
actor. 1
F
1
trily reverse X

Figure 9.

(result)

tecurzive schema.

=]

Memory. The Execution Controller fetches Instructions and
operands from the Packet Memory and forms them Into
operation packets. Each operation packet Is passed to the
Arbitration Network for transmission to an appropriate
Functional Unit if a scalar operation Is called for, or to the
Structure Controller for the data structure operations
creats, appand, and select, Instruction execution In the
Structure Controfter and Functional Units generate resuit
packets which are sent through the Distribution Network to
the Execution Controller where they will join with other
operands to activato their terget Instructions. How this ls
done Is explained in greater detail In the next section.

The Packet Memory holds the collection of data
structures as a collaction of /tems each being a one-level
data structure having scalar values and unique identifiers of
othar items as its components [B]. This collection of items
represents an acyclic directed graph where each arc
corresponds to a unique identifier component of the item
representing its origin node, The Packet Memory maintains
a refsrence count for sach item and reciaims physical
storage space as ltems become inaccessible.

Data structures held In the Packat Mamory have three
roles In the execution of data flow schamas: (1) as
operands for the data structure oparations implementad by
the Structure Controfler; (2) as procedure structures that
have as componanis tha Instructions of a data flow
procedure; and (3) activation records which hold oparand
values for instructions walting for thair enabling condition to
be satisfled.

Although the Execution Controfler, Structure Controlier
and the Packet Memory are shown In Fig. 10 as single units,
we imagine that each Is in fact a collection of many identical
unitts. For example, the Packet Memory subsystem would
consist of separate systems, each holding all items whose
unlgue Identifiers belong to a well defined part of the
address space of unique identiflers. The Execution
Controlier aubaystem would consist of Identicat modules
each of which would serve a distinct subset of procedurs
activations.

The concept of a Packet Memory System was
introduced In [8)], and the design Issuas for these systems
and the Structure Controflet have besn studled in (1, 2].

Impiementation of Data Flow Schemas
Procedura Structurss

A data flow schema s rapresented In the machine by a
kind of data structure called s procedure structure
Mustrated in Fig. 11a. A procedure structure corresponding
to a data flow schema of n actors Is a data structure having
n components with integer selector names from 1 to n
assignad to the actors. Eech component, callsd an
instruction, is an encoding of an actor and lta cutput args,

!Structure
{ —I Contreoller
structure .. 1 ' item
i command iJL B

result

icket
|

e

(Dats Structures)lstructure

Packet Memory

{Proc. Structures)

procedyre (-[) ¢

data

(a)

Procedure structure P

r—
1

{
1

.

n

(f__‘LY—Tﬁ T

4 {natruction

operation
packet
Ty

i conmand
N —
[
Distri- Arbi- L
Execution
bution tration
Controller
Network Network
L
activation™ ¢ Ty activation
response " command
result scalar
packet Packet Memory operation
I (Activation pnckelt
e Recorda) .
e . Functional o W,
Units
rigure 10. Data flow processor.

The componants of an inatruction include an operation
field which deflnes the function parformed by tha actor, and
destination fields D1, ..., Dp corresponding to p output arcs.
Each destination field has three subcomponents: the Inst
component Is the integer selector name of the dsstination
Instruction; the arc component ks an integer designation of
an Input arc of the destination; and the count component is
the number of operand vaies required by the destination
instruction. ’

Activation Records

Since muitiple instances of tha same schama may be
concurrantly active In s computation, sech activation (an
Instance of procedurs sxeoution) Is represonted by a
separate actlvation record as shown in Fig. 11b. Euch actor
In an aciivation Is uniquely Identified by the tuple (A, 1),
whara A is a uld allocated for the activation record and i I8
the integer assigned to the actor in the procedure
structure. A token of value v on the k-th input arc of an
actor (A, I) corresponds o a result packet that carries the

Lnntruction} "op" 1 k P
Lopcnde
e
11, n H tt " tH
destination 1:115 £ Arc uiunt
int int int
{b) Activation record A
I I 1 |
1- i o Ytext"
I f i]
1 J S II‘rrll P
Loy | P
any any any int
. .
B

operand record

Pigure 11. Procedure mnd activation structurea

Information (A, |, k, v, count), where "count” Is the number of
tokens {operanda) required for the enabling of the actor.

Enabling of an actor I8 detected by checking the
number of resuit packets having arrivad at the operand
record -- the | component of the activation record A -
agamat the count In the result packet. The detection of
anabling Is a function of the Execution Controller and the
Packet Mamory that store activation records. Upon enabling
of actor Instance (A, I}, the instruction of the mctor s
fetched from the | component of the procedure structure.
The foliowing section describes how activation records
might be manipulated.

An activation record has componsnts with integer
salectors for operand records and an additional “text”
component that Is the procedurs structurs for the
activation, {in our implamantation, this component e sharsed
by other activations of the same schema.) An operand
record may have as many inleger aubcomponents as input
arca of an acior, and also contains an “arrived”
subcomponant indicating the number of arrtved resuit
packets. Since an activation record stores vales of
arrivad result packets in Its components, operationa oh &n
activation record modify its components. These operations
are deflned as follows:

{1) create-activation(P)
This returns the uid of a new activation record
having P as lts "text" component, but no other
components.

(2) insert(A, Lk, v)
The Inscrt operation adds the value v as the k-th
operand of the i-th Instruction In activation record
A. In addition, the "arr" componant of the operand
record is Incremented by ona. To handle the first
operand value to arrive, a missing "arr" component
iz Interpratad as having tha value zero,

(3) removel A, i)
This operation releases the i component of A; and is
performed by the Execution Controller once it has
generated the operation packet for actor instance
(A, 1).

(4) free{ A)
This operation relessaes the antire activation racord
A by means of a command packet sent to the
facket Memory.

For each arriving result packet (A, I, k, count, v) the
Execution Controller performs the operation insert(A, |, k, v
) and tests the updated value of the "arr" component
against the "count® field of the result packet. If the values
are equal, the instruction Is fetched from the Packet
Memory and used, together with the operand record, to
construct an operation packet which Is delivered to the
Arbitration Naetwork. The | component of activation record A
is then released.

Procedure Activation

Our implementation of the apply actor s Hiustrated In
Fig. 12. The apply actor is repiaced by the code
diagrammed s Fig. 12b, and the applied graph F Is
augmented as In Fig. 12c. Here we use the notations

v v
i

and
A A

to mesn insert { A,), 1, v). The new actors extr-uid,
const-ret and distribute witl be explainad below.

This Implementation assumes the actors in each
recursive schema are numbered sccording to this rule:

{1} Input link actors ara numbered 1, ... m

(2) The link actors that recelve the n-tuple of values
resulting from a schama application are numbered J
+ 1, ..., J + n for some Integer J.

(3) A link actor numbered O receives a packet (A, J, n
) containing the information needed to construct
result packets for returning values resuiting from
procedure execution.

{4) The remaining actors may be numbered arbitrarity.

(b) calling grnph

. v v
1 n
extr- create -
uid act

v\.A'

diatribu l:q)

e e e g

Implementation of apply.

Figure 12.

The implementation scheme works as follows: The
creata-act actor produces the uld A' of a new activation
record containing "text" component F' and passes It to the
Insert actors assoclated with Input vatlue vy, ..., vy, These
actors cause result packets of the form (A", (|, 1, 1, v;) to
be generated which initiate exacution of the naw activation
of F'. At the same time, the extr-uid and const-ref actors
form the return value { A, J, n) and send It to link O of
schema F'. Once result values yq, ... y, have been
produced, the distribute and insert actors of ' generate
result packets of the form { A, J + |, 1, 1, y;) which deliver
result valuma to the calling schema. The {rpe actor then
releases the activation racord, and its wid A’ Is returned to
the pool of fres uld's managed by the Packet Memory.

Implementation of Stream Actors

In the Implementation streams are reprosented an data
structures. A stream is a data structure having an "
component which is the first element of the stream, and an
»r component which Is the data structure rapresenting the

rest of the stream. The empty stream is represented by nll.
Operations on streams become operations on atructure
vaiues; thus first{ s) and rest(s) are implemented by
select{ 5,*1" } and select{ s,r*), raspectively.

We wish to make it possible for a stream to be
proceased by consuming modules while further stream
slemonts are gyenersted concurrently. To provide for thie
hehavior, we must ausgment our concept of date structures
s0 a dats structure may ba accessed befors it s entirsly
conatructed. We use the concept ot holes which Is based
on the work of Henderson [11] who used the term “token™.
Our idea Is related to but different from the idea of
*suspansions” discussed by Friadmen and Wise [10].

The idea is ambodied in the implementation of the cona
operation described In Fig. 13. Here the create-hole and
write-hole actors are special data structure operators
defined as follows:

A create-hole actor returns a wid H aliocated from the
data structure address space. Tha free node Is called
a hole in that it has two states: filled and unfilfed. In
the untiled state, sl data atructure operations on the
hole are queusd axcept the write-hole operation.
Upon completion of the wrilte-hole{H,v) operation, the
hole H changes Its state to filed and contains the
value v. Al previously goeuved and subsaguasnt
operations on H{ are processed without further delay; a
aubsequent write-hole operation on H ts Hlegal.

To lllustrate the concurrency provided by this
implementation of streams, consider the racursive schama

stream{T]

J hole

Figure 13. Implementation of cons.

ey v

)7}._._)—— i

trig (result)

Figure 14. Data flow schema for "sieve'.

shown in Fig. 14 for the "sleve" procedure of the prime
numbar generator. Note that the output of the top
activation of “sieve” will be a data structure containinng
the first element of the result stream and a hole walting to
be filed W with the dats structure generated by the
recursive activation of "sisve®. In thia implomentation sach

higher activation of "sleve” may be released as soon as |t
has completed its work (l.e., Its hole has besn fied),
laaving the remaining work to be finished by deeper
activations of the code.

Remarks

The concept of stream has appsasrsd In many forms
{6, 12, 14, 15]. One of the earlieat papers that discussad
streams as a programming feature was an unpublished paper
by Mcliroy [16). Despite the conceptual elegance of
streams, programming has not yet daparted from the
saguantial notion of coroutines and process synchronization

primitives.

Recent Interest In concurrent programming

languages and proceassors have motivated several other
suthors to Investigate the feasibiity of Implementation of
atreams and related concepts of data structures with holes
or with suapensions [4, 10, 13].

[+

(2]

(31

[4)

(5]

{e]

71

(e}

References

W. B. Ackerman, A Structure Memory for Data Flow
Computers, l|aboratory for Computer Science,
Massachusetts Institute of Technology, TR-186,
(August, 1977), 126 pp.

W. B. Ackerman, "A Structure Processing Facility for
Data Flow Computers,* Proceedings of the 1978
International Conference con Paraliel Processing
(Auguat, 1978}, pp. 166-172.

W. B, Ackerman, and J.B.Dennis, VAL -- A
Valve-Oriented Algorithmic language: Preliminary
Reference Manual, Laboratory for Computer Sclence,
Massachusetts Institute of Technology, TR-218,
(July, 1979), 80 pp.

Arvind, and K. P. Gostelow, "“Some Relationshipa
Between Asynchronous Interpreters of A Dstaflow
Language,” Formal Desoription of Programming
Concepts: Proceadings of the IFIP Working
Conferance on Formal Description of Programming
Concapts (August, 1977), pp. 86-118.

W. H. Burge, “"Stream Processing Functions,” [8M
Journal of Research and Dewvelopment 19
(January, 1875), pp. 12-26.

M. E. Conway, "Design of a Separable
Transition-Diagram Compller,” Communications of the
ACM 8 (July, 1963), pp. 308-408.

J. B. Dannis, "First Version of a Data Flow Procedura
Language®, Programming Symposium: Proceedings,
Coitequa sur la Programmation, lecture Notes in
Computer Science 19 (October, 1876), pp. 362-376.

J. B. Dennls, "Packet Communication Architecture,”
Proceedings of the 1075 Sagsmore Computer
Conference on Parailel Processing (August, 1076),
pp. 224-220.

9]

[10]

(11

(12]

[13)

[14]

[15]

[1e]

[7]

J. B. Dennis, and J. B. Fosseen, Introduction to Data
Flow Schemas, Computation Structures Group,
Laboratory for Computer Science, Massachusetts

institute of Technology, Memo 81-1
(September, 1973), 45 pp.
D. P. Friedman, and D.S. Wisa, "Aspects of

Applicative Programming for Parallel Processing," JEEE
Transactions on Computers C-27 (April, 1978),
Pp. 289-296.

D. A. Handerson, The Binding Model: A Semantic Base
for Modular Programming Semantics, Laboratory for
Computer Sclence, Massachusetts Institute of
Technology, TR-146 (February, 1975), 282 pp.

G. Kahn, "The Semantics of A Simple Language for
Parallei Programming,” Information Processing 74:
Proceedings of the IFIP Congress (August, 1874),
pp. 471-476.

R. M. Keller, G. Lindatrom, and S. Patll, A
Loosely-Couplad Applicative Multi-Processing
Syatem," 1979 National Computer Conference, AFIPS
Conference Proceedings 48 (June, 1970),
pp. 813-622,

P. J. Landin, "A Correspondence Betwesn ALGOL 60
and Church's Lambda-Notation: Part 1"
Communication of tha ACM 8 (February, 1866),
pp. 89-101.

M. D. Mcliroy, "Coroutines: Semantica In Search Of A
Syntax." Unpublished Paper (1968).

K.-5. Weng, StreamOriented Compulation In
Recursive Data Flow Schemas, Laboratory for
Computer Sclence, Massachusetts Institute of
Technclogy, TM-88, (October, 1975), 93 pp.

K.-5. Wang, An Abstract Implementation for a
Generalizred Data Flow [anguage, Laboratory for

. Computer Sclence, Masaachusetts Institute of

Technology, Technical Report, forthcoming.

