MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

Computation Structures Group Memo 186

Programming Methodology Group
Progress Report 1978-79

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contract N0001l4-75-C-0661, and in
part by the National Science Foundation under grant MCS 74-21892 AOl,

'November 1979

- PROGRAMMING METHODOLOGY

. Academic Staff
B. H. Liskov, Group Leader

I. G. Greif
Research Staff
R. W. Scheifler
Graduate Students
R. R. Atkinson :
V. A. Berzins
T. Bloom
W. C. Gramlich
M. P. Herlihy
T. O. Humphries
D. Kapur
Undergraduate Students
M. D. Allen
L. R. Dennison
R. M. Knopf
P. J. Leach
Support Staff
S. Barefoot
Visitors
A. Merey

P. Johnson

B. J. Mirrer
C. L. Mullendore
J. L. Zachery

J. Jones
A. Rubin

U. Montanari
J. Peterson

2 PROGRAMMING METHODOLOGY GROUP

A. |ntroquction

Our major research effort this year has been in the area of distributed systems.
We have focussed on identifying linguistic primitives that would support the programming
of distributed programs. We have also investigated the design of a new CLU compiler
and runtime system, with the goals of efficiency and transportability. The primitives for
distributed programs will be made available as extensions to CLU, and the extended
language is intended to run on the nodes of a network of computers; the new CLU
implementation supports this effort. Much of this work is being done jointly with the
Computer Systems Research Group.

In conjunction with the Computer Systems Research Group, we sponsored an
invitation-only workshop on Distributed Systems. This workshop was held at the Harvard
University Faculty Club on October 12 and 13, 1978. Approximately 25 leading workers
in the field assembled for two days to discuss research topics and direction. A report on
the workshop has been published in Operating Systems Review [16]

We have continued our work on the current CLU system. A reference manual for
CLU is now available, and the implementation has been moved to the PDP/20. In addition
to this work on CLU, we have completed a study of synchronization primitives, the design
of a new machine architecture to support object oriented languages, and the definition of
a specification language that permits specification of mutable data abstractions.

In the next section we discuss the status of the present CLU implementation
Section C describes our work on primitives for distributed computing, while Section O
discusses the new CLU implementation. The final three sections describe our work on
synchronization primitives, object oriented machine architecture, and specification
techniques. '

B. Current CLU Implementation

During the past year substantial work has been done on the current CLU system.
A real-time, display-oriented text editor, with a number of CLU-related features, has
been written in CLU. Two improvements to the compiler have resulted in a reduction of
the average module compiiation time by a factor of four. Major portions of the CLU
library, as well as a number of related utility programs, have been implemented. With
the design of CLU essentially complete, a preliminary version of the reference manual has
been published {14] and circulated for comments. Since its publication, several new data
types and an own variable mechanism have been added, and we are in the process of
revising the manual for final publication. “In addition, the CLU system has been sent to a
number of other research groups, both in the United States and Europe.

The first improvement to the compiler was a rewrite of the code generator. The
previous code generator transformed the syntax tree for a module (ss constructed by
the parser and modified by the type-checker) into textual output in @ macro language
called CLUMAC, and ran a CLUMAC assembler as an inferior process to generate the

PROGRAMMING METHODOLOGY GROUP 3

actual object code. The new code generator produces object code directly from the
syntax tree. This eliminates the costly intermediate transiation to CLUMAC, and in
practice reduces overall compilation time for a module by a factor of two.

The second improvement to the compiler was to augment the code generator to
perform, as an option, inline substitution [18] (or open coding) of certain operations of
the basic types (e.g, integers, records, and arrays). The only operations chosen were
those that, when expanded inline, would result in at most a small increase in code size.
The new code generator has been used to recompile the compiler itself, with the resuit
that the new compiler runs twice as fast and is marginally smaller in size. Similar results
have been found for other programs. An option was added to the compiler to restrict
inline substitution to just those operations that would not increase code size, but in
practice this option is not useful, in that simply performing all substitutions generally
results in an overall decrease in code size.

In addition to work on the compiler, considerable progress has been made in
implementing the CLU library [14] The library is the repository for information about
abstractions and their implementations. For each abstraction there is a description unit
(DU} containing all system-maintained information about the abstraction, such as its
interface specification. The DU also contains zero or more modules that implement the
abstraction, and may additionally contain format specifications, module interconnection
information, and various documentation files. Each implementation contains source and
object code, the compilation environment (CE) used to resolve external references in the
source code, and other information.

CLU programs tend to be composed of many smafl modules. Thus the library will
contain a great many DUs, and each DU, along with its associated implementations, will
contain a number of relatively small pieces of information. Attempting to store this
information in a conventional file system could be extremely inefficient in space. For
example, one would probably choose to split the information in a DU into several small
files: interface specification file, system information file, implementation files, and
documentation files. Similarly, one would probably split an imptementation into a number
of files: source file, object fite, sysiem information file, and documentation files. Since
files on most systems are composed of an integral number of fixed-size pages, where the
page size is fairly large (e.g, 5!2 or 1024 words), a substantial amount of space can be
lost due to breakage. Furliermore, such a library design would not be readily
transportable, due to the wide variation in file naming schemes and protection
mechanisms.

We have therefore designed and implemerted a complete file system for storing
large numbers of small files and directories efficiently. About half of this implementation
is in assembly language, the rest in CLU. The file system is a tree structure, with the
internal nodes being directories and directory-like objects (DUs, implementations, CEs),
and the leaf nodes being files. Directory-like objects are implemented through abstract
data types, with directories as the concrete representation. Each file is typed with one
of five file types (e.g, text or cbject code). Each entry in a directory has a four part
name, consisting of a two part string name of no more than 127 characters, a version

4 PROGRAMMING METHODOLOGY GROUP

number, and a generation (or edit) number. The protection mechanism employed is a
variation of access controt lists {17]

The CLU file system is contained in a single file of the host file system. This file
is divided into logical pages, each page consisting of 1024 words. Each logical page is
used to allocate blocks of some fixed size. The block sizes are powers of two, ranging
from 8 to 1024 words. Each file (and directory) is composed of zero or more blocks,
which need not all be the same size. If a file consists of more than one block, then the
file has a header block containing a list of references to all subsidiary blocks. For each
block size there is a global free-list chamlng together all free blocks of that size. When
no more free blocks of a particular size exist, a 1024-word block is broken up into
blocks of the needed size.

A directory refers to a file (or subdirectory) with both a unique-id and a slot
number. The slot number is used to index into a linear table (allocated from 1024-word
- blocks) to obtain a reference to the first block of the file, the number of data words in
the block, and a flag mdicatmg whether the block is the header of a multi-block file. The
unique-id is redundant; it is stored as the first word of every block in the file, to aid
recovery in the event of disastrous system crashes.

A command interpreter called SHELL has been written (in CLU) for interacting with
the new file system. Many of the commands resemble those of DEC’s TOPS-20 EXEC.
The commands deal only with the file system; there are no facilities yet for running CLU
programs directly from SHELL. In addition, a salvager and garbage collector have been
written for use in case of system crashes, as well as an incremental dumper for backing
up the file system onto magnetic tape. The CLU I/0 facilities have been augmented to
deal with this new file system, and hence the CLU-based text editor and the compiler
can now access files there.

At present the file system contains only directories and files; DUs and related
abstractions are still being designed. Aithough the file system is still only being used
experimentally, the system appears to be nearly as fast as the host file system for most
purposes.

C. Extended CLU

Distributed programs that run on nodes of a network are now technologically
feasible, and are well-suited to the needs of organizations. However, our knowledge
about how to construct such programs is limited The distributed systems project has
undertaken the study of the construction of distributed programs. This study involves

1. Identification of linguistic features that support distributed programming.

PROGRAMMING METHODOLOGY GROUP 5

2. Experiments in constructing distributed programs.

The linguistic features will be used in the experiments, where they will reduce the effort
needed to carry out the experiments. The experiments will provide an evaluation of the
features; this evaluation will lead to refinement of existing features, and identification of
‘new ones where appropriate.

In our research, we are influenced by some assumptions about hardware, and
about the way in which that hardware will be used. We assume that distributed
programs run on a collection of computers, called nodes, that are connected by means of a
communications network. Each node consists of one or more processors, and one or more
levels of memory. The nodes are heterogeneous, e.g, they may contain different
processors, come in different sizes and provide different capabilities, and be connected
to different external devices. The nodes can communicate only via the network; there is
no (other) shared memory. This assumption is in contrast to multiprocessor systems such
as CM+ [8]

We make no assumptions about the network itself other than that it supports
communication between any pair of nodes. For example, the network may be longhaul or
shorthaul, or some combination with gateways in between; these delails are invisible at
the programmer level.

We assume that each node has an owner with considerable authority in
determining what that node does. For example, the owner may control what programs
can run on that node. Furthermore, if the node provides a service to programs running
on other nodes, that service may be available only at certain times (e.g., when the node
is not busy running internal programs) and only to certain users. We refer to such nodes
a8 autonomous.

The principal consequence of the assumption of autonomy is that the programmer,
not the system, must controf where programs and data reside. The system may not
breach the autonomy of a node by moving processing to it for purposes of load sharing.
. This attitude distinguishes our approach from others, such as the Actor system [9}
where the mapping of a program to physical locations is entirely under system control.
Work in the same general area includes [4] and [7], although autonomy is not explicitly
addressed.

Our approach to the study of linguistic features is to extend an existing sequential
fanguage with primitives tu support distributed programs. Qur base language is CLU [14,
15] Although the primitives are mostly independent of the base language, CLU is a good
choice for two main reasons. It supports the construction of well-structured programs
through its abstraction mechanisms, especially data abstractions; it is reasonable to
assume that distributed programs will require such mechanisms to keep their complexity
under control. Secondly, CLU is an object-oriented language, in which programs are
thought of as operating on long-lived objects, such as data bases and files; this view is
well-suited to the applications of interest, e.g, banking systems, sirline reservation
systems, office automation.

6 PROGRAMMING METHODOLOGY GROUP

Our- work this year has concentrated on primitives in two main areas, namely,
modularity and communication. Below we discuss a new linguistic construct intended to
support modular construction of distributed programs, and provide an example illustrating
its use. More information about our work can-be found in [13}

For distributed programs, a modular unit is needed that

1. Can be used to model the tasks and subtasks being performed in a reasonably
natural way.

2. Can be realized efficiently, i.e, gives the programmer a realistic model of the
underlying architecture.

A major issue in point (2) is control of direct sharing of data. An object that is shared
directly (i.e., many entities know its location in the distributed address space) is a
problem for three reasons. The object can be a bottleneck because of the contention
for its use. It is a storage management problem, since to deallocate it white avoiding
dangling references requires detection and invalidation of all references to it. Finally, to
coordinate its use correctly can lead to increased program complexity. The main
conclusion that can be drawn from considering these problems is that a linguistic
mechanism that encourages the programmer to think about controlling the direct sharing
of data is desirable. Note that a synchronization mechanism such as a monitor [5, 11]
heips with the synchronization problem but not with the other two, since the monitor
itself is a shared datum.

1. Guardians

We provide a construct called a guardian to support modutar distributed programs.
A guardian is a local address space containing objects and processes. A process is the
execution of a sequential program. Objects contain data; objects are manipulated
(accessed and possibly modified) by processes. Examples of objects are integers, arrays,
queues, documents (in an office automation system), bank accounts and procedures.
Objects are strongly typed: they may be directly manipulated only by operations of their
type. The types may be either built-in or user-defined.

A computation consists of one or many guardians. Within each guardian, the actual
work is performed by one or many processes. The processes within a single guardian
may share objects, and communicate with one another via these shared objects.

Processes in different guardians can communicate only by sending messages.
(Message passing is discussed in [13]) Messages will contain the values of objects, e.g.,
"2" or " 176538 $173.72" (the value of a bank account object). An important restriction
ensures that the address space of a guardian remains local: it is impossible to place the
address of an object in a message. It is possible to send a token for an object in a
message; a token is an external name for the object, which can be returned to the
guardian that owns the object to request some manipulation of the object. (A tokenis a

PROGRAMMING METHODOLOGY GROUP 7

sealed capability that can be unsealed only by the creating guardian) The system makes
no guarantee that the object named by the token continues to exist; only the guardian
can provide such a guarantee. Thus a guardian is entirely in charge of its address space,
and storage management can be done locally for each guardian.

A guardian exists entirely at a single node of the underlying distributed system:
its objects are all stored on the memory devices of this node and its processes run on
the processors of the node. During the course of a computation, the population of
guardians will vary; new guardians will be created, and existing guerdians may
self-destruct. The node at which a guardian is created is the node where it will exist
for its lifetime. It must have been created by (a process in) a guardian at that node.
Each node comes into existence with a primal guardian, which can (among other things)
create guardians at its node in response to messages arriving from guardians at other
nodes. This restriction on creation of new guardians helps preserve the autonomy of the
physical nodes.

A guardian is an abstraction of a physical node of the underlying network: it
supports one or more processes (abstract processors) sharing private memory, and
communicates with other guardians (abstract nodes) only by sending messages. In
thinking about a distributed program, a programmer can conceive of it as a set of
abstract nodes. Intra-guardian sctivity is local and inexpensive (since it all takes place
at a single physical node); inter-guardian processing is likely to be more costly, but the
possibility of this added expense is evident in the program structure. The programmer
can control the placement of data and programs (a consequence of autonomy as
discussed above) by creating guardisns at sppropriate nodes. - Furthermore, each
guardian acts as an autonomous unit, guarding its resource and responding to requests as
it sees fit. '

2. Rabustness

A major problem in distributed programs is how to achieve robust execution of
atomic operations in spite of failures. (An atomic operation is either entirely completed
or not done at all) This is an area where distributed programs are likely to differ
significantly from centralized programs. Not that the need for robustness is new; rather,
the issue has been largely ignored in centralized systems, with the exception of some
work in data base systems.

One requirement for robustness is permanence of ¢ffect. Permanence means that the
effect caused by a completed atomic operation (eg, a change in the state of the
resource owned by the guardian that performs the operation) will not be lost due to
node failures.

To achieve permanence requires a finer grain of backup and recovery than is
provided by occasional system dumps and automatic system restart. We believe that
permanence must be provided by each guardian for the resource it guards. We expect
that backup and recovery will be provided on a per guardian basis: processes in the

8 PROGRAMMING METHODOLOGY GROUP

guardian save recovery data as needed (by, e.g, logging it in storage that will survive @
node crash), and the guardian provides a recovery process that is slarled after a node
crash to interpret the recovery data.

3. Discussion and Examples

The guardian construct was invented to satisfy the modularity criteria given above.
The purpose of a guardian is to provide a service on a resource of a distributed
program, but in a safe manner, i.e, it guards the resource by properly coordinating
accesses to it, by protecting the resource from unauthorized access, and by providing
backup and recovery for the resource in case of node failures. The resources being so
guarded may be data, devices or computation.

For example, the flight data for an airline might be guarded by a single guardian
that handles reservations for all flights and also provides a number of administrative
functions such as deleting or archiving information about flights that have occurred,
collecting statistics about flight usage, etc. It responds to requests such as “reserve,”
“cancel,” "list passengers,” and so on. For such requests, it checks that the requestor
has the right to request the access (perhaps using some sort of access control list
mechanism [17). For example, only a manager can request a passenger list, and a
- reservation request from some other airline might not be permitted to reserve the last
seat on a flight. The guardian guarantees that requests are properly coordinated, for
example, performed in an order approximating the externally observable order in which
they were requested. It performs the reserve and cancel requests as atomic operations,
and logs them so that information will not be lost if the node fails.

Internally, the airline guardian might make use of a guardian for each flight: The
top level guardian simply dispatches requests to the appropriate flight guardian, which
does the actual work and logs results. A flight guardian might be organized in several
different ways, for example:

1. A single process handles requests one at a time (Figure 1a).

2. Requests for different dates are permitted to proceed in parallel. A single
process synchronizes requests; it hands them off to other processes that perform
the actual work (Figure 1b) when the flight data of interest are available. Such a
structure is similar to that provided by a serializer [10]

3. A single process receives a request and immediately creates a process to handle
it (Figure 1c). The forked processes synchronize with each other to ensure that
only one process is manipulating the data for a particuler date at a time. The
processes synchronize using shared dats, e.g., 8 monitor [11] providing operations
start_request(date) and end_request(date).

Organiiations 2 and 3 can provide concurrent manipulation of the data base, while
organization 1 cannot.

PROGRAMMING METHODOLOGY GROUP 9

Fig. 1. Possible organizations for a flight guardian.

flight guardian

fiight data

a. One-at-a-time solution: process p handles requests sequentially.

flight data

b. Serializer solution: process p uses synchronization data S to determine when
requests should be performed. It forks processes ¢; to do the actual requests.

flight guardian

flight data

c. Solution using a monitor: process p forks a process g; upon receipt of a request.
| The processes q; synchronize with each other using monitor M and perform the requests
on the data base.

10 PROGRAMMING METHODOLOGY GROUP

The airline data base discussed above had a single top level guardian
Alternatively the data base might be distributed; for example, it might be divided into
partitions for different geographical regions, each residing at a distinct node, and the
guardian for a flight assigned to the region containing the flight’s destination. Such a
structure is shown in Figure 2. Here each node belonging to the airline has one guardian,
P, for the region in which it resides, and one guardian, U;, to provide an interface to the
airline data base for that node’s users (e.g, reservation clerks and administrators). A
user makes a request to the Uj at his node; some checking for access rights would be

done here, and then one or more requests sent to the appropriate P The P; would
dispatch these requests to the flight guardians for its region The P; and Uj would

Fig. 2. Distributed airline system example,

There are n front ends (guardians U; to U,) and n regional managers (only one, guardian
P; is shown) that communicate with the guardians of flights in its region (guardians F;q, ..,
Fim). Process q in U is carrying out a transaction for a user. Processes u; are ready to
accept requests from new users.

Fil e F‘

PROGRAMMING METHODOLOGY GROUP 11

coordinatle as needed by means of some protocol established for that purpose. A
possible organization for the Uj might be to fork a process to handle a transaction
consisting of many requests; this process would carry out U.'s end of the coordination
protocol. This process might, for example, interact with a clerk to make a number of
reservations for the same customer.

In the organization shown in Figure 2, each guardian Uj guards the entire airline
data base and provides transactions that consist of sequences of requests. Each
guardian P, guards the data for a geographical region, while each flight guardian guards
the data for a single flight. Thus, access to the entire distributed data base is provided
by a group of guardians, but each guardian in that group guards a discernable resource.

It is appealing to imagine a system structure in which processes do not share any
data. Aithough multi-process guardians are not necessary for computational power, we
permit many processes in a guardian for two main reasons: concurrency (e.g, Figures 1b
and 1c) and conversational continuity. Concurrency could be obtained by having
guardians that guard very small resources (e.g, the information about a single flight and
date, or a single record in a data base), but we felt such a structure would often be
unnatural. Conversational continuity is illustrated in Figure 2: process q carries on a
conversation with the user and the "state” of this conversation (e.g, the identity of the
passenger for whom reservations are being made and ‘the reservations made so far) is
captured naturally in the state of process q. :

D. New CLU Implementation

With the current CLU implementation in a fairly stable state, we have begun work
on a new implementation for the LCS Advanced Node. This effort has four major goals:
to produce a more efficient implementation, to produce a much more portable
implementation, to provide a basis for implementing the extensions to CLU discussed in
the preceding section, and to provide a modern programming system for laboratory-wide
use,

To produce a more space-efficient implementation, we have decided to use a
static linker and loader, at least initially, rather than copy the dynamic (re)linking and
(re)loading capabilities of the current implementation [1] Space is saved this way
because the linker, loader, and associated data structures are not in memory at
execution time. Although this decision eliminates a very useful debugging aid, it should
be possible eventually to reintroduce some form of dynamic relinker/reloader running as
& separate process.

In an attempt to preduce a more time-efficient implementation, we have carefully
redesigned the procedure call mechanism, the iterator mechanism, the parameter
mechanism, and the exception handling mechanism. Whereas these mechanisms were
designed for the current implementation primarily to allow simple, uniform code
generation, for the new implementation we have tried to optimize the most common

12 PROGRAMMING METHODOLOGY GROUP

cases, without sacrificing speed in other cases. For the most part, these optimizations
reduce the number-of registers that must be maintained across procedure and iterator
boundaries. In addition, we have decided not to maintain run-time type codes, which
exist in the current implementation primarily for redundant run-time type-checking.

A major problem with the current impiementation is that most of the run-time
support system is written in assembly language. This not only complicates maintainance
of the system, but also makes the system difficult to transport to a different machine, or
even the same machine under a different operating system. We hope to rectify this
problem with the new implementation. Although we have been proceeding under the
assumption that the initial target machine is the Zilog Z-8000, it should also be possible
to bring the system up on a VAX 11/780, an M68000, a 360/168, or a PDP-10 with a
minimum of effort. The primary assumptions are that the machine supports values of at

least 32 bits (for object references), a fairly large (216 values or more) linear address
space, an efficient stack mechanism for object references, and a small number of
registers (for object references).

Easy portability is obtained by defining a small number of data types (object
references, integers, tagged cells, byte vectors, and vectors of object references) that
are not completely type-safe, and a few 1/0 primitives, and then implementing everything
else in CLU on top of them. (With certain extensions to CLU, even records and oneofs
can be implemented in CLU) To bring up an implementation on a different machine, it
should only be necessary to implement a few modules in assembly language, produce a
new code generator for the compiler, and perhaps modify a few code-dependent modules
of the linker.

The major components of the new implementation that need to be constructed are
the basic data types of CLU, the garbage collector, the linker and loader, the code
generator, and various debugging tools. All of these components have been designed
and, with the exception of the debugging tools, are partislly implemented and tested for
the Z-8000.

E. Evaluating Synchronization Constructs

When facilities for concurrent programming are added to a language, it is essential
that these extensions support the construction of reliable, easily maintained software.
Much attention has been given to developing high-level programming language
synchronization constructs, such as monitors [11], path expressions [6] and serializers
[10], for specifying and controlling access to shared resources. Unfortunately, the
-requirements that these constructs must meet are not fully understood. Properties such
as expressive power, ease of use, modularity, and modifiability are agreed to be
important, but the definitions of these terms are so vague that evaluation according to
these criteria is difficutt.

Most attempts at evaluating these constructs have centered around attempting to

PROGRAMMING METHODOLOGY GROUP 13

- implement solutions to various examples of synchronization problems, and then deriving
intuitive judgments about the expressiveness and usability of a construct. Bloom [3] has
developed evaluation methods that allow such information to be deduced from examples
in more structured ways, and has applied the method to several existing mechanisms.
First, synchronization problems have been examined and categorized according to
properties that affect how easily these problems can be handled by synchronization
constructs. This categorization defines the range of problems synchronization mechanisms
must be able to handle, and provides a means of selecting a set of test cases adequate
for evaluating the mechanisms. Making use of these test cases, mechanisms can be
evaluated, with the methods developed, for expressive power, ease of use, and
modifiability. Because the properties of interest are so vague, completely objective
methods of evaluation are impossible. However, the categorization makes it possible to
- obtain information from test cases that will provide substantial assistance in locating and
correcting weaknesses, as well as in generalizing results from one test case to sets of
problems with similar properties. '

. In the following sections, we first discuss modularity requirements. Then the
categorization of synchronization problems is presented, followed by an explanation of
techniques for evaluating synchronization constructs based on this categorization. These
techniques have been applied to monitors, path expressions, and serislizers, and a
summary of this evaluation is given in the final section.

F. Modularity Requirements

The first property to be defined is modularity, and how modularity applies to the
structure of shared resources; the remainder of the analysis assumes shared resources
are properly modularized. The model of shared resources assumed here is based on the
use of abstract data types [15] Resources are considered to be objects of abstract
types. A resource will therefore have a set of operations associated with it, and access
to the resource will be possible only by invoking one of those operations.

There are two modularity requirements that should be satisfied by concurrent
programs accessing shared resources. The first follows from the principle that the
definition of an abstraction should be made independent of its use. The shared resource
abstraction should thus contain all of the synchronization code, as well as the resource
definition. This structure will guarantee that users of the resource can assume it to be
properly synchronized; no synchronization code need be located at each point of access
to the resource. '

The other modularity requirement governs the structure of the shared resource
definition. The module implementing the shared resource serves two purposes: to define
the abstract behavior of the resource, independent of whether concurrent access is
sllowed, and to provide the synchronization for controlling access. These two parts
actually serve different functions and should be separable into two subsidiary
abstractions, the unsynchronized resource, and the synchronization.

14 PROGRAMMING METHODOLOGY GROUP

I. Categg-rizing Synchronization Problems

Synchronization mechanisms serve two main functions with respect to shared
resources. One is excluding certain processes from the resource under given
circumstances; the other is scheduling access to the resource according to given
priorities. Synchronization schemes are thus composed of two types of constraints.
Exclusion constraints take the form:

if condition then process A is excluded from the resource
and priority constraints take the form:
if condition then process A has priority over process B

Within these two main classes, constraints differ in the kinds of information used in
the conditional clause. The information that can appear falls into several categories:

1. The access operation requested. Stating, for instance, that readers of a data
base have priority over writers involves giving a constraint in terms of the types
of operations requested. In contrast, a strict first-come first-serve ordering
uses no information about the operations requested.

2. The times at which requests were made. Though it is rarely necessary to know
the exact time of a request, the order of requests relative to other events is
often important. Time information is used for this purpose.

3. Request arguments. In many cases, the arguments passed with a requesf are
needed to determine the order in which processes should be admitted to the
resource.

4. Local resource state. Local state ‘includes information that would be present
independent of access control. For example, whether a buffer is full or empty.

5. Synchronization state. Synchronization state includes only state information

" needed for synchronization purposes. This information would not be part of the
resource state were the resource not being accessed concurrently. Included in
this category is information about the processes currently accessing the
resource, and the operations those processes are executing.

6. History information. This information differs from synchronization state in that it
refers to resource operations that have already completed, as opposed to those
still in progress. |t is often interchangeable with local state information, since the
interesting past events are most likely to be those that leave some noticesble
change in the state of the resource.

By way of two simple examples, a first-come first-serve ordering scheme has a
single priority constraint of the form:

PROGRAMMING METHODOLOGY GROUP 15

process A has priority over process B
if time_of_request(A) < time_of_request(B)

Thus, only request time information is used. A readers priority constraint has the form:

process A has priority over process B
' it request_type(A) = read & request_type(B) = write

More compliete examples can be found in [3]

This identification of properties of synchronization problems enables more
informative conclusions to be drawn from the evaluation of synchronization problems. In
addition, the categorization aids in the selection of test cases. By selecting a set of
problems that cover all the constraint types, and examining the ways in which each kind
of information is handied by a particular mechanism, general conclusions can be drawn
about the mechanisms’ ability to implement synchronization problems that meke use of
various types of information. '

2. Evaluation Criteria

To be sufficiently powerful, a synchronization mechanism must satisfy two basic
requirements. First, it must be expressive, by providing a straightforward means of
stating individual constraints, and by providing the ability to express those constraints in
terms of any of the information types described earlier. Second, when implementing
complex synchronization schemes composed of many constraints, it must be possible to
implement each constraint independently. in the following sections we explain these
criteria more precisely, and discuss methods for assessing how well they are supported
by various synchronization constructs, '

2.a. Expressive Power

One way to test expressive power of a synchronization mechanism is to use it to
implement solutions to a set of examples that cover all information classes. A sample set
is presented in [3). If there is no direct way to use a certsin kind of information, it
should become obvious when an attempt is made to implement @ solution requiring it. By
examining how various types of information are handled in each solution, conclusions can
be drawn as to the ease with which the mechanism can access each type of information.

A more general way to measure expressive power is simply to examine the
mechanism and attempt to determine what features it has that will enable each type of
constraint to be deait with. For example, monitor queues are a construct for handling
request time information, while serializer crowds retain synchronization state information.
Some data manipulation technique must be available for each type of information. The

‘ability to identify the particular way in which each information type is handled will also

16 PROGRAMMING METHODOLOGY GROUP

make a mechanism easier to use, because the structure of a solution will be indicated by
the kinds of information used in the specification.

2.b. Combining Constraints in Complex Solutions

Whether or not a mechanism is easy to use depends not only on the ability to
easily construct solutions to individual constraints, but on the ability to easily construct
complex synchronization schemes made up of many such constraints.

Complex schemes will be easy to impiement only if they can be decomposed into
individual constraints that can then be realized independently. As the number of
constraints increases, solutions quickly become difficult to construct if the implementation
of any one constraint depends on another; the complexity of .constructing the solution
increases more than linearly with the number of combinations of constraints present. In
addition to the difficulty of initially constructing solutions, the solutions will be difficult to
modify if this constraint independence property is not met: a change in the specification
of one constraint may necessitate reimplementation of the entire solution.

One way to test whether a mechanism allows independent implementation of
constraints is to examine solutions to two similar synchronization problems. If the
problems share some constraints, but differ in others, then the implementation of the
common constraints should be similar in both solutions. If differences appear in the way
a given constraint is implemented in two different synchronization problems, or if the
implementation of each individual constraint is not even identifiable as a separate part of
the solution, then this indicates that the independence criterion is being violated. - If
constraint implementations are really independent, a given implementation should remsin
the same when other constraints are modified to use different types of information. A
complete evaluation involves checking all possibie pairs of the six information types for
conflicts. Two sample problems for use in this analysis are given in [3]

3. Evaluation of Existing Mechanisms

The three existing mechanisms that seem most likely to satisfy the requirements
of good software engineering are monitors, path expressions, and serializers. Based on
our evaluation, we have drawn the following conciusions about these three mechanisms.
While the approach taken by path expressions seems very attractive, our analysis has
revealed some serious shortcomings. Path expressions do not provide easy access to
several types of information needed in synchronization constraints, and thus lack
sufficient expressive power. In particular, it is difficult to use the local resource state
and the arguments of operations. To maintain information about time of request, or to
express priority constraints in general, requires additional synchronization procedures,
thus increasing the solution’s complexity. In addition, the constraint independence
requirements necessary to ensure ease of use are not well supported by the mechanism.

Both monitors and serializers satisfy our criteria reasonably well. Based on our

PROGRAMMING METHODOLOGY GROUP 17

evaluation, we prefer serializers over monitors. Though certain tradeoffs are involved in
selecting one of these mechanisms over the other, serializers seem superior in two
“important respects. First, serializers meet our modularity requirements more closely.
The proper use of monitors requires a special protected-resource module in addition to
the synchronizer and resource modules; the resource implementor must also follow
specific guidelines for defining monitor operations. Serializers depend less on such rules:
the protected-resource module is not needed, and serializer operations are precisely the
user-accessible operations on the protected resource. The other important distinction
between these two mechanisms is the use of automatic signalling in serializers. Though
proof rules for the monitor signal construct have been developed, an sutomatic signalling
feature is more likely to aid in constructing correct programs, and in easing the burden
placed on the verifier. 4 '

G. CLU Mechine Architecture

The design of computers is strongly influenced by the characteristics of available
technology. Until recently, computers have been designed under the constraint that
processing hardware is expensive. However, the cost of hardware is continually
decreasing and the . significant cost of software has become even more apparent
Therefore, it seems appropriate to consider how hardware technology can be used to
implement modern programming languages and to reduce the complexity of computer
systems,

Snyder [19] has designed a computer system that directly supports an
object-oriented machine language. Unlike most implementations of object-oriented
languages on conventional machines, which provide a separate and usually small space of
objects for each process, the proposed system provides a single, very large space of
objects shared by all processes in the system. This space of objects would include not
only temporary objects used during the execution of programs, but also such long-lived
objects as the procedures and data normally stored in a file system, with uniform access
to all objects.

The primary goal of the research was to design a machine that supports such a
large universe of objects effectively. A second goal was to minimize the complexity of
the design. To accomplish these goals, two assumptions were made about future
technology.

The first assumption is that processors are sufficiently inexpensive that several
processors can be used where one is used today. Multiple processors are used both to
obtain greater modularity, and to improve performance. When necessary, processor
utilization may be decreased in order to increase system throughput.

The second assumption is the existence of secondary storage devices with access
times on the order of 100 microseconds (about 100 times faster than current disks).
This assumption is motivated by the expected small average size of objects (on the
order of 4 to 20 words), based on measurements of existing programs. Fast-access

18 PROGRAMMING METHODOLOGY GROUP

devices are needed to obtain good muiti-level memory performance without introducing
undue complexity. _

Both of these assumptions appear to be reasonable. It is widely predicted that
LS| processors equivalent to current main frames will be developed in the next decade;
the cost of these processors will be quite low compared to the total cost of a computer
system. The access time figure of 100 microseconds is within the predicted range for
charge-coupled devices and electronic beam memories; however, projections do show
that such memories may be an order of magnitude more expensive than disk memories.

Below we provide a brief description of this work. The first section focusses on
the overall system structure, and the second section explains the storage reclamation
mechanism.

1. System Structure

The system is constructed hierarchically out of a number of specialized processor
modules communicating via messages. Each module performs well-defined functions. At

. the top-most level, the system is divided into two major modules, the processing module

(PM) and the memory module (MM). The PM interprets procedures and implements

- multiple processes. It consists of a number of instruction processors, which interpret

procedures, plus a control processor, which performs scheduling and controls the
muitiplexing of the instruction processors. Each instruction processor has its own local
memory which it uses in the interpretation of instructions. In addition, this local memory
is used as a cache to reduce the number of accesses to the MM. For example, much of
the evaluation stack would certainly be held in this local memory.

The MM implements the universe of objects with a multi-level memory system
An object is simply a vector of references to other objects (although certain values, such
as booleans and integers, are stored directly in a reference). The MM encapsulates all
knowledge of how objects are implemented, including storage allocation and automatic
storage reciamation. The interface between the PM and the MM basically consists of
invocations of operations of the vector data type.

Briefly, each object is represented by a single "page”; the system supports a
number of different page sizes. Objects (pages) are identified by their secondary
storage addresses and are transferred individually between primary and secondary
storage. A large set assaciative memory maps from the secondary storage addresses of
objects in primary storage to their primary storage addresses. The set associative
memory is implemented using ordinary random access memory, with a small, fast,
expensive associative memory used as a cache. Physical storage is divided into
fixed-size blocks; each block is (statically or dynamically) divided into pages of a single
size. Storage is further divided into a number of zones; each zone provides pages of a
single size and contains its own list of free pages.

PROGRAMMING METHODOLOGY GROUP 19

2. Storage Reclamation

To maximize secondary storage utilization, the storage used by an object should
be reclaimed as soon as possible after the object becomes inaccessible. An important
contribution of this research has been the development of a simple, efficient automatic
storage reclamation scheme that is performed continuously, without requiring frequent or
unpredictable interruptions of service.

~ To facilitate storage rectamation, there is one additional interaction between the
PM and MM. The PM must cooperate with the MM in order for the MM to determine
which objects are needed and which can be reclaimed. In particular, at certain times the
MM will request the PM to discard all of its object references. When there are no
object references outside the MM, the system is said to be in quiescence. During
quiescence, the MM can examine the entire collection of accessible objects without
interference from the PM. When the MM is finished, the PM reads back all needed data
and resumes normal operation.

The storage reclamation algorithm is based on reference counts. The basic idea of .
reference counts is to associate with each object a counter to record the number of
existing references to that object. When an object is created, a single reference to the
object is created, and the reference count of the object is set to one. Whenever a
reference to the object is copied or destroyed, the reference count is incremented or
decremented, respectively. The object can be reclaimed whenever the reference count
reaches zero (destroying all contained object references and decrementing the
corresponding reference counts). Of course, if a group of objects contains a cycle of
references, none of the objects in the group can be reclaimed in this way, even if the
entire group is inaccessible. Similarly, if a bounded reference count ever reaches its
maximum value, it must remain there, lest the object be reclaimed prematurely.

The biggest problem with a conventional reference count scheme is that reference
count events occur at an enormous rate: each time a reference to a storage object is
copied or destroyed, a reference count must be updated. A reference count scheme can
be made very efficient by not requiring every reference in the system to be accounted
for. Instead, reference counts only count references stored as components of objects in
the MM; references outside the MM, or on their way in or out of the MM, are not
counted. This substantially reduces the number of events that cause reference count

_operations: only events that change the contents of objects in the MM cause reference
count operations. Manipulations of references within the local memory of the PM do not
change reference counts. Since most of a process’ evaluation stack can be cached into
such local memory, changes to the evaluation stack generally cause no reference count
operations.

Of course, under this scheme an object cannot be reclaimed just because its
reference count has become zero; rather, the system must be forced into quiescence in
order to reclaim objects. In quiescence, one can locate objects with zero reference
counts by scanning the entire memory, but a much more efficient algorithm is possible.

20 PROGRAMMING METHODOLOGY GROUP

During normal operation (not during quiescence), whenever the reference count of
an object X becomes zero, an entry "discard(X)” is added to a queue of suspected
garbage GQ. Further, whenever the reference count goes from zero to non-zero, an
entry "resurrect(X)" is added to the GQ. Then, when quiescence is established, the GQ
can be used to determine precisely which objects can be reclaimed: an object X can be
reclaimed only if the last entry for it on the GQ is of the form “discarcd(X)". This
information is totally contained within the GQ; there is no need to examine the actual
reference counts of objects. More importantly, it is not necessary to keep the system in
quiescence while the GQ is being processed. Once quiescence is established, normal
system operation can be resumed with a new, empty GQ, with the old GQ being
processed concurrently.

Forcing the system into quiescence is similar to swapping out all running
processes. In general, there will be some minimum rate of process switching -needed
anyway to maintain interactive response with the users. As long the the cycle time
between quiescent states is longer than the process time quantum, there need be little
performance degradation.

In addition to the storage reclamation process just described, it will be necessary
to perform infrequent, periodic garbage collection for the purpose of reclaiming cyclic
garbage. Suitably designed, the garbage collection time should be on the order of ten
minutes [19] Clearly any time of this magnitude is acceptable for infrequent garbage
collections scheduled on the order of once per day or once per week.

H. Specifications of Mutable Abstractions

Berzins [2] has investigated specifications for data abstractions based on the
explicit or abstract model appproach. In this technique, a data abstraction is defined in
terms of simple, well-known abstractions (e.g, integers, mathematical sets), and possibly
some other user-defined abstractions. The main innovation of this work is that it
extends previous work to handle both potentislly shered, mutable data objects, and
operations that can raise exceptional conditions.

in the sections below, we give an informal description of this work, concentrating
on the extension to mutable objects. We first give an example specification of a
mutable data type, integer sets, to present the specification language and explain the
major concepts of the technique. Following the example, we discuss the standard modet
defined by a specification. We then present an implementation of integer sets, and show
how to prove that an implementation modei is equivalent to the standard model. We
conclude with a discussion of how the approach fits in with program verification.

PROGRAMMING METHODOLOGY GROUP 21

1. Example Specification

A specification of finite, mutable sets of integers is shown in Figure 3. The first
line of the specification states that we are defining a type nemed "intset,” and introduces
"I" as an abbreviation for “intset.” The with clause gives the names and functionality of
the operations. For example, "empty" takes no arguments and returns an intset, and
“remove” takes two arguments and returns no resuits (it mutates its first argument).

Because we are specifying a mutable data type, the actual model is based on
system states, which are indexed sets of data states. Each data state represents the state
of some intser object. Formally, if s is a system state and x is an intser token (a formal
identifier for an intset object), then s(x) is the state of the particuar intser object x in the
system state s. The actual functionality of each operation has an extra argument (the
input system state) and an extra result (the output system state) besides those shown in
the with clause of the specification. The definitions of immutable data abstractions are,
of course, simpler.

As types are built up in a hierarchy, the system state becomes a set of indexed
sots, with one indexed set of data slates for each mutable type used in the type’s
operations. The formal structure that is built is a heterogeneous algebra.

The data states for intset are represented by mathematical sets of integers; the
restrictions clause indicates that only finite sets can be used. The identity clause
defines an equivalence relation on the restricted data state domain; the objects of the

Fig. 3. Specification for Intset

type intset as |

with empty: -=> |
' insert; Ixint -->
remove: Ixint -->
has: Ixint --> bool

data states D = sels of integers
restrictions d such that cardinality (d) e N
identity equal

operations empty(s)) = extend (s, { })
: insert(s) (x, i) = update (s, x, s(x) U {i})
remove (s) (x, i} = update (s, x, s{x) U {i})
- has (s} (x, i) = <s,i e s{x)>

end intset

22 PROGRAMMING METHODOLOGY GROUP

algebra are precisely the equivalence classes so formed. In this case the identity is
trivial (set equality).

The operations clause of the specification defines the effects of the operations.
Here the system state is represented explicitly. Also, to emphasize the special nature of
the system state, the operations are written in "curried™ form; e.g, we write “insert(s)X{(x,
i)" instead of “insert(s, x, i)~. The operations are defined in terms of functions on the
system state: “extend" creates a new object with the given initial data state, and
returns both a system state with the new cbject added and a token for that new object;
- "update™ returns a new system state with the data state of the object named by its
second argument changed to be the data state given as the third argument.

2. Standard Model

So far the presentation has been largely intuitive; we have not said much about
the formal object that is defined by a specification To the logician, a model is a
mathematical structure satisfying some set of axioms; the existence of a model shows the
set of axioms to be consistent. A specification can also be viewed as a set of axioms;
the heterogeneous algebra defined by the specification is a modet for that axiom system.
This model is called the standard model.

Since the specification language is powerful enough to describe inconsistent
specifications (any useful language has this property), we must, in general, prove the
existence of a standard model. This is done by proving inductively that no operation
constructs a data state outside the restricted data state domain (when provided with
arguments in that domain), and that all operations preserve the equivalence relation on
data states (i.e, equivalent arguments produce equivalent resuits). In our example, the
proof is trivial, but in more complicated types this may require considerable effort.

3. Example Implementation

The specification language also has features for defining implementations. Figure 4
gives an implementation of intset in terms of arrays of integers.

The representation clause serves both to identify what type is being
implemented, and to describe the representation domain. Arrays are mutable vectors to
which items can be added or removed at either end, and they are indexed by a
contiguous subset of the integers. For an array a, low(a) is its current low bound, high{a)
is its current high bound, and if low{e) < i < high{a), then afi] names a valid element of a.

The restrictions clause states which elements of the representation domain are
. legal representations of objects. Here the arrays are restricted to have a low bound of
1, and to not have any duplicate elements. The identity clause states that identity of an
intset object is to be represented by the identity of the representing array. Note that
this clause defines object identity, not state identity; two distinct objects may have the

PROGRAMMING METHODOLOGY GROUP 23

Fig. 4. An Implementation of Intset

representation intset = arrayfint]

restrictions | a such that: low(a) = 1 & (low{a) < j<k < highla) ==> a(j) £ olk))
identity array$equal
operations empty() = array[int]Screate(1)

insert (a, i) = if ~has (a, i) then addh (a, i)
remove (a, i) = if has (a, i) then {store (a, fin(a, i), a[high(a)D; remh(a)}
has (8, i) = find(a, i) > 0

definition find(a, i} = if (3)) [low(a) < j < high(a) & afj] =]
then j : low(a) < j < high(a) & aj] =i
else 0

same state. For mutable objects, identity is almost always identity of representation
objects, as it is in this case. Identity for immutable objects can be more complicated,
particularly if the representataion is itself mutable. '

The operations clause defines the operations in terms of the representation
domain; each operation is defined by a program in a simple programming language. This
language permits 3, v, and *” (meaning "such that™) to be used for clarity and to avoid

. overspecification. The operations are implemented in terms of array operations:

“create” returns a new, empty array with the given low bound; "addh™ adds an element
to the high end of an array; "remh” removes and returns the high element; “store”
updates the element at the specified index with the given value. Some of these
operations may raise exceptional conditions; in this example it must be proved that they
do not. The definition clause is used for defining "helping routines” to simplify the
description of the implementation,

4. Behavijoral Equivalence

An implementation defines a model, in a manner very similar to the way a
specification defines the standard model. To show that we have a valid implementation
of an abstraction, we must demenstrate that the implementation simulates the required
abstract behavior. The pariicular simulation desired is desgvioral equivalence: informally,
this means that if the implementation model is substituted for the standard model in any
program, the program will produce the same resuits.

Behavioral equivalence is proved inductively on the length of the computations
performed by the two programs (one with the standard model, one with the
implementation model). At each step in the computation we must exhibit a

24 PROGRAMMING METHODOLOGY GROUP

correspondence relation between the simulated objects and the simulating ones. It is
this relation that describes exactly how the implementation objects simulate the abstract
objects. As such, its purpose is very similar to Hoare’s abstraction function [12])

‘The simulation relation for our example is as follows, where "abstract™ refers to
the standard model and “concrete” refers to the implementation model:

For each abstract integer,
concrete integer,

- -
-
T

-

s inlset abstract system state,
s’ intset concrete system state,
X abstract intset,
x’ concrete intset

g <==> " § X <==> " & | <==> i') ==

(i e s{x) = (3j) [low (SO < J* < highls™(x)) & * = 8°x") [§']D

This says that given corresponding system states (s,), intser objects (x, x’), and
integers (i, i") in the two models, then an integer is an element of the intser in one model

if and only if the corresponding integer is an element of the corresponding intset in the
other model.

5. Program Verification

Proving the correctness of a data type implementation with respect to a standard
model is only half of the process required to verify programs that use data abstractions.
The other half of the process involves proving the correctness of programs that invoke
the type’s operations. The intended behavior of a program is typically described by
inserting assertions at various points in the program. The assertions express the
relations that must hold between the data objects manipulated by the program. For
programs that use data abstractions, the assertions are written in terms of the primitive
operations of the abstractions. For dynamic abstractions, the system state must be
explicitly included in the assertions, so that the operations can be treated as pure
functions.

The problem of showing that a program satisfies its assertions can be reduced to
the problem of proving theorems about the data abstractions it uses, by eliminating the
program text from the correctness requirements with an axiomatic definition of the
control constructs in the programming language. The derived theorems, which must be
proved in order to establish correctness, are called verification conditions. Proving
verification conditions based on an abstract model approach presents no methodological
problems. It is sufficient to prove the interpretations of the verification conditions in the
standard models of the data abstractions used by the program, since behavioral

equivalence guarantees the same results in all correct implementations of those

abstractions.

PROGRAMMING METHODOLOGY GROUP 25

REFERENCES

1. Atkinson, Russell R; Liskov, Barbara; and Scheifler, Robert W. “Aspects of
implementing CLU." Proceedings of the ACM 1978 Annual Conference, December
1978, 123-129.

2 Berzins, Valdis A. Abstract Model Specifications for Data Abstractions. M.LT.,
Laboratory for Computer Science, LCS/TR-221. Cambridge, Ma., July 1979.

3. Bloom, Toby. Synchronization Mechanisms for Modular Progremming Languages. M.LT.,
Laboratory for Computer Science, LCS/TR-211. Cambridge, Ma., April 1979,

4. Brinch Hansen, Per. ™Distributed Processés: A Concurrent Programming Concept.”
Communications of the ACM, Vol. 21 No. 11 {November 1978), 934-941.

8. Brinch Hansen, Per. "The Programming Language Concurrent Pascal.” IEEE
Transactions on Software Engineering, Vol. 1 No. 2 (June 1975), 199-207.

6. Campbell, Roy H, and Habermann, A. Nico. "The Specification of Process
Synchronization by Path Expressions.” Lecture Notes in Computer Science, Vol. 16.
Springer Verlag, 1974. '

7. Feidman, Jerome A. A Programming Methodology for Distributed Computing.
University of Rochester, Department of Computer Science, Technical Report 9.
Rochester, N. Y., 1977.

8. Fuller, Samuel H, et al. A Collection of Papers on CMs: A Multi-microprocessor
Computer System. Carnegie Mellon University, Department of Computer Science,
February 1877. '

9. Hewitt, Carl E. "Viewing Control Structures as Patterns of Passing Messages.”
Artificial Intelligence, Vol. 8, 1977, 323-364.

10. Hewitt, Carl E, and Atkinson, Russell R. “Specification ‘and proof techniques for
serializers." IEEE Transactions on Software Engineering, Vol. SE-5 No. 1 (January
1979), 10-23.

11. Hoare, C. A. R "Monitors: An Operating System Structuring Concept.”
Communications of the ACM, Vol. 17 No. 10 (October 1974), 549-557.

12. Hoare, C. A. R. "Proof of Correctness of Data Representations.” Acta Informatica, Vol.
1 No. 4 (1972), 271-281.

13. Liskov, Barbara. Primitives for Distributed Computing. M.T., Laboratory for
Computer Science, Computation Structures Group, Memo 175. Cambridge, Ma., May
1979,

26 PROGRAMMING METHODOLOGY GROUP

14, Liskov;i Barhara; Moss, Eliot; Schaffert, J. Craig; Scheifier, Robert W.; and Snyder,

Alan. CLU Reference Manual. M.T., Laboratory for Computer Science, Computation
Structures Group, Memo 161. Cambridge, Ma, July 1978.

15. Liskov, Barbara; Snyder, Alan; Atkinson, Russell; and Schaffert, J. Craig. “Abstraction

16,

17.

18.

19,

mechanisms in CLU." Communications of the ACM, Vol. 20 No. 8 (August 1977),
564-576.

Peterson, James L "Notes on a Workshop on Distributed Computing.” Operating
Systems Review, Vol. 13 No. 3 (July 1979), 18-30.

Saltzer, Jerome H, and Schroeder, Michael D. "The Protection of Information in

Computer Systems.” Proceedings of the IEEE, Vol. 63 No. 9 (September 1975),
1278-1308.

Scheifler, Robert W. “An Analysis of Inline Substitution for a Structured Programming
Language.” Communications of the ACM, Vol. 20 No. 9 (Sept. 1977), 647-654.

Snyder, Alan. A Machine Architecture to Support an QObject-Oriented Language.
M.LT., Laboratory for Computer Science, LCS/TR-209. Cambridge, Ma.,, March 1979,

Publications

1.

Atkinson, Russell R; Liskov, Barbara H; and Scheifler, Robert W. “Aspects of
Implementing CLU." Proceedings of the ACM 1978 Annual Conference, December
1978, 123-129. :

Bloom, Toby. Synchronization Mechanisms for Modular Programming Languages. MLT,,
Laboratory for Computer Science, LCS/TR-211. Cambridge, Ma,, April 1979.

Clark, David C,; Greif, |. G; Liskov, Barbara H; and Svobodova, Liba. Semantics of
Distributed Computing, Progress Report of the Distributed Systems Group. MLT,
Laboratory for Computer Science, Computation Structures Group, Memo 171.

"~ Cambridge, Ma.,, October 1978,

Greif, Irene G, and Meyer, Albert. "Specifying Programming Language Semantics: A
Tutorial and Critique of a Paper by Hoare and Lauer." Proceedings of the Principles
of Programming Languages Conference, San Antonio, Texas, January 1979.

Gr.eif, irene G, and Meyer, Albert. "Specifying the Semantics of While-Programs: A
Tutorial and Critique of a Paper by Hoare and Lauer.” M.LT., Laboratory for Computer
Science, LCS/TM-130. Cambridge, Ma., April 1979,

Kapur, Deepak. “Specifications of Majster’s Traversable Stack and Veloso's
Traversable Stack.” SIGPLAN Notices, Vol. 14 No. 5 (May 1979), 46-53.

" PROGRAMMING METHODOLOGY GROUP 27

7. Kapur, Deepak, and Mandayam, Srivas. Expressiveness of the Operation Set of a
Data Abstraction. M.LT., Laboratory for Computer Science, Computation Structures
Group, Memo 179. Cambridge, Ma.: June 1979.

8. Laventhal, Mark S. Synthesis of Synchronization Code for Data Abstractions. M.LT.,
Laboratory for Computer Science, LCS/TR-203. Cambridge, Ma,, July 1978.

9. Liskov, Barbara H; Moss, Eliot; Schaffert, J. Craig; Scheifler, Robert W.; and Snyder,
Alan. CLU Reference Manual. M.T, Laboratory for Computer Science, Computation
Structures Group, Memo 16]1. Cambridge, Ma., July 1978.

10. Liskov, Barbara H. Practical Benefits of Research in Programming Methodology.
M.T., Laboratory for Computer Science, Computation Structures Group, Memo 166.
Cambridge, Ma.: August 1978.

11. Liskov, Barbara H. Primitives for Distributed Computing M.IT., Laboratory for
Computer Science, Computation Structures Group, Memo 175. Cambridge, Ma.: May
1979,

12 Liskov, Barbara. "Remarks on the Construction of Large Programs.” The Impact of
Research on Software Technology. Edited by P. Wegner. Cambridge, Ma: M.LT.
Press, June 1979, 345-35]. ‘

13. Liskov, Barbara, and Berzins, Valdis. "An Appraisal of Program Specifications.” The
Impact of Research on Software Technology. Edited by P. Wegner. Cambridge, Ma.:
M.LT. Press, June 1979, 276-301.

14. Principato, Rebert N, Jr. A Formalization of the State Machine Specification

T —————i — —— —— m————

Technique. M.T, Laboratory for Computer Science, LCS/TR-202. Cambridge, Ma,,
July 1979,

I5. Snyder, Alan. A Machine Architecture to Support an Object-Oriented Language.
M.L.T., Laboratory for Computer Science, LCS/TR-209. Cambridge, Ma., March 1979.

16. Svobodova, Liba; Liskov, Barbara; and Ciark, David. Distributed Computer Sx'stems:
- Structure and Semantics. MILT, Laboratory for Computer Science, LCS/TR-215,
Cambridge, Ma., April 1978.

Accepted for Publication

1. Liskov, Barbara H., and Snyder, Alan, "Exception Handling in CLU." To be published in
the Proceedings of the IEEE Transactions on Software Engineering.

2 Peterson, James L. “"Notes on a Workshop on Distributed Computing™ To be
published in Operating Systems Review.

28 PROGRAMMING METHODOLOGY GROUP

Theses in Progress

1.

10.

11,

Allen, Matthew D. "A Comparative Analysis of Programmming Languages.” S.B. Thesis,
M.L.T., Department of Electrical Engineering and Computer Science, expected date of
completion, September 1979 -~

Atkinson, Russell R. "Verification of Serislizers.”" Ph.D Thesis, M.LT., Department of
Electrical Engineering and Computer Science, expected date of completion, June
1980.

Berzins, Valdis. “"Abstract Model Specification for Data Abstractions.” PhD Thesis,
M..T., Department of Electrical Engineering and Computer Science, expected date of
completion, July 1979.

Herlihy, Maurice. "Communicating Abstract Values in Messages.” SM. Thesis, M.LT,
Department of Electrical Engineering and Computer Science, expected date of
completion, June 1980.

K#pur. Deepak. "Towards a Theory of Data Abstractions.” PhD Thesis, MLT,

Department of Electrical Engineering and Computer Science, expected date of
completion, September 1979.

Knopf, Ralph. "A Formatter for CLU" SB. Thesis, MLT., Department of Electrical
Engineering and Computer Science, expected date of completion, September 1979.

Leach, Paul.” "Objects and Information Contsiners in a CLU Garbage Collector.” S.B.
Thesis, M.L.T., Department of Electrical Engineering and Computer Science, expected
date of completion, January 1980.

Moss, Eliot. "Distributed Programming Environment” PhD Thesis, M.LT., Department

of Electrical Engineering and Computer Science, expected date of compietion, June -
1980. : _

Mullendor. Chris. "Performance Analysis of the CLU implementation™ S.B. Thesis,
M..T., Department of Electrical Engineering and Computer Science, expected date of
compietion, Janqary 1980.

Schaffert, J. Craig. “Specifications and Proofs in Object Oriented Languages.” PhD
Thesis, M..T.; Department of Electrical Engineering and Computer Science, expected
date of completion, June 1980.

Srivas, M. K. "Automatic Generation of implementations of Data Abstractions.” Ph.D
Thesis, M.1.T., Department of Electrical Engineering and Computer Science, expected
date of completion, June 1980.

PROGRAMMING METHODOLOGY GROUP 29

Theses Completed

1.

2

w

-4

Bloom, Toby. Synchronization Mechanisms for Modular Programming Languages. S.M.
Thesis, M.L.T., Department of Electrical Engineering and Computer Science, April 1979,

Snyder, Alan. A Machine Architecturs to Support an Object-Oriented Language. Ph.D
Thesis, M.LT., Department of Electrical Engineering and Computer Science, March
1979.

Zachary, Joseph. "A CLU Machine Design Evaluation.” unpublished S.B. Thesis, M.L.T.,
Department of Electrical Engineering and Computer Science, May 1979.

alks

b
-

10.

Greif, Irene G. "Specifying the Semantics of While-Programs.” University of
Washington, Computer Science Department, Seattle, Wa, January 1979; IBM,
Yorktown Heights, N. Y., March 1979. .

Liskov, Barbara H “Issues in Distributed Computing” Quality Software Workshop,
Salt Lake City, Utah, October 1978.

Liskov, Barbara H. “implementation Aspects of CLU." ACM National Conference,
Washington, D.C., December 1978.

Liskov, Barbara H. "Use of Data Abstractions in Data Bases.” ACM National
Conference, Washington, D. C,, December 1978. '

Liskov, Barbara H. “Linguistic Support for Distributed Computing.” Eidgenossische
Technische Hochschule, Zurich, Switzerland, January 1979,

Liskov, Barbara H. ‘“Introduction to CLU% “An Example of Modutar Program
Development”; "Embedding Data Abstraction in Programming Languages.” Copenhagen
Winter School on Abstract Software Specifications, Copenhagen, Denmark, January
1979,

Liskov, Barbara H “Introduction to CLU" "An Example of Modular Program
Development.” Bell Laboratories, Piscataway, N. J., March 1979

Liskov, Barbsra H. “Linguistic Support for Distributed Programs.” University of
Rochester, Rochester, N.Y., April 1979,

Liskov, Barbara H “Message Passing Primitives." Quality Software Workshop,
Amherst, Ma., April 1979.

Liskov, Barbara H "Communicating Abstract Values.” National Computer Conference,
New York, N. Y., June 1979.

