MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATCRY FOR COMPUTER SCIENCE

Computation Structures Group Memo 189

Notes on Using TOPS-20

by

Eugene Stark

This research was supported by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office
of Naval Research under contract N0O00L4-75-C-0661.

February 1980

Notes on Using TOPS-20

Eugene Stark

This note provides some basic information about programming in CLU on the
DFECsystem 20. The first section is an introduction to using the TOPS-20 operating system
and EXEC, its command interpreter, The use of the TED text editing program is described
in the second section. The third section discusses how to compile, debug, and run CLU
programs. This note is intended primarily for use by students in 6.170, The presentation is
therefore geared toward those who may have had no prior experience with the DEC-20 or
CLU. '

1. Introduction to TOPS-20
1.1 Logging In and Logging Out

When you walk up to a TOPS-20 terminal, make sure that no one else is already
logged in before you attempt to log in. A logged-out terminal will generally display a
message like the following:

LOGOUT JOB 22, USER SE.STARK, TTY 17,
AT 9-SEP-79 11:08:04, USED 0:2:30 in 0:10:20

Before you can log in, you must first get the system’s attention by typing +C. For those not
familiar with ASCII keyboards, +¢ is pronounced “control C", and is generated by holding
down the CTRL key while typing ¢. After typing +C the system should respond with a
short message identifying itself, and will then print the character @ as a prompt. At this
point, you are talking to EXEC, the TOP5-20 command interpreter, and are ready to log in.

To log in, you will need a username and a password. 'The username and password are
presented to the system by typing the keyword 1o0gin, then a space, then your username
followed by another space, and then your. password, followed by a RETURN. Note that
printing is turned off automatically after you type the second space, in an attempt to keep
your password secret. Thus, if your username is se.stark, then the line you type will
appear on your terminal as '

@login se.stark

If everything is correct, the system will print a few lines of information that include the job
number you have been assigned, and the time someone last logged in under your
username. The last thing that will be printed is the @ prompt of EXEC. At this point, you
are logged in, and are ready to give commands.

-2-

If something is amiss with the login sequence, the system will print a fine bcgmnmg
with a question mark, for example

TINCORRECT PASSWORD

or

?DOES NOT MATCH DIRECTORY OR USER NAME

If you receive the first error message, you probably made an crror in typing the password,
and should type the login command again. If the second error message is printed, check to
see that you typed the proper username. It is not necessary tc be concerned about
distinguishing between upper- and lower-case letters,

To log out once you have logged in, type 1ogout to EXEC, followed by RETURN.
From now on, it will be implicitly understood that each line of input you type at your
terminal must be terminated by typing RETURN. The RETURN character informs the
computer that the line of input is complete and should be processed.

1.2 Giving Commands and Running Programs

After logging in, you are ready to give commands and run programs. A command is
executed inside EXEC itself, whereas a program must be executed as a separate fork or
process. Some of the more useful commands and programs will be described briefly later
in these notes. Both commands and programs are invoked by typing their names to EXEC.,
To obtain a complete list of all command namcs, type a ? to EXEC. The ? character is
almost universally interpreted by system programs as a request for help. If you need
prompting as to the type of input the system requires at any point, or you would like a list
of available options to be printed, ? is the easiest way to get this information. The help
command will also provide you with brief documentation on some system programs. '

To run a system program, simply type its name. For example, ted invokes TED, a
text editing program. If you are executing a program or command, and want to return to
EXEC command level, you should type tCc twice. If the program you are running is-
currently awaiting input from your terminal, then it is actually only necessary to typc one
+C to return control to EXEC. However, two +cs will always interrupt the program
immediately, regardless of whether it is waiting for input or not. "Panic mode”, that is,
typing more than two +Cs, is no more effective than just two, although it may be more
satisfying. Note that many programs, for example TED, have more graceful ways to return
to EXEC than by +c. If the program you are running has such an escape, it is probably
better to use it than +C. A program that has been halted with +C can usually be continued
by typing continue to EXEC; however interrupted commands cannot be continued.

1.3 Special Characters

You can generate several characters that are interpreted specialty by TOPS-20, which
allow you to correct typing mistakes and perform various other functions. To erase the last
character you typed, press the DELETE key (RUBOUT on some terminals), On a CRT
terminal, the offending character will be removed from the screen, and the cursor moved
back one space. If an entire line is a disaster, typing +u (control U) will deleteit. T yping tW
if you are at EXEC command level causes the contents of the last field of a command to be
erased. If you are running a program that sends a lot of output to your terminal, and you
don’t care about seeing the output but you want the program to run to completion, the +0
character may be used as a toggle to turn printing off and on until the program has
completed, at which point printing is resumed normally, When you are running nearly any
program besides TED, typing +T will print information about the CPU time used by the
program. It is useful mainly for telling if a program is running, or has somehow gotten
stuck. If your terminal is in "page" mode (see description of the terminal command
below), output to your terminal will be stailed when the screen is filled up. To see the next
page of output, type +Q.

- 1.4 Recognition Input

If you are at EXEC command level, another way to get assistance from the system is
by pressing the ESC key (ALT on some terminals). Typing this character invokes a system
feature called recognition input. When ESC is pressed, the system attempts to complete a
partiaily entered command field. The basic rule is, in order for the system to complete
your partial input, it must be able to unambiguously determine what it was that you
intended to type. If it is unable to do this, your terminal will "feep”, and nothing further
will be printed. If the system is able to complete the field, the input that it supplies will
added to the command line, entirely as if you had typed it yourself. If you are not happy
with the system-supplied input, you may use DELETE, +u, or +w 1o edit it. When you are
satisfied with the way the command line appears, typing a RETURN causes the command
to be executed. Note that ESC by itself will never initiate execution of the command, so the
best way to get a feel for how recognition input works is just to try it out. If you decide not
to execute a command line, a +U wilf erase it.

As an example of the use of recognition input, suppose you were attempting to log in,
and you typed 1og and then an ESC. The system would then realize that you wanted to
type 1ogin, and would complete the typing of that command, and in addition supply some
"suide words” to indicate what you should type next. The command line would then
appear as follows: |

@logIN (USER)

-4 -

For clarity, the original input 1eg is shown here in lower case, and the system-supplied
input is printed in upper-case. Note that the ESC character does not print. The system is

now waiting for you o type your username,

Il you had typed 10 and then an ESC, the system would not be able to determine

unambiguously that you intended to type 1ogin. its only response in this case is to cause
your terminal to "feep”. To sce what other commands also start with 10, typea ?.

@10? COMMAND, ONE OF THE FOLLOWING:
LOAD LOGIN LOGOUT
eLo

As you can see, in respodse to the ?, the system will print a list of the possible commands,
and will then retype the partially entered command line and await further input.

When you become more accustomed to the system, you will find it convenient to use
the abbreviated input feature of EXEC. This means that you need only type as much of a
command keyword as is necessary to distinguish it from any other command. For example,
when logging in, it is only necessary to type the first three letters of 10gin, thus

8log se.stark
is entirely acceptable to the system.

1.5 The File System

The TOPS-20 file system is organized as follows: At the level of coarsest division, the
file system is composed of one or more structures, which correspond roughly to magnetic
disk drives. Each structure is divided into a number of directories. Each directory in turn
can contain a number of files, which are the actual units of information storage. At any
given time, each user is said to be connected to a single directory. When you log in, you will
autornatically be connected to a directory of your own, where you may store your work. As
you create, delete and modify files, you will find it necessary to perform certain
"housekeeping™- operations on your directory, so that you do not exceed a maximum
amount of storage space, called your guota. More will be said about this below.

Each file has an associated filename, which serves sa unlque ldenuﬁel An example
of a complete filename is:

ps:<{se.stark>sorted_list.clu.4

The first field is called the device field and is terminated with a colon ;. The name of the
structure on which the file resides is placed in this field. In this case, the structure is ps:,

-5-

for "public structure”. The second ficld is called the directory field, and is always enclosed
in angle brackets. In this case the name of the directory is <se.stark>. The name of your
private directory is your username enclosed in angle brackets.

The remaining three fields of the filename are separated by periods ., and specify the
name of the file within the directory. The first of these fields, in this case sorted_list,isa
name that is usually chosen to be descriptive of what is in the file. The second field is in
general chosen to indicate what zype of information is in the file. In this case, ctu indicates
that the file contains a CLU program. The last field must be numeric, and indicates the
generation number of the fite. It is usually not necessary to use a complete filename to
access a file, Whenever you omit the device field and the directory field in a filename, the
system automatically uses as default the directory to which you are currently connected.
The generation number field is almost always omitted -- this is discussed in more detail
below,

Generation numbers are a feature that help you protect yourself against accidentally
destroying information in files you wanted to save. You may take advantage of this feature
by not including the generation number field in a filename, The system then uscs some
simple rules to fill this field in for you. The generation number supplied by the system
depends upon whether a read or write operation is being performed. Suppose the filename
you typed was serted_list.clu. Since both the device field and the directory field have
been omitted, the system uses the connected directory as the default. The system then
searches this directory to determine the highest generation number associated with any file
named sorted_tist.clu. If a read operation is being performed, then this number is
used. Otherwise, if a write operation is being performed, then the generation number is
this maximum number plus one. If there are no files named sorted_1ist.clu, an error
message is printed in the case of a read operation, and generation number 1 is used in the
case of a write, '

Thus, if you never specify a generation number in a filename, you will always read
from the latest version of a file. In addition, you will never write over an old file, but will
always create a new version, However, it is possible to override this mechanism by
explicitly specifying generation numbers. The main disadvantage of always creating a new .
version every time a file is written is that lots of old versions tend to accumulate and use up
valuable space in your directory. One of the "housekeeping operations™ you will need to
perform periodically is the deletion of outdated versions of files. The delete command,
described below, has options that are convenicnt for this.

1.6 Some Uselul Commands

The "Help’ Command

The help command may be used to obtain brief documentation on various system
programs. Simply typing help causes a short message explaining the use of the help
command itself to be printed. Help * prints a list of the programs for which help is
available. If prog is one of the programs in this list, then he1p prog prints the help for that

program, : :
The 'Directory’ Command

You may obtain a listing of the names of files in your connected directory by typing
directory. Typing directory <dir> lists the names of files in directory <dir>. Longer
listings containing more information about the files may be printed with the alternative
commands fdirectory, tdirectory, and vdirectory, for "full directory”, "time-ordered

directory”, and "verbose directory”, respectively.

The 'Type’ Command

Issuing the command type f1ilename prints the contents of the file filename on your
terminal. The command type filename1,filename2, filename3 prints the contents of all

three files.
’Copy’ and 'Rename’

1t is often useful to make a copy of a file, and the copy command serves this purpose.
To create a file prog2. c1u which is a copy of progt.c1u, simply type

@copy progl.cluprog2.clu
The system will print a message telling you what it did:

PROG1.CLU.2 => PROG2.CLU.1 [OK]

If you simply wanted to change the name of a file, without making a copy, then rename
should be used in place of copy.

"Delete’, "'Undelete’, and Expunge’

-7-

To delete a file you no longer have any use for, type delete filename. If no
generation numbers are present in filename all generations of the file are deleted. You
may delete specific generations of a file by explicitly specifying the generation number,

On TOPS-20, asking for a file to be deteted simply causes the filename to stop
appearing in divectory listings. Tt does nof release the storage area associated with the file,
nor does it cause the information stored within the file to be destroyed. In fact, once
deleted, a file may be restored by typing undelete filename. However, deleted files are
vulnerable to invocations of the expunge command. When you type expunge tO EXEC,
any deleted files in your directory really go away, and cannot thereafter be restored via
undelete. It is to your advantage to expunge your directory occasionally, since otherwise
your quota of storage will eventually be used up by deleted files.

As was mentioned above, as you work, new generations of files are continually
created. Unless you explicitly delete the old generations, you will quickly run out of
storage space. One way to do this is to laboriously type each of the filenames, including
generation number, that you want to delete. A more efficient way is to use a special option
of the delete command for this purpose. The delete command, as well as many other
commands, allows you to enter a number of subcommands, which simply select various
bells and whistles. To enter subcommands, terminate your command line with a comma ,:

@delete *.clu,
e 1]

The filename * . c1u indicates that you wish the delete command to operate upon all CLU
programs, subject to the subcommands which you will enter in response to the @@ prompt.
To find out what subcommands are available, type a question mark.

@delste *.clu,
@87 CONFIRM WITH CARRIAGE RETURN
" OR ONE OF THE FOLLOWING:
DIRECTORY EXPUNGE) FORGET ’ KEEP
ee '

The expunge subcommand causes all files deleted as a result of this command to be
immediately expunged. . The keep option is the onc that is useful for delcting old
generations. Suppose you are interested in saving the latest version of a file and one
backup. You would then type

@@keep 2
ee

-8-

which significs that, for cach CLU program in your directory, you wish (o keep the two
versions with the highest generation numbers. To exit subcommand mode and cxecute the
command, typec a RETURN. If you decide that you do not want to perform the deletion,
type +C. If you do perform the deletion, the system will tell you what files it is deleting.

MAIN_PROG.CLU.3 [0K]
SORTED_LIST.CLU.10,11 [0K]
8

If you are certain that you have deleted thé'pr‘dper files, then an expunge is reasonable.

Bexpunge
PS:<SE.STARK> [12 PAGES FREED]
@

The system indicates that twelve pages (a unit of storage equal to 512 36-bit words) have
been returned to the system freelist.

The 'Information’ Command

The purpose of the information command is to supply you with miscellaneous
information abou the status of a wide variety of objects in the system. The system object
you will be most concerned with is your directory, and information will supply you with
two types of information about it. The command

@information (ABOUT) directory

allows you to find out your quota of disk storage. In the above command, ESC was pressed
after typing information, and the system has responded by printing the "guide word"
(ABOUT). The information printed by the system appears as follows: :

@information (ABOUT) directory

NAME PS:<SE.STARK>

WORKING DISK STORAGE PAGE LIMIT 100
PERMANENT DISK STORAGE PAGE LIMIT 100
NUMBER OF DIRECTORY 65

ACCOUNT DEFAULT FOR LOGIN - NONE SET
@

- The important information is contained in the first three lines. The first line gives the name
of the directory about which information is being printed. The second line indicates the
maximum number of pages you will be allowed to use while you are logged in and’

-9 -

working. If you attempt to use disk space in excess of this limit, you will receive an error
message, and-will not be able to complete the write you were trying to pertorm. The third
line indicates the amount of disk storage you may retain between logged-in sessions,

To find out how much storage you are currently using, type
@information (ABOUT) disk-usage
The response from the system looks like

87 PAGES ASSIGNED, 79 IN USE, 8 DELETED

100 WORKING PAGES, 100 PERMANENT PAGES ALLOWED
4303 PAGES FREE ON PS:, 146774 PAGES USED.

@

The first line indicates that files in your directory are using 87 pages of disk storage, of
which 8 pages are contained in files that are deleted. The second line gives your quota
information, and the third line tells how many pages are used and free on the structure PS:.
The 4303 free pages are the total number of pages on PS: that are available for use by
anyone, when these are gone, the disk is full.

The information command will also telt you about what kmd of terminal optlons are
set for you by the system. To get this information, type

@information (ABOUT) terminal
The system will respond with a list that looks like the following:

TERMINAL VT62

TERMINAL SPEED 300 9600
TERMINAL NO PAGE
TERMINAL WIDTH 24
TERMINAL LENGTH 80
TERMINAL LOMERCASE
TERMINAL TABS

The first line indicates that the system thinks the terminal is a "VT52", which is a kind of
DEC terminal. The second line states that the line from the terminal to the computer is
conligured for transmission at 300 baud, and the Tine from the computer (o the terminal is
sel at 9600 baud. The third line indicates that the terminal is not in "page” mode, and the
remainder of the lines give other information, much of which is implied by the fact that the
terminal is a VT52. The option you will probably be most concerned with is "page mode™.

-10 -

If the terminal is in "page mode”, the character +¢ is used to restart printing as was
previously described. 1 the terminal is not in page mode, the system docs not interpret +Q
as i special character,

The *1'erminal’ Command

You may change various terminal options by using the termina) command. To set
the terminal to page mode, type

@terminal page

To get out of page mode type
@terminal no page

To tell the system that you are using a VTS52, type
@terminal vt52

Other common terminal types which may be used in place of "VT52" are: (1) "HEATH" -
Heath terminal; (2) "HP" - Hewlett Packard; (3) "LA36" - any DECwriter-like printing
terminal, e.g. Anderson-] acobson; (4) "FOX" - Perkin/Elmer "Fox".

You probably should not change other terminal options, especially the speeds, unless
you know what you are doing. If you set the speeds to the wrong values, you can cause the
terminal to become useless. The intervention of an operator will then be required to reset

the terminal.
Fork Manipulation; The "Reset’ and ’Continue’ Commands

The EXEC command interpreter allows you to control a number of processes at once,
Each time you invoke a program (by typing its name), a new process, or fork is created to
run that program. In general, a fork will stay around until it is explicitly deleted with the
reset command. The forks currently in existence may be listed with the information

forks command, as follows:

 @information (ABOUT) forks
=> TED (1): KEPT, HALT AT 702032, 0:00:59.0
CLUSYS (2): tC FROM 10 WAIT AT 710252, 0:00: 00,2

In this case there were two forks, TED and CLUSYS, numbered (1) and (2), respectively.
Forks may be referred to by name or by number. At any given instant one fork is
considered the current fork. In the above example, TED is the current fork, as indicated by

-11 -

the => arrow pointing at the fork name. A fork is deleted by typing reset, followed by the
fork name or number. If the CLUSYS fork is no longer needed, then it may be deleted by

typing:
@reset clusys
or
@reset 2
To see that CLUSYS has reaily gone away, us¢ information fo rks again;

@information (ABOUT) forks
=> TED (1): KEPT, HALT AT 702032, 0:00:59.0

If reset is typed without specifying a fork name or number, then the current fork is reset.
The keep command makes the current fork immune to being reset, unless its name or
number is explicitly specified in the reset command. TED automatically “keeps” when it
starts up; this helps keep you from accidentally destroying unsaved work.

If +¢ is typed while a program is running, the program is temporarily suspended, and
control is returncd to EXEC. This is what happened to the CLUSYS fork in the above
example, as indicated by the message +C FROM I0 WAIT. A suspended program may be
continued by typing continue, followed by the name or number of the fork. If continueis
typed without a fork name or number, then the current fork is continued.

-12 -

2. Introduction to TED

This section is an introduction to TED, a display text editor program developed at
MIT. People who are familiar with text editors should skip to the part on "Getting TED

started.”

2.1 What a Text Editor Does

A text editor can be described as.a typist’s assistant. J ust as wizards have demons to
perform the tedious details of magic, a person who types text should have an assistant to do
at least some of the work. In the case of the typist, however, the assistant is the com puter.

First, let’s look at the equipment needed to do text editing. We need a computer that
has enough storage to remember the contents of various documents, a terminal to talk to
the computer, and a printer to print pages of text. When documents are in the computer,
we call them files. The kind of terminal we will be discussing here is a display terminal,
which has a typewriter-like keyboard and a TV-like screen. For the computer, we will be
using a Decsystem-20 made by Digital Equipment Corporation.

A text editor is a program that is used to create and change text files. Some things
that one can do in a text editor are:

enter new text

add new text at any point in a file

delete text from any point in a file

find occurrences of pieces of text in a file
move text from one place to another

change occurrences of pieces of text to other text

The computer has two kinds of storage: disk and fast memory. There is a great deal
more room on the disk than in the fast memory. So, most of the time, files are on the disk
rather than in fast memory. In TED, there is an area of fast memory, calied the buffer,
where we have a working copy of any text file that we want to edit, Therefore, we also
want to have commands for copying text files from disk to fast memory (reading) and
copying text files from fast memory to disk (writing). A good analogy would be if a typist
had an assistant to move a document from a file drawer to the typewriter’s desk and back,
and every time the assistant moved a document a copy of it was made. If this were done
with paper, there would soon be an office full of paper. Since it is actually done with a

-13 -

computer, we don’t have a paper problem.

The best way to learn TED is to experiment. For most commands, the effects of the
command are immediately visible on the screen. Also, look through the documentation.
When you sce something that you don’t quite understand, but you think that it might be
useful, try it out.

2.2 Getting TED Started

After you log in, the computer will print varying amounts of stuff, then wait for you
to type a command. At this point it is running a program called EXEC. Before you invoke
TED, be sure that TOPS-20 knows the type of terminal you arc using. To start TED, just
type ted, followed by a carriage return, After a short time, the TED program will start up,
clear the screen, and print

---- MAIN BUFFER: (TYPE tH FOR HELP)

near the top of the screen. Note that +H means "control-H", which is typed by holding
down the CTRL key and typing H. If you ever need to see the help information that TED
can show you, just type t+H. TED ‘will print a list of items it knows about, then you will be
asked to type a single character to select which help you want to see. :

To leave the TED program, use the +@ character or the break key. This should print

ESCAPING TO SUPERIOR.
@

which is asking you for a normal EXEC command. For obscure software reasons, it is nota
good idea to use +C to exit TED except when +@ does not work.

-“When in EXEC, to return to TED, type
continue
2.3 Simple TED Commands

To enter text, just type normal printing characters as you would on a typewriter. To
get a new line, just type carriage return. If you mistype a character, however, you can
delete it immediately with the DELETE key. Then you can type the correct character.
Normally, the characters that you see on the screen are actually in the buffer (except for the
top two lines, which have other information). |

- 14 -

As you are typing, you will see a little marker moving along on the screen just ahead
of what you are typing. This is called the cursor. It marks your current position in a
document. 1t will appcar differently on different terminals. The cursor can be moved from
place to place by various commands. The most basic of them are:

+F to move forward one character

*+B: to move backward one character

m: to move to the beginning of the next line

1P t0 move to the beginning of the previous line
tAl to mbve to the start of the current line

+E: to move to the end of the current line

As you type these characters, the cursor on the screen will move. When many people are
trying to use the computer, the cursor may not move as fast as you type the characters, but
it should catch up in a short time,

To add text into the middle of text that you have, just put the cursor where you want
to add the text ar.d type in the text. This inserts the text, and displays the new text on the
screen. So inserting text is the same as entering new text.

To delete old text, you can use either the DELETE key, or the +D character. The
difference is that +D deletes forwards, and the DELETE key deletes backwards. To delete
entire lines, use the +k character. It deletes from where the cursor is to the end of the line,
It also deletes the end of the line, so the two lines are joined together.

As you are typing in, you will probably accumulate more text than can fit on a screen.
You need not do anything special to make more room. The screen is used as a "window"
on the buffer, so it does not matter how much text you have (well, try to keep it less than
100,000 characters in any file). TED will try to keep a window displayed around your
cursor, If you still cannot see enough information, use +L to redisplay your screen. If that.
does not work, you probably need a bigger screen.

2.4 Reading, Writing, and Searching

Once you have entered a document into the buffer, you need to write it to a file on
disk. Use the +w command to do this. When W is typed, the message

----- WRITE BUFFER TO FILE: (DEFAULT "... ")

-15 -

will appear near the bottom of the screen, and the cursor will be placed below the message.
At this point, TED is asking for a file name, If you like the default file name that TED
shows you, just type carriage return. if you want to write the buffer to a different file, or
there is no default, then type in the file name followed by a carriage return, When you are
typing the file name, a mistaken character can be deleted by the DELETE key. If you
change your mind about writing the buffer to a file, type 16 to quit from the W command,
and no writing wilt have taken place. The text in the buffer will not be changed. The +6
character may be used to abort any partialty-conipleted TED command without ill effect.

To read an old file into the buffer, use the +R command. This command is similar to
the write command, since it will ask you for a file name. You can use delete and +G in the
same way when typing in the file name. However, when the file is read into the buffer, the
old contents of the buffer will be lost. -

~ Once you have read an old file into the buffer, you may wish to find a particular
place in the file where you want to make changes. The easicst way to do this is to us¢ the +§
command to tell TED 1o search for a particular piece of text. It will ask you for the text
that you want to find. Just as with the read and write commands, end the text with a

~ carriage return. [f the text is found by looking in the forward direction, TED will move the

cursor there. Otherwise, TED will display a message saying that the text was not found,
and the cursor will stay in the same place.

2.5 Numeric Arguments

Many TED commands make use of a numeric argument. This number can be used
as a counter to indicate how many times to do something, or it can change the meaning of
the command. These numeric arguments can be specified by the +u command. For
example, with the +N command:

tUtN: go forward 4 lines
7N go forward 7 lines
tUTUN: go forward 16 lines (4*4)

Notice that when +U is followed by a number, that number is used for the argument. When
+u is used alone, it uses 4 as the argument. When two U commands are used in a row, the
two numbers are multiplied. ' :

Searching can be done either forwards. or backwards, depending on the numeric
argument. tU5+S means search forward for the 5th occurrence of some text. +U-+S means
search backwards for the first occurrence of some text.

-16 -

Some commands are changed by the numeric argument. Some useful examples of
these are:

tUtA: move cursor to the start of the buffer
+U1E: move cursor to the end of the buffer
tU+R: insert the given file into the buffer at the cursor

If you start a tU argument and change your mind, use +6 to abort the command.

Note that the numeric arugument only applies to the next command. If it is not
given, TED assumes that the numeric argument should be 1.

2.6 Extra Commands

There are only so many control characters. So if we want to type in more commands,
we need to use more characters to get them, One good example of this kind of command is
V. To find out what commands +v is part of, Just type +v?, which will display the options
that are possible. Some of the more commonly used +v commands are; '

. tV#N: move cursor to next screenful of lines
tVtP: move cursor to previous screenful of lines
tVtF: move cursor forward a word
tV+B: move cursor backward a word
tVT: display the current date and time

2.7 Moving Text

One job that a typist must sometimes perform is cutting and pasting. This job can be
done more easily by TED just by moving text around in the buffer. To move text from one
place to another, first move the cursor to the place that the text occurs, withdraw the text
into the save buffer, move the cursor to the place that the text should be, and then insert the

text from the save buf¥er., '

To withdraw text into the save area, move the cursor to the start of the text that
should be withdrawn, place an invisible marker there with tvM, move the cursor to the end
of the text, and withdraw the text using +vi. To copy the text from one place to another
without removing it from'the place it was, use tvs instead of +vu, Then move the cursor to
wherever the text should be, and insert the text with +vI. Note that the text can be inserted

as many times as desired. '

-17-

We can also withdraw or save several lines by using the +v+w or +v+$ commands. To
withdraw the next 3 lines starting with the cursor into the save buffer, use tv3tw. To save
them only, use +va+s, Insertion still uses +vI. This method is sometimes easier than using
+vM, followed by +vw or tvS.

2.8 Changing Text

One way to change text is to just delete the text that is not wanted, then insert the text
that is wanted. However, this can be tedious where you want to change some or all of one
item to another. For this, we use the +z command.

The +2 command will ask for the text item to replace (the search string), and the text
item to replace it with (the replace string). The cursor will move to the first occurrence of
the search string, and you will be asked about what to do. Typing ? will show you what
options you have. Typing v will replace the search string with the replace string and move
the cursor to the next occurrence. Typing N will leave the buffer as it is and move the
cursor-to the next occurrence. Typing U will replace all further occurrences of the search
string with the replace string. Typing Q will quit the update.

At the end of the changes, you will be asked whether or not you really want to make
the changes in the buffer. This is useful in cases where some of the changes were made in
error. Answer the question with either a v (for "yes") or an N (for "no"

2.9 Miscellaneous

When lines are too long, not all of the characters can be displayed on a single line of
the screen. TED marks lines that are too long with a ! character at the end of the line, The
rest of the line can only be displayed by putting the cursor just before the t character and
inserting a newline character (type carriage return). Since long lines are difficult to read
and manipulate, lines should be kept relatively short. '

For commands that delete iarge amounts of text, the text deleted is placed in a special
buffer called the restore buffer. That text can be inserted into the buffer using the +v+R
command. - '

Since most commands are reached by typing control characters, we need a special
way to insert control characters into the text when they aie needed in the text, To do this,
just type +Q followed by the control character. This works for all control characters except
for +¢, which can be inserted by typing tv3#.

-18 -

“Every so often TED will decide that enough changes have been made to the buffer,
and will save the contents of the -buffer to a temporary file called _ted.save in your
dircctory. This is done so your work will not be lost if the machine crashes. You may lose
the last 100-200 characters you typed, but most of the work will be saved. When TED is
saving the buffer, it will display a message to that effect at the top of the screen. When you
log out, you can delete the _ted. save file, since you will not be needing it.

There are many other features of TED that may prove to be useful to you. You can
find these features through the t+H command, or you can read the file <c1u>ted. hel p.

-19 -

3. Compiling, Running, and Debugging CLU Programs

We have scen how to use the TED text editor program to enter a CLU program,
Once typed in, a program may then be compiled using the program CLU, and then loaded
and run with the CLUSYS run-time support system. This section describes the use of CLU
and CLUSYS.

3.1 Running the CLU Compiler

The major function of the CLU compiler is to take a file containing CLU source and
produce & binary file which can be loaded into CLUSYS and executed. The CLU compiler
follows the convention that the second field of the filename of source files is c1u and of
binary files is bin. Thus compilation of the source file sorted_1ist.clu would create the
binary file sorted_tist.bin. It is also possible to use the CLU compiler to type- or
syntax-check an input file, without producing binary.

The most convenient way to invoke the CLU compiler is from within TED. To start
up a CLU compiler process, type +\K (control-backslash, then K) to TED. You will then
be asked whether you wish to keep a new CLU inferior process. Answer this question with
a v (for "Yes™). If you later decide to kill this CLU inferior (unlikely), use \k followed by
N, Compilation is then performed by reading the file you wish to compile into TED and
using one of the various +\ commands to process the file. A list of the most useful
commands is given below:

1K Keep or kill a CLU inferior process

\H Type-check the current file without producing binary
e Compile the current file and produce binary

A Redisplay the error messages from the last compiler run
"I Reformat the CLU program in the buffer to conform to

indentation standards

When the compiler starts up for the first time, its internal tables are empty. As gach
file is processed, the compiler constructs tables of interface specifications for the various
modules. ‘These tables are- used for type-checking purposes. Because you have indicated
that you wish to keep the inferior CLU compiler process, the interface information is not
deleted after each file is processed, but is retained inside the compiler. It is important to
know that the compiler makes only a single pass through a file. Although this one pass is
sufficient for the compiler to produce binary, it is not in general sufficient for complete
checking of all inter-module references. Type-checking is important, and failure to do such
checking can -result in rather obscure run-time errors. The way to get complete
type-checking is to process all files once with the +\H to construct the internal tables, and
then to process the files again using t\C to produce binary.

.90 -

Output from the CLU compiler is collected by TED and displayed on your screen
when the compilation is finished. 1f there were crrors, line numbers are given to indicate
the line(s) of the program containing the errors. To get to a specific line in your program,
for example line 5, type +vsL (control-V five L). Even though doing this erases the error
messages (rom the screen and redisplays your program, you may review the error messages
at any time by typing +\A. This feature of TED makes it casy to find and fix a number of
errors at a time, without writing down line numbers.

It is perfectly reasonable to split a large program up so that each module occupies a
scparate file. If you do this, then modification of a single module requires only
recompilation of that module; you do not have to recompile the entire program. This will
improve turn-around for you and for others on the system.

The CL.U compiler may be invoked directly from EXEC by typing c1u. To find out
the syntax of the command line it expects, type ? followed by RETURN., It is generally not
convenient to run the CLU compiler this way unless you have a large number of files to

compile.
3.2 Using CLUSYS to Debug and Run CLU Programs

Successful compilations of CLU programs produce binary (.bin) object files. To run
these files, it is first necessary to invoke the CLU run-time su pport system by typing clusys
to EXEC. CLUSYS may also be invoked from within TED; this is described in more detail
later on. Starting CLUSYS causes it to enter a command input loop called the /isten loop.
When CLUSYS is in the listen loop expecting a command, it printsa ":" as a prompt. To
get out of CLUSYS and return to EXEC, type +c,

'The listen loop of CLUSYS consists of the following actions:

1. Read an input'line from the TTY. The DELETE key may be used to delete the last
character typed, +x and +u delete the entire line, *+R redisplays the current line, and +L
redisplays the current line after clearing the screen.

2. The input line is evaluated as a command. Legal commands are described below,

3. The results of this evaluation are printed on the TTY. IF errors occur, messages to this
effect are printed.

4. Steps 1-3 are repeated.

-21 -

3.2.1 CLUSYS Commands

Commands to CLUSYS are intended to be roughly a subset of the legal CLU
expressions, augmented with a means of binding objects to identifiers. When an expression
is given as a command to CLUSYS, it is evaluated, and any rcsult object(s) or error
messages are printed, in a fashion described in more detail below. For a complete
description of the syntax of CLUSYS commands that is concise to the point of being
cryptic, refer to the file <clu>clusys.intro. '

The set of expressions recognized by CLUSYS includes CLU literals, CLU
identifiers, module names, invocations, record constructors and array constructors, and
type specifications. Also a legal expression in CLUSYS is an assignment statement of the
form:

<{identifier_list> = <expression>

This assignment statement has propertics of both the CL.U assignment statement, and the
CLU equate. Specifically, if evaluation of the expression on the right-hand side of the =
produces an object, that object is then bound to the identifier on the lelt-hand side, exactly
as in the CLU assignment statement. Note that if the expression on the right-hand side
produces a list of objects, then these objects are simultaneously bound to the list of
identifiers on the left. If the expression on the right evaluates instead to a type, then this
type is bound to the identifier on the left, much as in a CLU equate.

3.2.2 Identifiers

The set of legal identifiers in CLUSYS includes the set of legal CLU identifiers. In
addition, CLUSYS allows the use of the % character in identifiers. The reason for this is
that various options of CLUSYS are associated with identifiers that begin with %. For
example, if the command

%“time = 1

is typed, CLUSYS w_il.l_prin,_t__.out___, the CPU time used after each subsequent command is
executed. To turn this option off, type -~ - -

%time =

Since %t ime is not a legal CLU identifier, its value cannot be changed from within a CLU
program, but only in the listen loop of CLUSYS. There are also procedures, whose names
begin with %, that can only be invoked from within CLUSYS, for example the %trace_to
procedure discussed below. There are also a set of predefined procedures, whose names

-22 -

begin with _ (underscore), that may be invoked from within a CLU program, as well as
from CLUSYS. These procedures control various low-level functions that are of interest
only to people working on CLUSYS itself. However, to avoid name conflicts, it is a good
idea not to use identifiers in your CLU programs that begin with an underscore.

3.2.3 Executing CLUSYS Commands

Using CLUSYS is much like using a LISP interpreter. Each command you type is
evaluated. As a result of this evaluation, procedures may be invoked, and identifiers may
be bound to objects or types. For example, to bind the object 3 to the identifier count,

type
count =3

CLUSYS responds by evaluating this expression and printing the result. In the following,
lines beginning with => are printed by CLUSYS.

=>3

v

To see what object count is bound to, simply type count

:count -
=>3

To print the sum of count and four

;int$add(count, 4)
=>7

If you need to use int$add very often, it might be reasonable to assign it a shorter name.

:p = int$add
=> INT$SADD

K

The result of this assignment has been to bind the identifier p to the procedure object
int$add. Until p is reassigned, it may be used in place of int$add. Note that, in a
CLUSYS expression, if the character immediately following a procedure name is a left

parenthesis, evaluation causes that procedure to be invoked, and the value of the
expression is whatever object is returned by the procedure. If the left parenthesis is not

=23 -

present, the result of evaluation is the procedure object itself.

There are quite a few procedures and operations defined by CLUSYS, and a
complete list will not be given here. However, the pmatch procedure is useful if you have
some idea of the name of the procedure you want, but do not know the exact name. If s is
a string, then pmatch(s) prints a list of all procedures whose names contain S as a
substring. For example, pmatch("string$") prints the list of all string operations.

So far we have seen how to bind identifiers and invoke operations on built-in types.
Let us see now how to invoke procedures in our own CLU programs. The first thing to do
is to Joad the binary object files produced by the CLU compiler into CLUSYS. This is
done with the built-in CLUSYS procedure ioad, which takes a single string argument
which is the name of the file to load. If the string contains no ".", the default suffix .bin is
used. For example, to load the binary file sorted_1ist.bin, type load("sorted_list").
If no error messages are printed, the file was successfully loaded. The procedures and
cluster operations defined in the file sorted_1ist.cliu are now available for use.

Debugging in CLUSYS is accomplished by simply invoking the procedures you wish
to debug, and seeing what the results are. Note that if the procedures you are trying to
debug require complicated argument objects, it may be necessary to load additional
procedures solel for the purpose of creating these objects. The tracing feature of
CLUSYS is useful for finding out what happened when something goes wrong. How to
use tracing is described below. ‘

When a bug is discovered, it is necessary to go back to TED to edit the file containing
the offending module, use CLU to recompile the file, and reload the object file into
CLUSYS. If things are arranged so that the editing and compiling does not destroy the
CLUSYS (how this can be done is described below) then it is only necessary to reload the
file that was recompiled; it is not necessary to reload other files that did not change. When.
a file is loaded, the new versions of modules supersede any old versions that may already be
loaded into CLUSYS.

3.2.4 Loading Modules From Multiple Files -

When you want to run a program that has been split ilp into several . files, it is
necessary to load each file into CLUSYS. The "xfile" command is uscful if you don’t want
to have to type a separate line to CLUSYS to load each of the files. The command

xfile{filel, fila2)

where file1 and file2 are strings, will cause the lines in fi1e1 to be executed as CLUSYS
commands, and will place the output from those commands in file2. Typing

-24 -

xfile(file)
is equivalent to
xfile(file, "tty:")

and will execute the lines in "file" and send the output to your terminal. Thus, to load a
program contained in the files f1, 2, and f3; make a file called, for example, "all.xfile",

which contains the lines

load("f1"}
load{"f2")
load("f3")

Typing _xfi1e("a11") to CLUSYS will then cause files f1, 2, and f3 to be loaded.

3.3 From TED to CLU to CLUSYS to TED to CLU ..

'TED has special commands that enable you to start up and keep CLU compiler and
CLUSYS processes. In fact, it is probably more convenient to use CLU and CLUSYS
from TED rather than from EXEC. When you log in for a session of debugging, it is
suggested that you do the following:

(a) Start up a TED

(b) Use the +\k command to TED to keep an inferior CLU compiler process as
described above,

(c) Use the +3 command to TED to start up an inferior CLUSYS process. When 1J is
typed, the message

—--= INFERIOR FORK NAME (DEFAULT 'CLUSYS')

will appear at the bottom of your screen. Since you want to run CLUSYS, type a
RETURN in response to this question. CLUSYS will then be started, and will be
given control of the terminal, If you already have a CLUSYS process from a
previous use of the +J command, you will be asked whether you wish to continue,
restart, or kill that CLUSYS. Respond with ac, R, orK, as appropriate.

If you have followed parts (a), (b), and (¢) above, the process structure you have
created will now appear as follows:

-5 -

EXEC
I
TED
/N
CLU CLUSYS

To return to TED from the inferior CLUSYS type vairet("") as a CLUSYS command. It
is not a good idea to type +¢ to this CLUSYS, since this will send you all the way back to
the top-level EXEC. However, if you do happen to type ¢, typing continue will return
you to CLUSYS, and start will restart TED, without losing your buffer.

Once a CLUSYS process has been started from TED, the +J command in TED gives
you three options, The ¢ option will continue the CLUSYS from where it stopped, the R
option will restart the CLUSYS, and the k option will kill off the CLUSYS. If you
somchow get a runaway CLUSYS, try +6 which should return you to CLUSYS command
level. If that doesn’t work, type +C twice followed by start to return you 1o TED.

-26 -

4. Debugging CLU Programs

This section describes how to use the debugging features of CLLUSYS. These features
will first be briefly described, and then illustrated with a sample debugging session. For a
complete list of debugging commands and options, consult the files <cludclusys.intro

and <clu>trace.info.

4.1 Stack Manipulation

Effective debugging in CLUSYS téquires some understanding of the run-time
cnvironment provided by CLUSYS. The most important part of this environment for
debugging purposes is the stack. When CLUSYS is started, the stack is em pty, except for a
"dummy" frame, called %base%, which indicates the bottom of the stack. The first thing
that happens is that CLUSYS invokes a procedure called 1isten, which prints a : as a
prompt, and then reads and executes commands typed at the terminal. :

-Recall that commands to CLUSYS are either assignments or procedure invocations.
Each time a procedure is invoked, a _frame is placed on top of the stack. The frame contains
information about the name of the procedure, the arguments passed, and the local variables
to that procedure. -When a procedure returns, the corresponding frame is removed, or

"popped" from the stack.

Whenever CLUSYS is at command level, the current state of the stack can be printed
by typing frames(). Note that being at command level in CLUSYS means that the 1isten
procedure is running; therefore when frames() is used to print the stack, the top of the
stack will always be a frame for 1isten. A problem with the frames() command is that it
always prints the whole stack, and you may only be interested in the top few [rames. In this
case, typing 1frames(N), where N is an integer argument, will print the top N frames on the
stack in a somewhat less compact format than frames(). If you are interested in printing a
particular frame on the stack in great detail, complete with local variables, use frame(N),
where N = 0 prints the top frame, ¥ = 1 prints the second frame from the top, etc.

Typing t6 to CLUSYS causes the procedure currently being executed to be
interrupted, and a 1isten loop to be started. Since the frame for this new 1isten loop is"
placed at the /op of the stack, the frames for the procedure that were interrupted may be
viewed with the stack-listing commands described above, It is possible to return to the
interrupted procedure by typing erret(). To throw away the entire stack, type restart().”

-7 -

4.2 Accessing Arguments and Local Variables

The CLUSYS command interpreter provides a way for objects referenced by
arguments and local variables on the stack to be named and used. For example, if one of
your procedures has a local variable foo, and the current stack contains an activation of that
procedure, with frame number 4, then you can type @ 4 foo in a CLUSYS command as a
name for the object reference by the local variable foo in that particular procedure
activation. Arguments to procedures can be named in a similar way, for example, ? 4 bar
names the object passed as argument bar to the procedure activation in frame 4. It is also
possible to omit the frame number (e.g. 7 bar), in which case the stack is searched starting
from the top for the specified argument or local variable,

Examples of the use of these features are shown in the sample debugging session
below.

4.3 How Objects Are Printed

How should an object of abstract type be printed? Ideally, each cluster would include
the definition of a print operation, which would print a suitable representation of an
argument object, However this is not done in CLUSYS for various reasons, not the least of
which is the fact that since CLUSYS retains no type information with an object, it is
impossible to select the appropriate print operation. It has therefore been necessary in
CLUSYS to settle for less than the ideal.

An object in CLUSYS is printed as its ultimate representation in terms of primitive
CLU types, such as integers and characters, and type constructors, such as arrays and
records. In other words, all abstract type is thrown away, and the object is printed as one
big hairy structure made up of primitive types and constructors. The easiest way to sce how
this works is to make some objects and print them. When your objects get bigger than a
certain size, you may notice that their printing is truncated. You can extend the point at
which an object will be truncated with the routines set_print_width and
set_print_depth, which take an integer argument. When CLUSYS starts up, the print
width and prlnt depth are set to 4. : :

4.4 The Trace Feature

The major feature of CLUSYS intended specifically for debugging is the trace
feature. This package of routines enables the user to selectively set breakpoints in his
program. Breakpoints are always associated with the invocation and return of a procedure
or iterator. The trace package consists of the following routines.

%trace_to(P) : - break on cach call to and return from procedure P,

-28 -

%untrace_to(P) - remove breakpoints sct by %t race_to(P).
%trace_from(P) - inside p, break on each invocation and return of a

| : procedure,
%untrace_from(P) - remove breakpoints set by %trace_from(P).
%trace(P) - combine effect of %trace_to(P) and %trace_from(P).
%untrace(P) - remove breakpoints set by %trace(P).
%print_slots(P) - print a numbered list of all invocations of procedures

' inside P, -

sclectively set breakpoints on specific invocations inside
P. The integers low and high are indices in the list
printed by %print_slots(P).

remove breakpoints set by %t race_range(P, Tow,
high).

%untrace_al1() - remove all breakpoints,

%trace_range(P, Tow, high)

%untrace_range(P, Tow, high)

Note that the argument P to these routines must include all parameters; that is, if
mergesort is a procedure with a single type parameter, then %trace(mergesort[int])
-must be used, and not %trace(mergesort).

L 4

When a breakpoint is encountered during execution, some information about the
stack frame will be printed, followed by -- next --. At this point, a single character shculd
be typed. Some of the more useful characters and their effects are:

space - Continue until the next breakpoint is encountered.

x - (eXchange) Toggle the frame printing mode between the short form, which is
that used by frames(), and the long form, which is that used by 1frames(). The
frame is redisplayed, and the -- next -- prompt is printed, requesting another
command,

L - Clear the screen, redisplay the stack frame, and request another command,

RETURN - Start up a new listen loop on top of the stack. This listen loop may be
exited with erret(). . : :

© 0 - {Quit) Stop all tracing until the listen loop is reentered. This is not the same as
doing %untrace_al1(), because the permanent breakpoints are not removed; just
temporarily ignored, '

7 - Print a brief listing of the command characters and their meanings.

@ - Escape to the superior process.

-29 -

The above commands are usually sufficient for most purposes. For real debugging
problems though, there are several other characters which allow you to single-step through
a procedure, turning on and off breakpoints as you go. For a list of these commands, refer
to the file <c1u>trace.info.

4.5 Scripting

Scripting is a way of sending CLUSYS output to a stream other than the primary
output, Typing stream$add_script(from_stream, to_stream) will cause all subsequent
input from or output to from_stream to be output to the to_stream. It is possible to set
multiple scripts by repeated executions of stream$add_script with various arguments,
Scripting can be turned off with stream$rem_script(from_stream, to_stream), which
removes scripting for just this particular pair of streams, or
stream$unscript(from_stream), which removes all scripting on from_stream. Thus to
cause input and output to your terminal to be sent to a file "script.out”, type the following:

to_stream = open_write("script.out")
which opens "scriptout” for writing, and then
stream$add_script(po, to_stream)

which sets up the scripting. Note that when CLUSYS is started, the identifier po is initially
bound to the primary output stream. To turn off this scripting, use

stream$unscript(po)
It is then a good idea to close the file "script.out” by typing”

stream$close(to_stream)

4.6 A Sample Debugging Session

The use of the debugging features described above will now be illustrated with a’
sample debugging session. The program to be debugged is an implementation of the
mergesort algorithm, There are three procedures, (1) mergesort{1], which accepts an array
of objects of type T, turns it into an array[array[T]], and repeatedly calls merge[T] to do the
merging; (2) merge[T], which takes two array[T] objects and merges them; and (3)
append[T], which takes two objects of type array[1] and appends one to the end of the
other. '

-30-

%

% Mergesort program - contains bugs in marked lines
%

mergesort = proc[T: type](a: at) returns(at)
at = array[T]
aat = array[at]
aa: aat ;= aat$new()
for e: T'in at$elements(a) do
aat$addh(aa, at$[1: e])
end
while aat$size(aa) > 1 do
naa: aat := aat$new()
for i: int in int$from_to_by(1, aat$size(aa), 2)do
aat$addh(aa, merge[T](aali}, aali+ 1])) % buggy
except when bounds;
aatbaddh(aa, merge[T)(aafi], at$new())) %buggy
end :
end '
aa .= naa
end
return(aaf1]) except when bounds: return(at$new()) end
end mergesort

merge = proc[T: type](a, b: at) returns(at) _
where T has It: proctype(T, T) returns(bool)
at = array[T]
c: at : = at$new()
fa:int:=1
ib:int:=1
while true do
if at$size(a) < ia then
append[T)(b, ib, c)
return(c)
elseif at$size(b) < ib then
append[T](a, ia, c)
return{c) -
end '
if afia] < b[ib] then
at$addh(c, afia]) % buggy
else

-31-

at$addh(c, b[ib]) % buggy
end
end
end merge

append = proc[T: type](src: at, start: int, dst: at)
at = array[T]
for i: int in int$from_to(start, at$size(src)) do
at$addh(dst, srci])
end
end append

-32 -

¢ toad{"mergesort"®) % load in the object file

ra=array[int]$[1:1, 6, 3, 4, 7] % set up some test data

=>{1..5:1634...]
: mergesortfint](a)

% Here the programwent into a Toop; I typed 1G

Quitting to new command level,

: frames() ZWhat does the stack Took 1ike?

P V1isten (tyi: stream#[R, tty:], tyo: stream#[W, tty:])

0
1: %quit () .

2: _ctrig_handler ()

d:merge(a: [1: 1], b: [1: 6])

4: int$from_to_by (from: 1, to: 5, by: 2)

5: mergesort (a: [1..5:1634,,.])

6: valueSapply (item: mergesort, av: [1: [1..5: 163 4...]])
7: scan$mexpr (ac: [18:]) '

8: Tisten (tyi: stream#[R, tty:]. tyo: stream#[W, tty:])

9: %base¥% () ' '

: set_print_width(10) ~ %Llets me see more of the arrays.
=> 10

ra

=>[1:16347]
: 1frames(5) - % How about the top five frames? .

0: Tisten 27535
tyi: stream#[R,'tty:]
tyo: stream#[W, tty:]
1: %quit 27527
2: _ctrig_handler 27525
3: merge 27464

a: [1:1]
b: [1:6]

4: int$from_to_by 27455
from: 1

to: 5

-33-

by: 2
5: mergesort 27443
a: " [1:16347]
: frame(5) %lLet's see the local variables inside "mergesort”.

6: mergesort 27443
a: [1:16347]

aa: [1: {1: 1][(21:6]771:37[1:4](1:7]]

- H 7
naa: [1:]
i 1

: %trace_to(merge[int]) % Now get breakpoints on calls tomerge[int]
: mergesort(a)

Error - could not snap: cail#(desc#(array}$new, 0)
Quitting to new command level,

:mergesort[int]{a) = %I forgot to type the [int] parameter,
% s0 it couldn't find the mergesort procedure.

Calling merge % First breakpoint, call to merge
merge (a: [1: 1], b: [1: 6]) % Stack frame info

mergesort (a: [1: 1634 7])

== next -- % Looks 0K, I typed space to continue,

4 but program looped, so I typed 1G
Quitting_to_ new command level,

: frames() - % Note that stack has grown, since I
% never returned from the previous
% listen loops (frames 8 and 16)

: listen (tyi: stream#[R, tty:], tyo: stream#[W, tty:])
s %quit () ' '

: _ctrig_handler {)

:merge (a: [1: 1], b:{1:6])

:int$from_to_by (from: 1, to: §, by: 2)

W N e O

-34 -

6: mergesort (a: [1:16347])

6: valueSapply (item: mergesort, av: [1: [1: 163 47]])

7: scan$mexpr {ac: [18:])

B: V1isten (tyi: stream#[R, tty:], tyo: stream#[W, tty:])

9: Yquit ()

10: %Zdfait (thing: call#(desc#(array)$new, 0))

11: %snap (pink: cali#(desc#(array)}Snew, 0), ent: 777777#612371)
12: %Yinker ()

13: mergesort (a: [1: 1634 7])

14: valueSapply (item: mergesort, av: [1: [1: 16347]])

15: scan$mexpr (ac: [13:])

18: 1isten (tyi: stream#[R, tty:], tyo: stream#[W, tty:])

17: %quit ()

18: _ctrig_handler {)

19: merge (a: {1: 1], b: [1: 6])

20: int$from_to_by (from: 1, to: 5, by: 2)
21: mergesort (a: [1: 16347])

22: valueSapply (item: mergesort, av: [1: [1:18347]])
23: scan$Smexpr (ac: [18:]) . i
24: Yisten (tyi: stream#[R, tty:], tyo: stream#[W, tty:])
25: %base% {) :

: frame(3) %This is the interesting frame

3: merge 30055

a: [1:1]
b: [1: 8]
c: [1..11265: 1111111111,,.] %Aha! I forgot
ia: 1 ' % to increment
ib: 1 % ia and ib.
: foobar=03c¢ %Nofe that I can print

% theobject referred to
% by the local variable ¢

=>[1..11265: 1111111111...]

: foobar %and bind it to a new.
% identifier.

=>[1..11265: 1111111111,..]

35

4#Here I escaped to TED, edited and recompiled.

: Toad{ "mergesort")

ta _ % See if my test array is
%still OK.

=>[1:16347] % Yes
:mergesort[int]{a)

=>[1:] % Good, no loop, but still
% the wrong answer,

: %trace_to(merge[int]) % Breakpoints go away when
% you reload the procedure,

: restart() % Get a clean stack
:mergesort[int](a)
Calling merge

merge (a: [1: 1], b: [1: 6])
mergesort (a: [1: 16347])
-~ next —-- : %I typed space

merge returns [1: 16]

merge (a: f[1: 1], b: [1: 6])
mergesort (a: [1: 16347])
--next ~- % Here too

Calling merge

merge (a: [1: 3], b: [1: 47)

mergesort (a: (1: 16347]) , ,

-- next -~ ' S - : % And here
merge returns [1: 3 4] '

merge (a: [1: 3], b: [1: 4])
mergesort (a: [1: 16347])
- next - - % Al’ld hel‘e

Calling merge

-6 -

merge (a: {1: 7], b: [1: 18]) % Hmm, what's this nonsense?
mergesort (a: [1: 1634 7])
--next -- 41 typed RETURN
%Ztostartalisten loop

: frames()

0: Tisten (tyi: stream#[R, tty:], tyo: stream#[W, tty:])

1: %enter_pause (first: true) ' :

2:merge (a: [1: 7], b: [1: 16])

3: intsfrom_fo_by (from: 6, to: 6, by: 2)

4: mergesort (a: [1: 1634 7))

5: vailue$apply (item: mergesort, av: [1: [1:16347]])

6: scanSmexpr (ac: [18:7])

7: Tisten (tyi: stream#[R, tty:], tyo: stream#[W, tty:])

8: %base% ()

: frame(4) % This should te11 me what

%I want to know

4: mergesort 27443
a: [1:16347]

aa: [1:[1:1][1:6][1:3][1: 41 [t: 7][1:18][1: 34]]

a: 7
naa: [1:]
i:]

% Eureka! I'mappending elements to aa instead of to naa.
% I escaped to TED, edited and recompiled,

: load("mergesort”)

: restart() % Clean stack again

=>[1:16347)]
i mergesort[int](a)

=>[1:13467] % Success

