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ABSTRACT

Data flow computing is a radicai strategy for achieving high Ccomputational
power by focusing many smail processors on the execution of each program.
A computation is represented by its data flow graph, which displays al|
available forms of concurrency. Each operator in a graph is scheduled for
execution on one of the processors as soon as ali of its operands are
available. Software in this environment must promote the identification of
concurrency in algorithms and its representation in data flow graphs.

This paper presents a detailed introduction to VAL, a language specifically
designed for data fiow computing. VAL stiresses implicit concurrency, most
of it possible because side~-effects and aliasing are not representabie.
The salient language features are described and illustrated through
examples taken from a complete VAL program for adaptive qQuadrature. An
analysis of the language shows that VAL meets the basic needs for a data
flow environment, but that substantial work stili needs to be done in the
ereas of language transiation and use.

KEYWORDS: data fiow functional programming VAL concurrency
multiprocessing
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Data Flow Computing

The VAL Language

As the use of computers expands in scientific areas, the demand for faster
computers continues to increase at a surprising rate. As one example,
physicists at Lawrence Livermore Laboratory have computations requiring
gigaflop speed (one billion floating point operations per second) for
reasonable response time. In the past, improved hardware technology has
been responsible for most of the advances in speed; however, those gains
have been slowing. Physical constraints {speed of light, power-cooling
ratios, ete.) may soon limit the speed achievable by a single processor.
One solution applies multiple processors to the execution of each task,.
Data flow computing attempts to carry out this strategy on a massive scale
(eg 1000 processors per task). In order to achieve high concurrency,
appropriate tools must be designed for describing algorithms and mapping
them onto this unusual environment. VAL is a high-level language developed
at MIT for exactly this purpose. This paper presents the basic features of
the language through discussion and extensive examples.

Background

Highly computational tasks often contain substantial amounts of
concurrency. At LLL the majority of these programs use very large,
two-dimensional arrays in a cyclic set of instructions. In many cases, all
new array values could be computed simultaneously, rather than stepping
through one position at a time. To date, vectorization has been the most
effective scheme for exploiting this concurrency. However, pipelining and
independent multiprocessing forms of concurrency are also available in
these programs, but neither the hardware nor the software exist to make it
workable.

The data flow concept incorporates these forms of concurrency in one basic
graph-oriented system. Every computation is represented by a data flow
graph. The nodes of the graph represent operations, the directed arcs
represent data paths, Execution of a graph is baged solely on operand
availability; each operation may begin execution as soon as all of its
inputs are present. When an operation completes, the results are
transmitted on the output arcs to the appropriate places. This view of
task execution is a direct application of Petri Nets{22,23]. Figure !
illustrates the graph representation of a simple VAL function for computing
the mean and standard deviation of three inputs. The concurrency in this
graph is limited only by the data dependencies inherent in the computation,
If all inputs become available at once, four operations ( plus, and three
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fuaotion Stats (X,Y,Z: real returms real, real)
let
Mean real := (X + Y + Z) / 3;
SD real := SQRT( (X% + Y2 + 72) / 3 - Mean? );
ia
Mean , SD
ondiet
eadfua

Figure 1: A simple statistics function and its
corresponding data flow graph.

squaring ops.) can begin, thus taking advantage of general concurrency
available within the function. Vectorized concurrency is embedded in the
execution in an unusual way in that the three squaring operations can
proceed together. Finally, pipelining is possible if multiple executions
of the function proceed together: separate sets of values can work their
way through the graph at their own rate.

One major component of data flow research is addressing the issue of
appropriate hardware for graph execution. Quite a few different hardware
organizations are being proposed for data row[Q.12.13.20.21.24.28]. One
feature common to all of these approaches {and probably essentia] for high
performance) is that each operator is scheduled for execution on a
particular processor by the hardware after all operands become available.

Software for date flow pProgramming must help identify concurrency in
algorithms (and their corresponding programs) and mep that concurrency into
graphs. A particular algorithm may have meny different data flow graphs
ranging from nearly linear to vastly concurrent. Data [flow can only
achieve ultra-high speeds if the graphs lean toward the latter. Many
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different software options are available, including writing pure data flow
graphs(7,10,15], altering Fortran to generate graphs{14,20], using one of
the newer concurrent languages[8,30], and (as always) defining a new
lenguage[1,4,24]. Regardless of the approach taken, the ultimate criterion
for evaluating data flow software must be its effectiveness in generating
highly-concurrent graphs for solving large problems.

The VAL language[1] is currently being developed by a group at MIT under
the direction of Prof. J.B. Dennis. Their goal is a language suitable for
the expression and transiation of concurrency into data flow graphs.
During the past two years Lawrence Livermore Laboratory has cooperated in
Lthe design and evaluation of VAL, Emphasis at LLL has been on the
usefulness of VAL for current Programming probiems and its potential for
future applications.

Overview of paper

This paper presents the design goals and major features of VAL, with
examples and an analysis of its current status. To help illustrate use of
the language, one sample program will be used throughout the text.
Appendix I contains a complete program for adaptive quadrature[11]; al!
sample lines of VAL code are taken directly from this source and
accompanied by function names and line numbers to help identify the
context. The reader is advised to scan this appendix prior to continuing
with the rest of this paper, .

The next section of the paper presents the basic design goals for VAL.
These goals had a strong influence on the basic structure of the language,
which is detailed in Section 3. Section 4 discusses the implementation ot
the adaptive quadrature program, working from the basic algorithm through
the design and including an analysis of its speed. Section 5 critiques the
current strengths and weaknesses of VAL, and Section 8 identifies areas of
continuing research for data flow software.
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Design Prinociples

The ultimate goal of data flow software must be to help identify
concurrency in algorithms and map as much as possible into the graphs. In
response to this gocal, two basic design principles have been foilowed in
the development of VAL. First, the concurrency in a VAL program must be
visible to both programmer and translator, but in an implicit way. Visible
concurrency is critical becasue a programmer faced with a slow pProgram must
be able to distinguish between a poor algorithm and a poor transiation.
Impiicit concurrency is critical because of the potentialiy large number of
processors involved. The second design principle in VAL is to help
programmers write correct programs. The complexity of a multiprocessing
environment must not degrade the time and effort needed to arrive at a
working program. This section examines these design Principles in more
detail, with a concentration on how they influenced VAL,

Implicit concurrency

The idea behind implicit concurrency is to get a programmer to write his
code in such a way that very little effort is expended on the details of
multi-processing. Unfortunately, the details cannot be completely hidden
because the programmer must be able to understand what concurrency is
possible {so later improvements can be made). These constraints argue for
very simple rules for identif{ying concurrency; a programmer cannot be
expected to remember odd or complex rules that a translator might need in

order to handle "worst-case" programs. In VAL the rules for identifying
concurrency are simple, but at the expense of requiring programmers to
operate in a more constrained environment. Programmers write expressions

and functions; there are no statements or subroutines available. This
decision prevents the occurrance of any side-effects in the language. As a
result, most concurrency is obvious by just examining a program.

The prohibition against side-effects in VAL plays an important role in
achieving implicit concurrency. In data fiow, concurrency is only
permitted when the execution of two or more operations cannot affect each
other's results. [n a language with side-effects this property is often
difficult to verify, so many potential concurrencies are sequenced to
insure correctness. In VAL évery operation is a function and the effect of
each function is limited to returning values. Hence, a programmer can
write expressions and functions that define his computation without having
to explicitly state which ones can execute together. [f one operation does
net use output from another, no sequencing will be imposed.
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The problem with eliminating side-effects is that most everyone's
Programming experience is tied to them. Assignment statements stand out as
the principal example. The concept of updating memory (ie modifying
variables) must be thrown away . Another well-known (but rarety
recommended) language feature, aliasing, must also be banned. These two
eéxamples only begin the list of common features that must be avoided, but
they illustrate the enormity of the situation. The key for a programmer to
overcome this situation is adapting to a value-oriented environment. VAL
uses values. In a value system, new values may be defined and then used in
many places, but no existing value can ever be modified. While this
approach may seem rash at first, there is precedent in Lisp(19], and in
fact, the transition is not really that difficult.

Aids for system design

The other design Principle embraced in VAL is to help programmers produce
correct and time-efficient programs. The language should be clear and
concise; all potential actions should be understood by the programmer.
Hidden meanings and actions are avoided simply because the added complexity
introduced by thinking about concurrency will cause more effort than
before.

One major effect of this design Principle was the selection of an
algebraic-type syntax (ie infix operators in expressions, where possible).
Looking at the previous comments, some variant of pure Lisp seems like a
natural choice. However, the readability of Lisp dropa off drastically
when dealing with large arithmetic eéxpressions and some standard control
structures. Since most of the codes requiring the high performance of data
flow involve extensive physics and large expression evaluations, a
conventional algebraic language seems appropriate.

Other important influences of this design principle are visible in VAL s
definition of legal programs and its handling of run-time errors. Scope
rules and type~checking tend to be restrictive, and they must be tightly
enforced. Responses to run—-time errors are also well-defined. 1[It an array
subscript is out of bounds, or some computation causes an overflow, the
language definition specifies precisely what actions will be taken by the
language. This is in contrast to the standard Fortran view (which is
shared by most languages) that the results are undefined and hence may be
implemented in any way convenient for the compiler.

With this briet description of the design principles, the language features
to be presented may be somewhat easier to follow. For further discussion
of the motivation and reasoning behind VAL and other date-flow I|ike
languages, see Ackerman[2].
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Language Features

This section surveys the major features of VAL, concentrating on the more
interesting and unusual parts of the language. This presentation takes an
informal approach to describing parts of the language, with extensive use

of examples, Implicit concurrency resides in almost every feature of the
language, and this fact is emphasized throughout the discussion. The
principal areas of interest in VAL are: data types, values, basic
expressions, parallel expressions, sequencing expressions, and error
handling.

Data -types

VAL data types are similar to those found in most structured languages.
Beolean. iateger, real, and oharsster comprise the basic language-def ined
types. FEach of these types carries an appropriate set of operators {eg +,
- &, |, ~ (not), >, = ). New types may be constructed through array,
record, and omeef (discriminated union) definitions. The principal
differences between VAL types and types in most other languages are in the
definition and use of constructed types, type—checking rules, and the
existence of error values within every type.

VAL arrays are unusual because the array bounds are not treated as part of
the static type; they are extra information associated with each individual
array. An array’s component type is the only type information associated
with an array. Hence, array-structured types use the declarative form
illustrated here:

type Interval_list = srray [ Interval 1: (AQ,3}!

An interval_list is represented as an array of Intervals, Subscripts for
arrays are strictly limited to integers. By eliminating the range
information from the type, strong type—checking can be enforced without
getting into the Pascal difficuity that arrays of different bounds cannot
be passed to the same procedure. This option also increases possibilitijes
for useful array operations, such as:

' This notation is used to indicate the location of the corresponding code
in Appendix [. In this case the line is taken from the Adaptive_Quadrature
function line 3.
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l. shifting the origin: array adjust

2. adding elements at either end: array_addh, array_addl
3. deleting elements at either end: array_resh, array_real
4. cutenaling lwo arrays: i

5. merging two arrays: array_jois

6. setting array bounds: array_seth, array setl
7. testing array bounds: arrsy_lizh, array_lial

The catenate operator is infix; all others are function invocations.
Notice that general string manipulation is a special case of the above
operations on arrays of characters. '

Array construction in VAL takes an unusual form in order to improve
possibilities for concurrency. All elements of an array can be specified
simultaneously thus allowing all of the evaluations of array entries to
proceed together. The syntax for array construction is an arbitrarily long
list of ordered pairs, with the 1list enclosed in square brackets. The
first of the pair is the index position in the array, the second is an
expression representing the value to be held in that position. For
example,

[ 1 : left_interval; 2 : right_interval ] - (BT{.,16-17)

is an expression which creates an array with two elements. The values
bound to the two identifiers become the values for the corresponding array
locations. In this case, there is little concurrency (get the values bound
to both identifiers) because the expressions are simple values. In
general, however, all expressions inside the array construction can be
computed simultaneously.

Record-constructed data types differ from most current approaches in both
their static type properties and in their constructici® The type of a VAL
record is based solely on the constituent field names and their associated
types. In particular, neither the order of definitions nor any type name
bound to the structure influence the type matching process. Record
construction is patterned after the array construction scheme which
promotes concurrency.

resord [ x_low : low; Fx_low: lowv; (Int.6-9)
x_high : high; Fx_high: highv ]

The above expression builds a record with four fields. Each field name is
followed by an expression representing the value to be entered in the
record. As with arrays, all field values can be computed concurrently,
which again in this case gains very little,

The final type constructor, omeef, permits discriminated union types as in
CLU[17]. Values of this type can take on the appearance of different types
at different times during execution. For example, in the adaplive
quadrature algorithm, the result of analyzing an interval will either be
two new intervals (the old one divided in two) or no intervals at all if
the analysis is complete. Such a result type can be specified by:

type Result info = emeet [ none : auwll; {AQ.4)
more : Interval_list ];

An instance of type Result_info can represent a value of type Interval list
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(ie an array with two entries) or of type mull. The tag fields (none,
more) identify the constituent types. When an object gets a value, one of
the tags must be specified along with the appropriate information. For

example,
make Result_info [ more: two_intervals ] (BTI,18)

builds an object of type Resuilt_info, whose constituent type is an
Interval _list. In this case the identifier “two_intervals” has been
previously bound to an array containing the two new intervals. The keyword
make indicates that a value of the omeot type is to be constructed. Later,
in the discussion of Sequencing expressions, an operation (tagease) will be
introduced for getting at the information in a emeef value. As in the case
of records, two eaeset types are equivaient if the field names and the
consitituent types are the same.

Within this framework for defining and using types, VAL imposes strong
type-checking. In a.functien call, actual and formal parameters must have
equivalent types. Automatic type conversions are never made by the
language. Each language-defined function has specific types expected for
each parameter and they must match. As an example, the add operator can
take two imtegers or two resls, but it will not do mixed mode arithmetic.
Similarly, when values are bound to identifiers, the type of the value must
be equivalent to the declared type of the identifier {ie no resl can be

bound to an integer identifier). Rather than having implicit type
coercion, the language provides functions that will do converaions for all
of the reasonablie cases. This eapproach was taken partly as an aid to

programmers to make it completely clear where conversions occur in the
program, and partly to simplify the language rules with respect to
mismatched types. As an implementation note, all type checking defined in
VAL can be done at compile-time.

The last unusual aspect of VAL’s data types is the presence of special
error values which are an integral part of every data type. Inciuded among
these values are uadet, pes_over. ais_elt(missing array element), and
uakaows. They provide a simple mechanism for hendiing run-time errors
without violating any type—correctness properties. The language also
defines functions that test for the presence of these values, and all of
the operators have weli-defined propagation rules in the face of these
values. More details on this subject are included in the section on error
handling.

Yalues

The VAL programming philosophy is value-oriented, as opposed to the more
traditional variable orientation. Most languages have concepts like
"variables” and “memory updating", which imply that objects are mutable or
modifiable. In VAL these concepts have been repiaced by a value system
where each object is immutabie. The basis for this view resides in the
target environment of data flow graphs. Once a valuye is computed by some
operator and put on an cutput arc, the same valye must be transmitted to
ail receiving operators, At first glance this orientation may seem very
restrictive for programmers, possibiy to the point of being unusable. That
is, however, not true.
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Within the framework of valuye orientation, the concept of binding values to
identifiers is still possible. The important point is to prevent
identifiers from being used as variables, hence the rule:

Once an identifier is bound to a value, that binding
must remain in force for the entire scope of access
to that identifier,

This is commonly referred to as the single—assignment rule[2.24]. The true
effect of this rule is that of permitting defined constants. Each time a
scope of access (block, function, ete.) is entered new bindings can be
made which remain in force until that scope of access is completed (block
exit, function return, etc.). Notice that on each scope entry the
identifier-value bindings may be different, which distinguishes them from
normal constants.

Array and record operations are most affected by the vaiue orientation.
Structured objects must be viewed as single values. Hence, arrays and
records can never be modified. The only option is to build a new array or
record that has the same values in all of the old positions, except for the
particular element that is to be changed. Enforcement of this rule is
accomplished by requiring that every identifier-value binding be made to a
full identifier (not to a field or subscript pesition). So for example, no
binding can begin with " a[i] := .., . To compensate for these
difficulties in building a structure, VAL provides other schemes for
allowing arrays and records to be completely built (in parallel it
possible) and then bound to an identifier for wuse. The simple array
construction operator was illustrated earlier as part of the description on
arrays; a more complex array construction will be introduced in the
discussion of parallel expressions.

Basic expressions and functions

The VAL language contains expressions and completeiy functional operators.
There are no “stlatements” in the conventional sense. Every active language
feature {ie non-declarative) is function—oriented in that it uses values
provided by the current execution environment and its sole effect is to
produce a set of result values. The rules for construction and use of
expressions provide most of the Protection against side—effects and at the
same time help identify many forms of implicit concurrency.

The simplest expressions in VAL look just like expressions in most other
languages. Infix operators (eg +, -, *. and /) can be applied to
identifiers to compute some result. Among other things, the identifiers
can represent simpie types (imteger, wreal, etc.), structured types
(subscripted arrays and record field~accessing), and function calls. In
function calls all parameters must be passed by value; this insures that
the only effect of the expression is to compute a result. The amount of
concurrency in an expression depends on the expression. The standard
operator precedences are enforced by VAL, but values for the two operands
for an infix operator can always be computed in parallel. So in the
expression:

{(right - mid) * (rightv + midv) * 0.5 + {CQ.18-19)
(mid - left) * (midv + leftv) *» 0.5
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let (BTI,4-19)
left_interval : Interval
= record [ x_low : left :
Fx_low : leftv:
x_high : mid;

Fx_high : midv J;

right_interval : Interval
= yooerd [  x_low : mid ;
Fx_low : midv :
x_high : right ;
Fx_high : rightv; J;

two_intervals : Interval list
[ 1: left_interval;
2: right_interval ] ;

ia make Result_info [ more: two_intervals ]

ondlet

Figure 2: A let-im expression illustrating temporary
environment expansion. It builds an array
containing information on two intervals.

every operation inside parentheses can execute simultanecusly.

This general notion of an expression is enhanced significantly in VAL, so
that expressions and functions look and act very much alike. Normally, a
function displays the following characteristics——it receives inputs through
parameters, defines some environment for execution (eg makes new function
definitions or creates new identifier/value bindings), and then computes
Some expression which is its result. The environment defined by the
function is only available during the execution of the function and it
disappears when the function returns. Several VAL expressions also have
this ability to temporarily extend the current execution environment by
creating new identifier/value bindings. As with functions, the sScope of
these bindings is limited to the expression that makes them.

Environment extension within an expression is specified in VAL by giving a
list of identifier/value bindings in a header to the actual expression.
Both the type and value must be specified for each identifier: these
bindings then remain in force until the final expression is computed.
Using this view, it should be clear that each binding must be made to a
different identifier (ie single—assignment). The simplest example of an
expression which can extend the execution environment is the let-im
expression. The code in Figure 2 takes information on twe integration
intervals and builds a value of type Result_infec which was described
earlier. The expression in the im clause generates the final result, Ail
of the bindings made at the beginning of this expression disappear as soon
as the result value has been computed.
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The header of an expression may contain substantial amounts of concurrency.
All expressions cannot generaliy execute simultaneously, because an
expression may use identifiers bound earlier in the header. However, the
only limit to concurrency is the data dependencies. In Figure 2, both
record structures can be constructed in parallel before they are entered in
the array. While this amounts to very little concurrency, several examples
in Appendix [ illustrate situations where the concurrency is very large (eg
the Compute Quads function).

VAL functions and expressions have also been extended to allow them to
return more than one value. In conventional languages a function can only
return one value. If others are needed, they come back through the
parameters or global data. Since both are side-effects (unexpressable in
VAL) a function is permitted to specify a list of results that it wil]
return on every call, The most common way of generating a list of resyits
is by specifying a comma~delimited list of expressions (other forms will be
introduced in the discussion of parallel] expressions). A list of results
can then be used in a program anywhere that a list of the particular type
is expected, such as multiple binding definitions and parameters to another
function call. The former is illustrated below. The Compute_Quads
function returns two values: an area calculation and a list of intervais
that need further processing.

new_area : real, (int,12-14)
result_data : Result_list
:= Compute_Quads { list ):

Since the types and order ol the return parameters match the types and
order of the target identifiers, this is a valid use of multiple
expressions.

Parallel expressions

Onc of the most important forms of concurrency available in VAL comes from
the forall expression. In conventional languages, looping constructs are
cften employed to compute some information when in reality all of the loop
“passes” could execute in Paralle! without interference. Sequencing is
imposed only because the language and target machine operate sequentially,
Array construction, where each entry’s vajue can be computed
simultaneously, is one example. Another example, where the "passes” are
not completely independent, but can be organized for faster execution, is
summing a long list of numbers. A binary tree structured evaluation of the
partial sums permits the entire summing operation to be completed in log
time instead of linear time. Both of these concurrencies are representable
in VAL.

Parallel array construction is expressed in VAL by using ferall with a
oomstruwet clause. Figure 3 illustrates this usage. The body of the
expression executes once for each element in the range of execution
specified at the top of the expression. The eesstruet clause implies that
the value of the forail eéxpression is an array; the indicies of the array
are the range elements and each element value is determined by the
expression following oonstruct. In general, several ranges can be
specified in the header. In this cese the body will execute on the
cross—product of the index values and the result will be an array of
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because values produced in one pass must be used in the next. [p all of
these expressions, some conditional clause (12 boolean expression, tag of a
omeof type, or the loop restart test) controls activities that will follow,
VAL imposes the explicit constraint that no result operation wiil begin

execution until the conditienal clause selects the appropriate action.

The 12 expression is akin to the standard 1f statement found in most
languages——only in VAL each result clause must be an expression (or

multiple expression). A Boolean expression provides selection between a
thea and else expression. To insure static type consistency, VAL requires
that the expressions defined by each result option be type equivalent. [f

a programmer needs to return two different structures depending on the test
condition, he can employ the omeef type constructor. An 12 expression with
a omeof result can be found in Figure 3. The oomstruwet clause produces an
array, where each element is of type Result_info. The them clause of the
4t produces a Result_info value having a "none” tag. The else clause uses
another function which produces a Result_info value having the "more" tag.
Hence, regardless of the result clauge chosen at execution, the type of the
result is certain to be Result_info.?

The tagosse expression permits access to information on an identifier whose
type is omeef without viclating type correctness. The strategy is to
interrogate the tag field to discover the value’s true type and then use a
multi-way branch to select the appropriate action. It is illustrated
below:

tagoase interval_data := result_data[ loc] (BL.9-13)
tag none : new list
tag more : new_list
I l: interval_data[1
H l: interval_datal[2
ondtag

This expression examines a value of type Result_info (namely, the value
bound to result_data[loc]) and the result of the tagease depends on the tag
associated with that value. The assignment in the header is a semant ic
maneuver to preserve type correctness; in each tag arm the identifier
“interval_data' takes on the type associated with the corresponding tag
field. This permits the information within a omeet object to he accessed
properly for each possible case. The result of the above tagease is a iist
of intervals, either the existing list {if the result_data had no
intervals), or the existing list with the two intervals catenated at the
end (each new interval is first transformed intoc a one element array to
establish type compatability for the catenate operator). Notice that as in
the t¢ expression, all arms of a tagoase must generate the same type of
expression.

2 An  alternate solution is to have the 1t eéxpression return an array of
intervals. The them clause would return an array with zero elements and
the else clause would contain two elements. This is legal since type
checking does not involve array ranges.
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ter {Int,2~28)
area : geal
= 0.0 ;
list : [nterval_list
:= { initial interval info. 3

de
let
new_area : real,
result_data : Result_list
= Compute_Quads ( 1jst ):
new_intervals : Interval )ist
= Build_list { resuit_data );
in
it array_sime ( new_intervals ) =0
then area + new_area
else iter
area := area + new_area:
list = new_intervals:
onditer
ondit
ondlet
ondteor

Figure 4: [llustration of the fer loop.

The last major form of expression in VAL is for-iter which permits
sequential looping. In this expression values can be transmitted from one
pass through the loop to the next, This transmission can only occur by
defining loop variables and then making assignments to them just prior to
the beginning of the next pass. Notice that the conventional method of
retaining information from one pass to the next, assigning to global
variables, is not permitted in VAL. Within a fer loop, objects can only be
bound to identifiers defined inside the loop. The program segment in
Figure 4, illustrates the use of fer. This loop cycles on the following
three steps:

1. Find intervals with acceptabie area estimates
2. Organize remaining intervals in a new list
3. Stop when there are ho more intervals

The loop parameters (declared in the heading) carry information from one
pass to the next, namely the area accumulated so far, and the list of
intervals requiring further processing. The body of fer must be an
expression. In this case, when all intervals are done, the valye computed
in the them clause will be returned as the final value of ger. Iteration
is allowed through an 1tesz clause that can be used in place of any resuit
expression. The assignments in the fter clause specify new bindings to be
made to the loop parameters Prior to reexecution.
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In all of the conditional expressions concurrency is limited by the
controlling boolean expression. Only the required-arm of an ¢ or tagoase
expression will execute, Similarly, the next pass in a fer loop will not
begin until an 1ter clause is evaluated. This strategy for handl ing
conditionals may cost some time in terms of execution speed (evaluation of
result clauses cannot be over lapped with the controlling conditional) but
it almost certainly saves in that only usable computations are begun, and
hence there is no need for abort procedures.

Error handling

One unfortunate effect of having a language that emphasizes concurrency at
the operation level is that it is difficult to stop a computation in
midstream, since the program can be concurrently executing in many places.
This problem requires a different error-handl ing mechanism from
conventional languages. A VAL function can never abort in the middle of
its calculation; it must either terminate generating legal type-correct
results, or run forever (due to an infinte loop). This characteristic is
possible because every data type contains error values in addition to the
values commonly associated with the type. When an operator cannot carry
out its assigned task (eg muitiplication under{lows, or accessing an
undefined array element) it returns the appropriate error value. All
operators are defined over the complete range of the appropriate types, so
the error information can propagate through. Language-defined functions
permit testing for the presence of error values so a Programmer can choose
to provide alternate resuits when an anticipated error arises.

This strategy is still onty of marginal use when actuaily tracing back some
error. [t is unreascnable to insert code to test the validity of every
operator, yet failing to do so may obscure where an error actually arises.
One proposal (which is not yet officially in VAL) is to have the language
define a special audit trajl associated with each error value. This trail
would provide information about where an error originated and what
transformations it went through during Propagation. Since this audit trail
would constitute an unusuai side—effect if it were accessible within the
program, one constraint on thisgs information is that it could only be dumped
to some system file for later access. While this is not an ideal solution,
it would permit reasonable testing without violating any language
principles.
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Adaptive Quadrature in VAL

Programming in VAL can be illustrated by examining its use in soiving some
Problem. Adaptive quedrature has been selected because jt contains several
interesting levels of concurrency, the algorithm is relatively simple to
understand, and the solution in VAL gives a balanced view of the language,
Three basic parts of the pProgramming process are of interest here.
Algorithm selection requires a thorough understanding of how the algorithm
works, and where the potential concurrencies and '"slow spots” reside,.
Program design stresses correctly mapping the algorithm onto VAL, and at
the same time insuring that the algorithm’s concurrencies are gtij]] visible
in the data f]ow graph. Finally, analysis of the program is critical for
determining improvements and variations that would either favor more
accurate or faster results.

Review of adaptive quadrature

Adaptive quadrature is an  algorithm for computing the integral of some

function, &, over a specified intervai. & g assumed to be continuous over
the interval, however the only way to gather specific information on the
function is to evaluate it at various points within the interva]. Adaptive

quadrature uses a simple approximating function, APPROX, (eg the
trapazoidal rule) and a scheme for sub-dividing intervajs (eg bisection).
The algorithm begins by applying APPROX to the interval as a whole to get
one integral approximation, and then sub-dividing the interval and applying
APPROX again to each subintervai, summing the results, to get a second
integratl approximation. The two approximations are compared, and if
sufficiently close, the latter one is taken 8s the integral of the
function. Otherwise, the entire algorithm is appiied independently to each
sub-interval unti] acceptable results are found, and then all of the
partial results are added for a final result.

The effectiveness ol adaptive quadrature in computing an integral relies on

its sparing use of calls to &. In most applications, function calls are
likely to be very expensive, often completely dominating the cost of the
integration celculation. By treating each split interval independent ly,

most intervals are likely to converge to a good approximation
quickly=—without using many functien calls. Hence, the cost of function
calls is only incurred where the information is likely to make substantjal
improvement in the approximation. For more infoermation on this algorithm
see de Boor[11],



Y

Data Flow Computing: The VAL Language P. 17

One of the open questions regarding this elgorithm is the choice of an
acceptance criteria for deciding when a particular approximation should be
taken. Rice{25,26,27] proposes a myriad of options that trade off accuracy
for execution time, the principle differences being in the amount of
information required in order to make the accept/reject decision. Simple
information, like the interval’s size and overail acceptable error
tolerance, is sufficient to construct a converging solution; however, extra
information, like error extimates for complieted intervals, may lead to a
faster solutioen.

The important concurrency in adaptive quadrature rests in the independent
handling of each of the sub-intervals. Once the process has iterated
through several sub-divisions there are many intervals that can be anaiyzed
simultaneously. In particular, each interval analysis requires one
invocation of & (at the midpoint, when using bisection and the trapazoidal
rule} so all of those function calls can execute concurrently. Since these
calls dominate the cost of execution, they are almost certain to control
overall speed of this algorithm on a multiprocessor.

Program design

The goal in implementing an adaptive quadrature program is to arrange the
computation so that all of the intervals can bhe operated upon concurrently,
One approach for achieving this goal is to uge recursion. As the interval
splits occur, the independent function invocations can proceed
simul taneously. Unfortunately, VAL does not currently permit recursion so
another design scheme must be used.? The design implemented in Appendix |
uses a list structure (represented in VAL as an array) to keep track of the
intervals that require further processing. This structure was proposed by
Rice[25] with the idea that in a multiprocessor environment the processors
would be constantly taking intervals from the front of the list, and adding
the split intervals to the rear. This implementation differs in that it
processes the entire list simultanecusly, and then constructs a new list
comprising all of the split intervals. The issue of an appropriate
interval acceptance criterion is temporarily side-stepped by having the
user supply a stopping condition routine in addition to %,

Concurrent processing of all intervals on the list js accomp!l ished with a
torall expression that returns an array of results (one resutlt for each
interval processed). The code for this part of the program is in the
Compute_Quads function. The range of the torall is set to the length of
the list and the body computes the interval analysis for one interval
(which includes invocation of the & function). The result of each interval
analysis is returned in an array entry, as specified in a oomstruat clause,
The concurrency of the algorithm is obvious because the critically
expensive function call is embedded in the parallel expression feature.

The only weakness of this solution is the return of the new list of
intervals for the next pass. From the dividing nature of the algorithm we
know that the new list may contain anywhere from zero to twice the number
of intervals that were input. Unfortunately, the somstruet arm of a fersll

3 This language constraint may change in the future. There will be further
discussion of this point later in the paper,
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must return an array that has exactly the range of the loop control

identifier (ie the same length as the input array). To compensate,
elements of the cutput array are omeef structures whose contents can vary
belween array elements. Each entry has either no intervals or two new

intervais. Since this structure is not the same as the list of intervals
input to the ferall, a restructuring step must take place. This ig done in
Integrate by calling Build_list.

Program analysis

This solution has both good and bad points when considering concurrency.
The program does permit many simultaneous evaluations of the target
function. Since that part is assumed to be the most eéxpensive step in the
operation, that shouid have & very good impact on the eéxecution time. On
the negative side, the list restructuring (in Build_list) is a sequential
operation and hence, time-consuming. One possible remedy for the future is
to add another form of result generator to the ferall, one which would
permit the construction of arbitrary length arrays in parallel. For now
though, we must settle for the position that the Seéquential portion of the
program, while inelegant, is unlikely to dominate the cost of the

computation,

Another important issue in  analysis is how the various interval acceptance
criteria proposed by Rice would affect the concurrency of the program.
Rather than discussing each option in detaijl, several principles wil] be
stated that should help the reader understand the nature and use of VAL
more clearly. The primary concern is to identify those pieces of
information that can and cannot be passed to some "Stopping Condition”
function. As currently structured, the decisions about interval splitting
are made during the Processing of each interval—-thus they are done in
paraliel. At that point, only information on the current interval and
information from the Previous passes can be used. For example, instead of
Providing the interval-‘s size, any or all of the following information
could be passed (assuming appropriate changes in the code to accumulate
these statisties):

l. interval endpoints

2. partial area accumulation as of last pass
3. partial error estimate as of |ast pass

4. number of intervals remaining in the 1ist

These are some types of information that could be usefy] in designing
different stopping conditions, Absent from this ]ist is any information
about analysis on the current pass through the intervals, It may be
possible that almost aj] of the intervals in the current pass get very
accurate estimates and so the few remaining ones can afford to be less
precise. That information will pot be available until} the next pass,
because the analysis of all intervals is concurrent .

An alternate solution design would permit information about the current
Pass results to be available immediately, but at the expense of some speed
at execution. The decision on whether to split an interval or quit could
be moved to the Build_tist routine. This routine is already Sequentially
oriented, so it would not drastically change the program. The tey loop
could be changed to include some loop variables that keep information on
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the latest error and area estimates. The cost of this approach is that the
decisions on whether or not to split each interval would now be done
sequentially rather than simultaneously, Notice, however, that this cost
is directly related to the type of algorithm that is desired. 4 stopping
condition that needs absolutely current information about the state of the
approximation imposes more constraints on the soiution.

In summary, one of the main concerns of a programmer using VAL will be in
understanding the timing constraints of potential solution candidates and
finding an implementation that adds as little ag necessary, In the
adaptive quadrature probiem, the critical concurrency must be the muitiple
function evaluations. The proposed soiution permits this concurrency with

only a modest amount of effort. The program variations to accomodate
different stopping conditions can be done with the corresponding
concurrencies available to each choice. The cne Sequencing constraint

introduced by programming in VAL is the ljst restructuring at the end of
each pass.
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Language Critique

This section gives a detailed analysis of the VAL language. I[ts pPrincipal
.Strength, relative to other language candidates, is VAL‘s ability to
display large amounts of general concurrency in an implicit way. Possible
side benefits may accrue from research in functional Programming; most of
the verification techniques discussed in that environment are directly
applicebie to VAL. On the negative Side, the language design is not yet
complete. Some extensions must be added, the critical one being 1/0
facilities. Other facilities would be beneficial to include——among them

recursion,

Strengths

Implicit concurrency stands as the most significant aspect of VAL in
relation to other language options for a data flow environment. Languages
having explicit concurrency, like Concurrent Pascal{8] and Modula[30], have
two serious drawbacks when considered for datsa flow. First, concurrency at
the individual operator level requires far too much effort for a pProgrammer
to express, In VAL this concurrency requires no extra effort. As an
illustration, consider the Compute_Quads function in Appendix |I. This
function abounds with operator level concurrency in every expression. In
order to express this concurrency in Concurrent Pasca] or Modula would
require a very large number of process definitions~——without question an
unreasonable strategy. The second drawback to languages with explicit
concurrency is that they require explicit synchronization. Again, refer
back to the Compute_Quads function. The end of the forall expression
requires merging of information from all of the different range evaluations
into one array and also into one sum. This is actually a massive amount of
process interaction, and wouid require liberal use of semaphores or
monitors in any current languages. VAL has no need for synchronization
tools because the interaction is implicit, thus saving programmers from the
tedious and often difticult chore of defining correct interactions.

Another language option for data flow is to take standard Fortran and write
8 new compiler that generates appropriate graphs. The problem with this
form of "implicit" concurrency is that both programmer and compiler would
have difficulty identifying concurrency, The abundant side-effect
Possibilities would force €ven a smart compiler to pass over certain
concurrent operations because their independence could not be assured, vl
avoids the problem because side-effects are not expressabie,
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A final data flow language option is to employ one of the existing
languages used for multiprocessing. LRLtren[ 18] is Lawrence Livermore
Laboratory’s version of Fortran that compiles code for the CDC-7800, CDC
Star, and Cray-I. Another candidate is Glypnir[16], which compiles code
for the Iiliac IV. These languages suffer one major drawback in that they
concentrate on vector-type concurrency to the exclusion of all other
forms.* VAL permits vector concurrency, in fact, strongly encourages it
through the forall expression, but not to the exclusion of other forms.
All forms of concurrency can be exploited at the same time, without special
notation or effort on the part of the programmer.

Another strength of VAL is its strong resemblance to applicative (or
functional) programming systems, such as the one proposed by Backus[6].
Applicative systems stress programming with true mathematical functions.
Some early results show possibilities for proving properties about
programs, which may lead to correctness and/or verification schemes. The
functional nature of VAL programs contains many of the same properties as
those emphasized in applicative systems. The main difference between the
two approaches at this time is that VAL explicitly considers data and data
types as part of the language—applicative systems do not. In principle,
this difference means that functions in applicative systems are defined
over the complete universe of inputs while VAL functions are only defined
over the domain of the input types. In practice, it means that we need to
limit analysis of of VAL functions to situations that are known to be
type—correct, which is not at all unreasonable.

Weaknesses

The weaknesses of VAL tend to fall into two categories. The first, and
more serious, are those shortcomings for which a good answer is necessary
but currently missing. Principal among these deficiencies is the lack of
/0. The remaining weaknesses involve limitations in the language which
were originally imposed to avoid possible problems or conflicts later.
Some of those limitations may not be necessary and yet they constrain
useful programs {eg no recursion).

The lack of 1/0 facilities in VAL is currently the most disturbing problem.
The difficulty with adding [/0 is its inherent side-~effect nature. Output
routines do not have a value, they modify some external environment. Input
routines use an external environment to determine their results, so they
are not functions either. The problem can best be illustrated in VAL by
considering the adaptive quadrature program. What would happen if the
Evaiuate_function routine provided by a wuser invoked either input or
output? Since the scolution is designed to have many calls simultaneously
executing, what order (if any) could be imposed on access to the external
environment? The one problem with having completely functional environment
is embedding it in a non—-functional computing world.

The only answer to this problem in the current version of VAL is to treat
[/O files as standard data objects; the input file must be completely
present at program initiation. All [/0 functions would have to be given a

4 This weakness is not 1limiting in their current environment because the
machines mentioned only have the power to exploit vector concurrency.
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file (ie a record of values) to be operated on at every invocation, and
return a different file on completion. Thus read and write would
effectively become pop and push operations on files structured as stacks.
This solulion works because the "fijes"” are not global data that are
updated: simuitaneous writes would create multiple files, each having a
different final entry. Programmers would then have to dea} with the
problem. This solution is  unacceptable because tt disallows any
interaction with the program during execution.

Another weakness in the current definition of VAL centers on the use of
eval clauses in a forsll expression. Currently only six language-def ined
operators can be used as the result merging operation. Other operations
might be very useful in that position. If catenation were permitted, the
adaptive quadrature solution could be shortened (and sped up) by having
Compute Quads build a new interval list directiy, rather than use
Build_List. One could also envision other operations users would need to
write, that would be beneficial. In general, user-defined functions in the
eval position are prohibited because associativity cannot be assured.
Without this property, tree-evaluations can pProduce unexpected results. An
interesting anomaly exists jin that two of the six acceptable operations
(plus and times)} are not usually viewed ag being associative in finite
precision arithmetic. Prescaling the operands may circumvent this problem,
but at a substantial cost in time (namely, a tree-structured scaling
operation),

The remaining weaknesses of VAL are related to unduly constraining the
language in severa] places. Probably the most important of these is the
prohibition against recursion. Recursion in a conventional language is a
powerful tool that can greatly simplify the presentation of some
algorithms. In a paralliel pProcessing language the advantages are even
greater because simultaneoys recursive calls c¢an display substantia]
concurrency.

The recursive version of Integrate shown in Appendix I] could replace four
funetions (Integrate, Compute_Quads, Build list, and Make*twu_intervals) in
Adaptive_Quadrature and still compute the same function, The obvious
advantage of this version |is .that it s substantially shorter than the
previjous version while specifying the same computation, Even more
significant, this version contains more potential concurrency. The
original version required that all work on a particular interval list be
finished before the next pass began. In the recursive version there is no
such restriction, and there is no siow spot in the calculation due to a
linear sequencing of operations. In fairness, however, it is important to
hotice that in a recursive version there are more limitations on the type
of information that couid be given to a Stopping_Condition function. Only
information on the current interval (eg size, bounds, and area estimates)
and initial constraints (eg desired error bound for the entire problem) can
be used in the recursive version,

Two other possibly unnecessary language constrajnts are worth mentioning.
A VAL function can only invoke functions which it has defined and functions
declared extermal . This rule helps insure that function blocks are
logically self-contained and thus easily transported to different
environments. However, it hampers program design in that if some utitity
function is needed by twe other functions, the utility must be promoted to
the highest access level-—sxtornal . For this reason, the Adaptive
Quadrature program is not quite Jegal, For readability, that program has
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all functions declared at the outermost scope level. With this structure
the functions should not be able to call each other. A simple program
restructuring could nest the Adaptive Quadrature functions inte an
acceptable form, so the issue is only one of asthetics and convenience.
The other annoying constraint is that functions cannot be passed as
parameters. In conventional l!anguages such a feature is difficult to
implement due to environment control issues; but the VAL environment
creates no such probliems. Function parameters would improve the adaptive
quadrature program by allowing the two user-defined functions to be passed
rather than defined globally, thus permitting users to name their functions
more appropriately.
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Continuing Research

Research in the area of data flow computing, including work on data flow
languages, is still in its very early stages. The work reported in thig
paper represents some current ideas about how to communicate concurrent
algorithms. VAL has proved usefu] in  writing some commonly used
applications programs. However, there is much language work that stiil
needs to be done. Three different directions need to be pursued in some
detail: language modifications needed to address current weaknesses,
compilation techniques for optimizing translation to data flow graphs, and
pProgramming techniques for using the language to its fullest.

Language improvements

Many of the current weaknesses in VAL can be handled by relatively minor
adjustments to the language definition, These points have already been
made and therefore will not be repeated here. The one major problem in VAL
as it is currently defined is the lack of /0 facilities, a problem which
is not easily remedied. The most promising solution for adding [/0
facilities to VAL is the stream concept. This facility has been suggested
for use in data f{low languages{4,29), but the detaiis have yet to be worked
out thoroughly.

A stream is a sequence of vaiues. The only stream oprations are appead to
the end of a sequence and remeve from the front of a sequence. Because
these operations only deal with the ends, a function could operate on a
stream without having the entire seguence available. Normally streams
would be used in a data flow language to set up a "pipeline” between two
functions. The first function would build a list by appending results to a
specific stream. The second function could then remove the results as they
are generated and continue Processing. Because the second function need
not have the entire stream defined before it begins using it, the second
function cen begin execution 83 soon as any element is put in the stream.
This implies that both functions can operate simultaneously with the
receiver function limited in speed by the rate that the sender function
generates values.

Streams may be a reasonable way to treat [/0. The language could define
two streams (one for input and one for output} that would be connected to
the outside world. Since the values for a stream need not be known until
requested, the interface to the outside world could put the correct vajue
on the input line, once it sees which information is being requested.
Output could be transmitted directiy out, not waiting for the end of the
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program to transmit everything. While this approach seems feasible, many
details still need to be sett]ed. In particular, how are streams defined,
connected, and disconnected from functions as they are defined in VAL?
Also, secondary storage reintroduces the problem of side-effects, now
possible by writing to "memory” and then reading it later. How can the
heeds of users to do [/0 be reconciled with the fact that it is an inherent
Side-effect?

Compilation techniques

A second area where substantial work needs to be done is the development of
compilation techniques for translating into data flow graphs. Many of the
features in VAL can be translated directly into graphs with very jittle
effort. However, there are a few constructs which pose problems for even
simple translation. Completely open is the area of optimizing techniques
for graph translation.

One of the trickiest questions with respect to compiling into graphs
is—~what form should the graphs take? In particular, must the complete
graph be defined and created by a compiler? [t the graph must be
completely specified at compile—time., then some concurrency in a program
may become sequential in the graph. Take for example, the feorall
expression. Il the range of the expression is only compulable at run-Lime,
how can the compiler know how many replications of the expression header Lo
make? Similarly, if two invocations of & function can take place in
parallel, how does one get multiple copies of the graph? Both of these
situations arise in the adaptive quadrature program. The highly critical
torall expression in Compute_Quads has a range that varies at run-time with
totally unpredictable behaviour. Similarly, the number of potentiaily
concurrent cails to Evaluate_Function is not known until execution. With
static graphs, some sort of "reentrant” graph concept may be necessary.

If the complete graph need not be specified by the compiler, then some
notation must be develcped for describing how pieces of a graph can be
constructed during execution of the graph. This appears to be non—-trivial.
A major problem with graphs that can grow at run-time is the potential for
deadlock. There is certain to be some upper limit (albeit very large) on
the amount of space a data flow computer will have for holding a graph. 1If
a8 program yields a large amount of concurrency by using language features
that replicate graph portions, it is conceivable that the program could
attempt to expand past the limits of the space, and hence deadlock. These
arguments suggest that a compiler for VAL would have to have some exira
help from the programmer above end beyond the program input. This
interaction would help the compiler generate code that would get as much
concurrency as possible while controlling the use of graph space.

Optimizing compilers for a data flow language pose even more problems. A
VAL program may contain some forms of concurrency that are difficult to
reflect in a graph. Array usage is a case in peint. An array may be buiit
in one ferall expression and then immediately be used inside another. From
a data and control dependency viewpoint, as each element of the array is
computed, the corresponding range index of the following terall may be
clear to execute. [f the expressions are compiled so that the entire array
is built in one expression and then handed over to the next, that
concurrency is lost. Since many number-crunching applications have exactly
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this type of structure throughout the pProgram, such a loss could be
significant. This point is diacussed in more detail by Woodruff[3i],

Prog[ammigg techniques

in order to make data flow a truly usefyl computing approach, better
Programming techniques must be developed. Currently several efforts are
underway to take existing production codes at Lawrence Livermore Laboratory
and translate them into equivalent VAL programs. Such work is a start
toward understanding the best ways for using VAL, We need to know more
about the kinds ot concurrent algorithms that are easily done in VAL, and
more important, those that are not. Work also needs to be done on
deveioping new concurrent algorithms for solving problems, rather than
taking the oid approaches and mapping them onto a new pProgramming language.
Finally, we need to consider the impact of concurrent languages on the code
testing process. Untii program verification becomes & common practice,
debugging is a fact of life. In a highly concurrent environment it may be
sheer torture.

Every time a programmer is introduced to 2 new language a substantial
amount of effort must be made to get him into the appropriate "mind-set” in
order to use it well]. Part of this effort is learning how to reason about
concurrent algorithms and understanding how to convey that information
through the compiler, Since speed of eéxecution is critical, it is
important te be able to identify the "slow” Spots in a program and recode
them for better performance. Right now we know very little about general
techniques for doing this kind of analysis,

In the area of finding new concurrent algorithms, very little is known.
Arvind and Bryant[3] studied one LLL code for solving partiai differential
equations and found that while several parts contained massive concurrency,
the overalil time-limiting factor 1is & Vvery sequential matrix inversion
algorithm. A more concurrent algorithm (even one that requires
substantially more computational effort) could remove this limitation and
yield a much faster program. This is just one example of where more
research on concurrent algorithms could be put to use.

Finally, there are practicalities. Debugging has often been considered one
of the hardest ang most time consuming pertions of a programming project.
It it is so difficuit in a sequential environment, how much worse will it
be in a parallel one? To make matters worse, some common debugging tools
are probably not available. it is unclear how one couid breakpoint a VAL
pProgram during execution and make any sense out of the current state
because the current state may be active in literaily thousands of places,
While developing useful debug tools for this environment may not be as
theoretically interesting, it would certainly be extremely useful.
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Summary

Many of the recent efforts to increase the effective speed of computers
have centered around the idea of multiprocessing. particularly on pPrograms
that currently take several machine hours to run. Unfortunately. current
languages stili impose a sequential mind-set on the programmers.
Concurrency is treated 4% a special case that requires significantly more
effort from the programmer both in terms of logical understanding and
actual code to represent it, The basic Principle of data flow computing is
that most programs have a vast amount of cancurrency embedded in them
(mostly at the individual operation level) that could be exploited on
hardware that has a large number of processors, In this sort of
environment, current languages are inappropriate because they discourage
concurrency in programs and even hamper thinking in those terms,

The VAL language provides a hespitabie environment for dealing with
concurrency. A VAL program automatically executes to its full level of
concurrency, which is limited only by data dependencies, control
dependencies, and the number of available processors. The data dependency
limits are imposed by the algorithm employed in a program. The control
dependency limits help avoid wasting processor usage on operations whose
resulis are not Necessary, In VAL, concurrency is the rule, and
sequentiality is the exception, Programmers are encouraged to think about
their algorithms and identify portions that can execute simultaneously,
Once those sections are known, very litt]e effort is needed to display the
cencurrency in the code.

One of the major strengths of VAL is its ability to represent many
different types of concurrency. Vectorizing, pipelining, and independent
operator execution are equaily available for use, A programmer need not
tune his program for one specific type of concurrency to the exclusion of
all others. Many forms can be used simultaneously. This freedom should
also be of great value in the development of new algorithms for solving old
problems. [t s interesting to note that the basic design Principles
behind VAL are exactly the same as those advocated by researchers in the
areas of semantics and program verification, VAL prohibits ail forms of
side—effects and aliasing, insisting on functional program features. The
motivation for this approach was to insure fast and maximal identification
of operations that can safely proceed concurrently. While verification was
not an explicit design goal in VAL, its functional characteristics may be
very amenable to the current program proving techniques.

The restraining caution jn this work is that a}l data flow research is in
its infancy. VAL will require substantially more work on its definition,
translation, and techniques for use before it will be a viable



Data Flow Computing: The VAL Language P. 28

production~level tool. Work is currently in progress at MIT to address the
remaining language definition probiems. At Lewrence Livermore Laboratory
the emphasis has been on the techniques for use. By taking current

production codes that dominate Lthe computing time, and translating them
into VAL we hope to develop a better understanding of both the physica
problems and methods for sclving them in a data flow environment. The
remaining area, translation of VAL into data flow graphs, may turn out to
be one of the more difficult problems. Basic translation of VAL into
graphs is possible; however, finding good optimizing schemes may be well in
the future.
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Appendix I: Adaptive Quadrature Program
funetion Adaptive_Quadrature { low,high : yeal returas real )
Adaptive Quadrature computes the integral of a function, F,
on the range: low ... high ( the inputs). The user must provide

declarations below. Most of the design and
for this program are discussed in the paper
Adaptive Quadrature in VAL. Comments at the
explain the operations performed within that

o7 38 39 5% 39 a9 3¢

type Interval = reeord [ x_low, Fx_iow, x_high,

implementation

under the sectjon:
top of each function
function.

Fx_high: real];

29

two functions. Their characteristics are described in the exteraal

% An interval s represented by its endpoints and the values of

% the function at those endpoints.

type [ntervai_list = array [ Intervai ];

% A list of intervals is represented by an array of intervals.

% The list always begins at the | index p
% as high as necessary.

type Result_info = omeet[ none: awll; more: [nt
% The result of analyzing an interval may

osition and extends

erval_list ];
be that no new

% intervals are generated (none tag) or two new intervals

% are generated (more tag, list has 2 ent

type Result_list = arpay [ Result_into 1:

ries}),

% A result list holds all results from the processing of one
% interval list. Notice that each array entry is a emeef
% type and the tags need not matich between entries,

eztermal Evaluate Function ( x:7eal returams real )

3
[

% This must be a user provided function for computing F(x)
% where x will be on the range: low < x < high .

exterasl Stopping Condition ( areal.areaz.intervalqwidth : real
returns boolean )i

“areal” and "area2" are close enough to
to be used as the approximation for an
“interval_width". The program could bhe
to allow this functioen access to other

39 3% o9 2% 3¢

This must be a user defined function for deciding if

permit the latter
interval of width
easily modified
information.
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To improve readability, each function is Presented separately, at the
same syntatic nesting level. This structure js not legal in val
because functions are not permitted to call other functions declared
at the same jevel. These functions could easily pe reorganized into
a4 correct VAL program, it hecessary,

bR Y Y

funstion lntegrate(!ow.lowv.high.highv: real returas real)

X The algorithm for AQ is implemented by keeping:

%
% 1. a list of intervals for which an acceptable
b4 8pproximation has NoT been found, apd
%
% 2. & running sum of areas for intervals with
% acceptable approximations.
%
% Execution proceeds in the following cycle :
%
% l. Compute a new approximation for each interval on list
z => if acceptable, accumulate arep
4 => if not, divide interval into two intervals
% 2. Restructure unresolved intervals into a new st
% 3. If no intervals on list, return total area
% 4. Repeat cycle with new ljst
for
area : pepl
= 0.0 ;
list : Interval_jist
= [ 1: recerd [ x_tow . low;
Fx_low lowv;
x_high high;
Fx_high : highv ] ]
de
let
new_area i real,
result_data : Result_list
:= Compute_Quads ( list );
New_intervals : Interval_list
‘= Build_list ( result_data );
in
1f array sise { new_intervals ) =0
then area + new_area
olse iter
area := area + new_aregn;
list := new_intervalsy;
enditer
ondif
ondlet
ondfer
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funetien Compute Quads ( tist : Interval_list returas real, Result_list )

%

NNNNNNNNNNNNNNNNN

Compute Quads receives a list of intervals for which
acceptable area approximations have not been found.

two approximations are acceptable ( as defined by the
Stopping Condition ). that area is added into the other
acceptable areas for this list. Insufficient approximations
return two sub-intervals to be operated upon later.

The initial assignments bhelow ( left — rightv )
are purely for readability. Areas are only accumulated
for acceptable approximations ( done in “"eval plus ~ ).
Due to strong type checking, the list of results must be
elements of a omeef type Fepresenting either:

l. no new intervais ( "none" option )
or 2. two new intervals =» “more" option .

forell i ia [ nrr.y_lll!(list).llrly_lllh(list) ]

left : real

= list[i).x_low;
leftyv ¢ real

2= list[i].Fx_low;
right ¢ real

= list[i].x_high;
righty ! real

= list{i].Fx_high;
mid ! real

= (left + right) / 2.0;
midv ' real

1= Evaluate_Function(mid);
old_area : yeoq]

= (right - left) o {rightv + leftv) » 9.5 .
new_area : gogl

= (right - mid) * (rightv + midv) * 0.5 +

(mid - left) » (midv + leftv) * g.5 :

done ! bhoelean

= Stopping_Condition(old_area.new_area.right*left):

oval plus ¢ done them new _area
else 0.0 endig

Somstruet 1if done thes make Result_info [ none:nit
olse Build_two_intervals(left. lefiv,
mid, midv,
right,rightv )
eadit
endall

ondfun

31
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funetien Build list (result_data: Result_list returas Interval _list )

Build_list takes a list where each element s
either

1. empty, or
2. a pair of interval descriptions

and returns a list whose elements are the
non—empty intervals from the input .

This implementation examines each of the input elements
sequentially and for each pair of intervals found, it

catenates them one at a time to the list that will

eventually be returned. The actual catenate operation looks
unusual because each eiement must be converted to a one element
array in order to insure type—correctness tor "I", which
requires that al! operands be arrays.

Mttt o8 30 37 39 50 00 5T e 5

for
new_iist : Interval_list := empty [ Interval_list 1;
loc : imteger = erray_liml ( result_data };
de
i2 loc > array_limm { result_data )
thea new_list

olse iter
new_list := tagoase interval_data := result_dataf loc]

tag none: new_list

tag more: new_list
I E l: interval_dataf1
] 1: interval_data|2
endtag
loc := loe + 1;
onditer
endif
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funotion Build_two_intervals(left,leftv.mid.midv.
right,rightv : real
returas Result_info }

% This is a utility function which takes info
% on the analysis of an interval and buijlds a
% list consisting of the two subintervals,

let
left_interval : Interval
‘= vosord [ x_low : left;
Fx_low : lefty:
x_high : mid:
Fx_high : midv ] ;

right_interval : Interval
= recerd [ x_low : mid;
Fx_low : midv:
x_high : right:
Fx_high : rightv J;

two_intervals : Interval _iist
= [ 1 : left_interval;
2 : right_interval J;

is  make Result_info [ more : two_intervals ]

ondlet
ondfun

The body of the main procedure is simply responsible

for computing the value of the function at the end
points and then invoke the integrate routine to complete
the work.

o 29 o ae

Integrate(low.Evaluate_Function(low).high.Evaluate_Function(high))

endfua % end of Adaptive_Quadrature

33
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Appendix II: Recursive AQ

funetion Integrate 2 (Ieft.leftv.right.rightv: Teal returay real)

If VAL were to allow recursion, this function couid replace four
functions in the program found in Appendix I: Integrate,
Compute_Quads, Build_list, and Build_two*intervals.

It is computationally equ

about error estimates for completed intervals. That type
of information would not be avaiiable jn a recursive

mid ! real
= {left + right) * 0.5,
midv ' real
1= Evaluate_Function(mid);
old_area: peoal
= (right - left) » (rightv + leftv) » p.5.
new area: real
(right - mid) = (rightv + midv) * g,
(mid - left} * (midv + lettv) »
done i booleans
Stopping_Condition(cld_area. New_area, right - left);

]

5 +
0.5 :

(]

1f done them new_area
olse Integrate_2( left, leftv, mid, midv} +
Integrate_2( miq, midv, right, rightv)
ondift
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