MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE

Computation Structures Group Memo 190

Computation Structures Group Progress Report
July 1, 1978 - June 30, 1979

This research was supported in part by the University of
California Lawrence Livermore Laboratory under contract
8545403, and in part by the National Science Foundation
under grant MCS75-04060Q A0l

February 1980

J. B. Dennis, Group Leader

Arvind

W. B. Ackerman

. B. Hirschman

H
. L. Redford
. E. Ressler

A. L. Rubin

B. Sgrbye

COMPUTATION STRUCTURES

Academic Staff

Research Staff

Graduate Students

Undergraduate Students

Fs‘
o
=
Ll
r’h
=
=
—y

Visitor

S. Tetrick
T. L. Tung
E. Vishniac

2 COMPUTATION STRUCTURES GROUP

A. INTRODUCTION

The Computation Structures Group is playing a central role in the development of
computer systems using data driven program execution -- an area that is currently
stimulating much interest. Two sessions at the June National Computer Conference [1,
12, 14, 18, 35] in New York were devoted to reports on current data flow research at
universities in the United States and abroad. All of these projects and work at several
other institutions were represented at the second four-day Data Flow Workshop
Conference held at the MIT Endicott House in July 1978. This meeting, hosted by MIT
and sponsored by the Department of Energy through the Lawrence Livermore Laboratory,
fostered exchange of ideas and discussion of issues by people working in this field of
research. A summary of the activities at the workshop has been published [26] Also a
number of professionals from major computer manufacturers attended an MIT summer
program, "Data Flow Concepts in Computer Language and Architecture,” offered by
Professors Arvind and Dennis in June 1979,

In the past year our achievements include: refining the design of our user
programming language VAL; deciding on the form and technology of our first data flow
computer engineering model; analysis of an example hydrodynamics code to determine its
suitability for data flow computation; and completion of a variety of supporting studies in
the semantics of data flow language, translation and optimization of data flow programs,
fault tolerance of packet communication architecture, routing network structure and
performance, generalized implementation of procedures and sireams, and the
equivalence of formal data models in data base systems.

B. LANGUAGE DESIGN FOR DATA FLOW COMPUTATION

In the past year much effort has been devoted to the design of the programming
language VAL, Additionally, a number of theses relating to the semantic specification,
optimization, and translation of data flow languages similar to VAL have been completed
or are nearing completion. Extensions of "conventional® data flow language have also
been pursued. Professor Arvind has investigated a new treatment of streams and arrays
whereby much greater asynchrony of program execution is possible. Paul Kosinski has .
completed a PhD thesis in which a semantic model for non-determinate data fiow
languages is developed. '

1. VAL

The Preliminary Reference Manual [2] for the programming language VAL has been
published as a LCS technical report. VAL is an applicative language designed for paraliet
execution of programs. In particular, it is intended for expressing computations such as
the numerical solution of partial differential equations, which require efficient paraliel
execution.

In the design of VAL we have given careful consideration to the recently
developed body of knowledge about program structures and language characteristics
which support program verification. The natural consistency between language design for

COMPUTATION STRUCTURES GROUP 3

support of concurrency and language design for correctness and verifiability has made it
possible to exploit this knowledge in the design of VAL.

We have undertaken the design of a new language because existing languages for
numerical computation have a serious deficiency: they reflect the storage structure of
the von Neumann concept of computer organization in that each language has some
method of effecting a change in state of the memory which cannot be modeled as a local
effect. Fortran, still the most papular language for large scale numerical work, is
particularly blatant in this respect since it was conceived as a high level notation for
programs to be run on a machine of classical design (the IBM 704).

The difficully with languages that allow specification of global state changes is that
programs may be written which are very difficult or impossible to analyze for parts that
may be executed concurrently. It is impossible in general to trace the flow of data with
less than a complete analysis of the entire program. Only with such analysis is it
possible to find and eliminate inessential constraints on the sequencing of program parts.

In contrast, the language VAL is free of side effects; each module or well formed
portion of a VAL program corresponds to a mathematical function and the entire effect of
putting two parts together is to compose the corresponding functions. Such a language is
functional or applicative. Aithough designs for applicative languages have been discussed
many times in the literature, there have been few attempts to construct a complete and
practical definition. This is due to the difficulty of incorporating file updates and
input/output operations within the applicative framework, and the problems of efficient
implementation. The file update and input/output issues will be addressed in future
versions of VAL in which streams of values [S, 36] will be introduced as a principal
means for communicating between program modules. The efficiency issue is countered
by our goal of developing computer architectures for efficient, highly parallel execution
of programs expressed in functional languages.

In developing the structure of VAL, it was natural for us to start from a language
design which is of high quality, is well documented, and is close in spirit to our goals.
Such a language is CLU [23, 24), deveioped at LCS by the Programming Methodology
Group under Professor Barbara Liskov. In particutar, CLU is designed for complete
compile time type checking and has a set of well thought-out controf structures and basic
data types consonant with modern principles of structured programming.

While we have adopted many fundamental ideas of CLU, VAL differs radically from
CLU in that the latter, like most programming languages, is object-oriented instead of
value-oriented. In keeping with this difference, the syntax and general structure of VAL
are designed to reflect the functional character of the language and our desire to
support highly concurrent program execution.

One of the the principal features of VAL is the forall program structure, to
perform operations independently on many efements of an array. For example, if A and B
are vectors of length 1000, their element-by-element sum may be computed by

4 COMPUTATION STRUCTURES GROUP

C = forall J in [1, 1000]
construct A[J] + B[]
endat!

and their inner product by

N :=forall J in [1, 1000]
eval plus A[J] * B[J]
endall

Several example programs have been expressed in VAL: a numerical algorithm provided
by the Lawrence Livermore Laboratory, and several class projects written by students in
an MIT graduate subject in data flow computer architecture during the Fall term 1978.

In the Summer of 1879 a programming system for VAL consisting of a translator
and an interpreter will be developed using the CLU programming system, The immediate
objective is to permit development and testing of VAL programs. However, the
translator will be used later in generating machine code for simuiation studies of
proposed data flow systems. :

2. Correct Translation of a Data Flow Language

In his master’s thesis, J. D. Brock [8] gives a two-step operational semantics for
ADFL, an Applicative Data Flow Language similar to VAL. The first step is performed by
an algorithm for translating data flow programs into data flow graphs. For the second
step, each data flow operator is characterized as a function mapping input histories into
output histories. With these functions, Kahn’s fixpoint theory for communicating
processes [17] may be used to derive the result of graph execution.

In another paper [9], Brock presents a denotational semantics for ADFL and proves
it consistent with the operational semantics. The denotational and operational semantics
are not equivalent. The denotational semantics specify that expression evaluation must
terminate to vyield results and that, if expression evaluation terminates, all
sub-expression evaluations terminate. However, in data flow, and many other models of
concurrent computation, a computation may produce results even if some
sub-computations do not terminate. The characterization of such computations
contributes much to the complexily of the operational semantics of ADFL. Consequently,
the simpler denotational semantics are the more useful in tasks such as program
verification. The proof of consistency assures those using the simpler semantics that the
two semantic theories agree on alf "denotationally” terminating expression evaluations.

3. Data Flow Program Optimization

The correctness of Brock’s translation algorithm depends on viewing the arcs of
program graphs as unbounded FIFG queues between data flow operators. In her master’s
thesis, Lynn Montz [27] investigates the replacement of these unbounded queues with
buffers of length one. This decision is a reflection of the design of the instruction cells

COMPUTATION STRUCTURES GROUP 5

and routing network of the Dennis-Misunas data flow machine [13] for which this
translation is aimed. The implication of the fength one arcs is that actors must be
prevented from producing new tokens until their output arcs are empty. This behavior is
ensured by redefining the firing rules so that no operator is enabled if a token is present
on any of its output arcs. While the resulting behavior might occasionally be displayed
by Tinfinite queue” graphs, the changed firing rule produces an equivalent set of graphs
constrained so that this desired behavior is, in fact, the only possible behavior.

By performing a transformation which replaces each arc of the graph by an
appropriate data/acknowledge arc pair (d/a arc pair), the token flow constraints defined
by the firing rules can be explicitly built into the graph: The presence of a token on the
acknowledge arc of a dfa arc pair signals the emptying of the data arc. Though
intuitively the token flow constraint imposed by the transformation seems proper, it is
necessary to show that it introduces no new source of deadiock. Such a situation might
arise in the event that some cycle within a graph becomes “full” of tokens. iIn the thesis
the equivalence of “infinite queue” graphs and "data/acknowledge arc" graphs is
established.

While the acknowledge arc permits the safe functioning of data flow graphs, it
does not provide a "free” solution. Aside from the obvious overhead involved in
incorporating acknowledge arcs and tokens, the constraints which they impose on the
token flow through the graphs may cause bottlenecks. In response to these issues,
optimization techniques have been developed which are specifically aimed at either
decreasing the overhead by removal of Unnecessary acknowledge arcs or increasing the
throughput by balancing token flow. :

4. Computer Representation of Data Flow Graphs

Jim Leth’s master’s thesis, entitied An Intermediate Form for Data Flow Programs
[20], is expected to be complete in mid-July. The thesis proposes a representation for
data flow graphs as an abstract data type (cluster) implemented in the language CLU.
Cluster operations are provided for building graphs by connecting the input and output
ports of operators. The resulting graphs can themselves be treated as operators and
used to form more complex graphs. A mechanism for assigning names to operator inputs
and outputs is used to support the identifier binding process in the data flow source
tanguage VAL. Using this mechanism, a scheme is presented for translating VAL programs
into the CLU graph representation using the cluster operations.

Finally, the thesis briefly discusses the other phases of compilation of VAL source
programs into data flow machine code, with emphasis on how the proposed intermediate
form can satisfy the requirements of optimization and code generation.

5. Data Flow Machine Language

The master’s thesis of Don Aoki [3] is a specification of a machine language
instruction set for a simpie data flow computer. This work involves the determination of
the technique used in providing acknowledge signal generation. Whenever an instruction

6 COMPUTATION STRUCTURES GROUP

cell fires, it normally sends an acknowledge signal to each instruction cell which has sent
it an operand. There are two distinct approaches to acknowledge signal generation:
implicit generation and explicit generation.

The implicit generation approach requires the memory address of an instruction
cell be included as a tag in each operation packet it transmits. This tag is forwarded in
each result packet produced by instruction execution. The target instruction uses the
tags for its operands to automatically generate acknowledge packets. The explicit
generation method includes special destinations in each instruction that specify
instructions to which acknowledge signals are sent.

It appears that explicit generation should be used because it permits, as an
optimization, minimization of the number of acknowledge signals required for ensuring
deadlock-free behavior. Implicit generation has the advantage of permitting multiple
operand sources, but this advantage is offset by the potential decrease in routing
network performance due to unnecessary acknowledge packets, and the increase in
operation packet length.

Other issues to consider will be determining what séalar types will be allowed,
how they will be represented, and the choice of instruction cell parameters such as the
number of operand receivers and destination fields.

6. Generalized Streams and I-Structures

Professor Arvind has proposed that data flow streams [5, 36] be implemented as
"structures with holes,” structures which have missing values at some selectors. Each
missing value is actually a pointer to a site where a data flow computation is producing
the value. Implementation of structures with holes is straightforward if structures are
implemented using global memory.

Earlier, our intended implementation of streams was a history of values passed
through the links of a data flow graph. The stream operation cons(a,'x) was performed
by producing the value a followed by the elements of the stream x. In the structure
with holes implementation, a generalized stream is represented by a single data flow
token pointing into a global memory. The stream operation cons(a,'x) is performed as
soon as either a or x is available. The produced stream token will contain a hole for the
missing value.

There is a natural away to extend the implementation of generalized streams to
I-structures, a “generalized” array implemented as a structure with holes. I-structures
offer as much asynchrony as generalized stream, and at the same time preserve the
ease of coding implicit in array manipulations.

— cB

COMPUTATION STRUCTURES GROUP 7

7. Semantics of Non-determinite Languages

Paul Kosinski has completed his PhD thesis entitled Denotational Semantics of
Determinate and Non-determinate Data Flow Programs [19]. This research, detailed in a
Previous progress report [10]}, defines a denotational semantics for a data flow language
which has streams as a basic data type and an Arbiter, a data flow operator that
non-determinately merges two streams into one.

C. DESIGN FOR DATA FLOW COMPUTATION

We have completed the design of a prototype data flow computer system to be
constructed by September 1980. In addition, several supporting studies relating to the
hardware realization of data flow computation are being investigated by students as
thesis projects. These areas include design methodology and fault tolerance techniques
for self-timed systems, machine structures supporting high-level data flow languages, and
the analysis, with complexity, simulation, and logical models, of machine structures.

1. Engineering Model

In data flow architecture, our primary effort is developing prototype data flow
computer systems so their cost and performance may be evaluated and the problems of
effectively using them may be assessed. Two forms of data flow computer which use
fixed allocation of instructions to physical memory cells are of immediate interest for
large-scale scientific problems: the Cell Block machine illustrated in Fig. 1 which has
evolved from the ideas of Dennis and Misunas [13], and the Data Flow Multiprocessor
shown in Fig. 2 which is related to Rumbaugh’s design [32, 33] and is similar to an
experimental data flow machine developed by the Texas Instruments Corporation [16]

Fig. 1. Cell Block Data Flow Machine

Distribution Processing
Ne twor k Ce!l Blocks Elements

PE —

8 COMPUTATION STRUCTURES GROUP

Fig. 2. Data Flow Multiprocessor

- — —{Fe }-

' 'J Communication
Network

H—.t il P E e J

| _J

Our approach to building data flow prototypes is to design two basic module
types: a processor module and a communication module,

The processor module will be microprogrammable so it can emulate various units
of data flow systems such as a Celi Block, a functional unit or a complete processing
element. The communication module will be a 2 x 2 router from which routing networks
as large as needed can be built. A variety of packet communication architectures,
including the two mentioned above, may be realized by appropriate assembly of these
modules. Qur first engineering model of a data flow machine will be a Celi Block machine
realized using four processor and four routing modules as in Fig. 3.

2. Processor Module

Ephraim M. Vishniac has completed his B. S. thesis entitled A Processor Module for
Data Fiow Computer Development [34] This thesis presents a design for a general
purpose computer module for use in prototype Data Flow machines. The computer
module ‘is an eight-bit-wide programmable microprocessor designed from bit-slice LSt
components, and has input and output packet ports which allow byte-serial packet
transmission between modules. The computer module can be microprogrammed to
emulate various modules of a Data Flow Machine. For example, in our first engineering
model, Fig. 3, a single computer module will implement a Cell Block, Processor Unit pair.

COMPUTATION STRUCTURES GROUP 9

Fig. 3. MIT Engineering Model

r PE >
| 2:2/

2 2 2
for
.Router Rou PE
2 x2 2'x 2 | PE
Router Router
\ PE |— o

We are presently completing a detailed logic design for a computer module similar
to the Vishniac module: The new design incorporates additional hardware features which

3. Router Module

The 2 X 2 router is a simple building block which can be used to construct classes
of routing networks with different topologies and operational characteristics.

A 2 X 2 router receives packets at its two input ports and delivers each received
packet at one of two output ports according to a destination address carried by the
packet. Each packet is transmitted byte-serially between modules. Packet bytes are
delivered and received using an asynchronous packet communication protocol.

destination address in each input packet, makes an output request to the specified
output module and delivers the packet bytes when the request is granted. Each output

10 COMPUTATION STRUCTURES GROUP

Fig. 4. Parallel Processing ina 2 x 2 Router

XL 17T I

Non - Blocking Blocking

Fig. 5. Structure of a Router Module |

module consists of a data multiplexer and an arbiter to resolve conflicts between output
requests. A logic design by T. L. Tung of the 2 X 2 router module based on this modular
structure has been completed. The agynchronous sequential circuits and arbiters used in
this design are constructed using SSI components and discrete transistors. The data
paths consist of MSI multiplexers and SS logic gates.

4. Abstract Data Flow Machines

For a feasibility study of a general purpose data flow processor supporting
dynamic instruction allocation, Weng has chosen a value-oriented language that
incorporates stream values and a forall construct. The inclusion of stream values is an
attractive approach to increase the expressiveness of VAL so input/output processing
may be programmed without introducing side effects or nondeterminacy. In his doctoral
thesis, Weng [37] has chosen to implement this language on an architecture that supports
recursive data flow schemas. This leads to a simple mechanism for procedure activation

COMPUTATION STRUCTURES GROUP 11

and removes the need for the acknowledge signals required in a data flow machine using
static instruction allocation.

This processor (Fig. 6) differs from the Cell Block machine in the design of the
Execution Controller ‘and the Packet Memory. The Execution Controller functions much
like the Activation Memory of the simpler machine except that it accesses the Packet
Memory for storage and retrieval of activation records and instructions. The Packet
Memory holds data structures, procedure structures, and activation records. The
implementation is designed so activation records grow only to the size required for those
instructions actually executed in a given procedure activation.

Fig. 6. Data Flow Processor

Distribution E xecution Arbitration
(Network Controller Network \

Packet Memory

e Activation Records
® Procedure Structures

Resulit Operation
(Packet # Data Structures ' Packet \()

1]

_ Processing j

Units g

12 COMPUTATION STRUCTURES GROUP

Stream values are implemented as data structures, similar to Arvind’s I-structures,
whose components may be "holes.” This solution is easily extendable to work for streams
of streams and removes the inefficiency discussed by Weng [36] We propose two
forms of forall. One form allows one to express concurrent computations on an index
range of an array, and the second form allows exploitation of concurrency when the array
may be very sparsely defined.

5. Self-timed Hardware Systems Design

Leung has initiated an effort to develop methodologies for designing and
implementing self-timed hardware systems organized by a packet communication
architecture. Packet communication systems are designed and described using ADL, an
architecture description language [21] we have used in describing several forms of data
flow processors. A self-timed hardware module receives and delivers packets and
acknowledgments via asynchronous packet communication protocols. Techniques for
implementing ADL descriptions with self-timed modules fall naturally into two classes: for
implementing combinational and sequential functions with self-timed modules using
specific packet protocols, and for connecting a number of modules together to perform
other tasks.

In our work we have developed a two input AND-gate for dual-rail protocols and -
have used it to impiement combinational functions in self-timed modules. The set of
basic modules includes a pipelined register module, which is also used in feedback paths
to implement sequential functions, a switch module, a multiplexor module and a
nen-deterministic merge module. It is straightforward to transiate ADL constructs into
data flow schemas and then implement nodes in a schema with modules from this set,
assuming the availability of operator modules such as adders and equality testers. The
approach is demonstrated with a 2 X 2 router design and is being evaluated through
comparison with Tung’s router design, which uses commercially available multiplexor
chips controlled by a number of asynchronous sequential circuits and an arbiter circuit,
and with Redford’s {30} design, which is derived from a Petri net specification of the
router,

6. Fault Tolerance

In his thesis research, Leung [22] uses a random pulse train mode! for hardware
failures in self-timed modules to study fault tolerance techniques. A hardware module
outputting random pulse trains may violate the adopted packet communication protocols,
deliver erroneous packets, or hang up communication channels. Pathological interactions
between random pulse trains and dual-rail protocols has been studied in detail. A
hardware module is operating improperly if it violates the adopted packet protocols in
delivering packets and acknowledgments. A filtering register has been designed for
dual-rail protocols to sustain proper operation in spite of random pulse train inputs. This
register is useful for eliminating several types of pathological input conditions to
facilitate the design of fauit detectors and voters.

COMPUTATION STRUCTURES GROUP 13

A self-checking module is a hardware module whose inputs and outputs are coded
for error detection. Schemes to represent conventional error-detecting codes in
dual-rail protocols have also been developed and used to construct self-checking
self-timed modules. These self-checking modules are implemented with submodules such
that no single submodule failure can defeat the error-detecting capability of the chosen
code. Erroneous packets due to single submodule failures can then be detected by
checking module outputs for code violations. If a self~checking module is embedded in a
packet communication architecture which delivers identical inputs, to each of its
submodules within a bounded time interval, and if the submodules take approximately the
same amount of time to process identical inputs, then hardware failures which hang up
communication channels can also be detected.

A packet communication system designed to facilitate fault detection should not
miss failure symptoms nor generate false alarms. It should provide diagnostics
information and should maintain data integrity in the presence of hardware failures.
System strategies to achieve these goals are currently under investigation.

7. Analysis of Routing Networks

During the past year we have continued our analysis of routing networks. A
routing network accepts tagged packets on its input ports and directs each packet to the
output port associated with the packet’s tag. A primary area of study has been a class
of routing networks based on the indirect binary n-cube topology [29] This topology is
interesting because it leads to N-input networks with only N logp N internal nodes, and it
permits use of a very simple routing algorithm at each node. This study has produced an
abstract model of these networks which is considerably easier to analyze than the
networks themselves, and for an even distribution of packet tags predicts a level of
network performance that agrees well with simulation results. This model is presently
being used to predict the performance of very large networks of this class, and to
examine the effect of buffer size on network performance.

Another area of study has been the cost of wires required to implement various
routing network structures. While more work remains to be done, it is clear that there
is a fundamental relation between the compiexity of a communication problem and the

- amount of wire needed to solve it.

8. Simulation of a Simple Data Flow Machine

Paul Ressler [31] has recently completed a bachelor’s thesis on the simulation of a
simple data flow machine. In the thesis, a simulator mechanism is described which is
suitable for modeling packet flow in asynchronous packet switching architectures. An
implementation of the simulator mechanism is discussed and is used to specify a data
flow machine architecture. An analysis of the behavior of a Fast Fourier Transform
Program using the simulator js presented.

14 COMPUTATION STRUCTURES GROUP

9. Logical Models for MOS LSl

As large scale integrated circuits become more economical and more sophisticated
in their capabilities, custom LSl will become an attractive means for implementing
specialized digital systems. Currently, LSl circuits are hand designed and carefully
optimized by highly trained technicians. In the future, however, nonspecialists will design
their own circuits with more modest densities and speeds. This trend has already begun
at several universities and research laboratories around the country [25] Custom LSl is
particularly attractive for our data flow machine work, because our hardware needs are
not well served by current commercial products. Computerized tools can greatly simplify
the design process and thereby bring the field of LS design into the realm of the
nonspecialist.

R. Bryant has begun research in developing logic design tools specifically for MQS
integrated circuits. As a first step, he has been investigating logical models which more
closely match the circuit elements of MOS LS! than do more traditional logic gate models.
Based on this model, a program has been written which provides a three-level logic
simulation for nMOS circuits. Because it directly models the actual circuit elements, the
program can accurately and consistently represent such features as dynamic storage,
pass transistors, and errors caused by the bilateral properties of the transistors. -
Furthermore, the description of the circuit used by the simulator could easily be derived
directly from the IC mask specification. ‘

D. DATA FLOW APPLICATIONS

Partial differential equation computation has often been proposed as an ideal area
for the application of highly concurrent computer architectures. The high computational
requirements of these problems provide an incentive for high speed computation, while
the regularity and minimal data dependencies provide hope that this speed can be
achieved through parallelism.

To examine some of the issues in exploiting the concurrency of partial differential
equation simulations, the Computation Structures Group has made two studies of the
SIMPLE code [11], a 1500 fine FORTRAN program developed at Lawrence Livermore
Laboratories. This program provides a typical, although condensed example of a
simulation of hydrodynamic motion and heat flow in a compressible fluid.,

1. Data Flow Computer Structures for Partial Differential Equation Simulation

Arvind and R. Bryant [4] have found that while SIMPLE exhibits a great deal of
regularity, i.e., homogenity of the computation over the entire grid and for the most part -
only “"nearest-neighbor" data dependencies, the regularity is not perfect and the data
dependencies vary dynamically. Hence, any highly concurrent computer system which
relies on absolute regularity or a static allocation of computing resources will achieve
only limited success in terms of both programmability and performance.

COMPUTATION STRUCTURES GROUP 15

The numerical methods used by SIMPLE to approximate the partial differential
equations were of course developed in the context of sequential computers. New types
of numerical methods may be developed which provide grealer regularity and more
potential concurrency, but these developments will come too slowly to "rescue” any
architecture which cannot achieve reasonable programmability and performance with
existing methods. Furthermore, such factors as boundary region calculations, and data
dependent decisions will always cause irregularities in the program structure. Partial
differential equation simulations seem to call for greater flexibility in both programming
and execution than has generally been acknowledged.

As a first step in providing this flexibility, data flow languages [1, 2, 5] provide an
attractive means for expressing PDE simulation programs. These tanguages display the
potential concurrency of a program without constraining its implementation to a particular
system configuration or timing model.

A computer which executes data flow programs must then map the program onto
the processing resources in such a way that many activities proceed concurrently. We
are currently investigating several design decisions for a data flow computer architecture
and their impact on programmability, performance, and cost. There seem to be several
alternative mechanisms for resource allocation and communication which provide tradeoffs
between the three goals.

2. Role Diagram Analysis of the SIMPLE Code

John Myers [28] has analyzed SIMPLE from the standpoint of computation on a
data flow computer that is not yet fully specified, with the objectives of helping to
further specity the computer and to develop VAL as its source language.

The algorithm viewed as "abstract” (i.e, independent of physical arrangements in
space and time for its realization) is shown to imply spatial and temporal structure that
will have to appear in any and all implementations. Expressing this structure in a form
useful for either hardware design or program compilation requires grosser levels of
description, with the grosser levels reflecting modularity of computing resources
conjoined with modularity of the algorithm. Following Holt [15] we use role diagrams to
display spatio-temporal structure that reflects both the problem and possible resource
arrangements. These diagrams guide translation into VAL and the analysis of required
computation time.

Except for the output of results, the use of N processors configured as a data
flow computer can reduce the time to compute the SIMPLE code by a factor of at least
n1/2 Sequencing constraints that [imit improvement to this factor occur in the
calculation of heat flow. These constraints stem from the method chosen in the SIMPLE
~code for inversion of a tri-diagonal matrix: back-substitution. |t would appear feasible
to find or develop a method with weaker sequencing constraints so that all phases of the
Problem could be computed in times that would decrease by a factor of N/log N as N
increases. '

16 COMPUTATION STRUCTURES GROUP

In view of the iarge size of hydrodynamics problems, efficient use of computing
resources will be required. Efficient compilation must use higher-level descriptions of
the probiem, in addition to a data flow graph at the level of machine instructions. We
discuss research aimed at bringing under control the expression of the space-time aspect
of an algorithm at different levels of detail, so as to guide transformation of the algorithm
toward an efficient machine program for a particular computer organization.

E. DATA BASE MODELS

In his Ph.D thesis [7], S. Borkin examines several equivalence properties for data
models. A data model defines the types of structures present in a database and the
types of operations which may be used to alter the database. An understanding of data

model equivalence properties is necessary if one wishes to implement a system which.

presents different users with views of a database in terms of differing data models or
which provides a common interface to several database systems defined in terms of
different data models. Using formal definitions of the terms database, operation,
operation type, application model and data model, equivalence according to state,
operation, application model, and data model are distinguished. Three types of
application and data model equivalence may be defined - isomorphic, composed
operation and state dependent.

Semantic data models are data models whose structures are meant to have clear
interpretations in terms of the applications being modeled. In the thesis, the semantic
graph and semantic relation data models are formally defined. The definition of the
semantic relation data model inciudes the definitions of constraints and the semantic
relational algebra. It is proved that the semantic graph and the restricted semantic
relation data models are state dependent equivalent. Observations on the network vs.
relational data mode! "controversy” are presented.

Much of the content of this thesis has been published in a paper presented at the
International Conference on Very Large Data Bases [6]. ‘

COMPUTATION STRUCTURES GROUP 17

REFERENCES

1.

10.

11.

Ackerman, William B. "Data Flow Languages.” Proceedings of the 1979 National
Computer Conference, AFIPS Conference Proceedings, Vol. 48 (June 1979),
1087-1095. Also MIT, Laboratory for Computer Science, Computation Structures
Group, Memo 177. Cambridge, Ma, May 1979,

Ackerman, William B, and Dennis, Jack B. VAL -- A Value-Oriented Algorithmic
Language: Preliminary Reference Manual. M..T,, Laboratory for Computer Science,

- LCS/TR-218. Cambridge, Ma,, June 1979,

Aoki, Donald J. A Machine Language Instruction Set for a Data Flow Processor. S. M.
Thesis, M.T., Department of Electrical Engineering and Computer Science,
forthcoming.

Arvind, and Bryant, Randal E. "Parallef Computers for Partial Differential Equation
Simulation." To appear in Proceedings of Scientific Computer Information Exchange
Meeting, September 1979

Arvind, Gostelow, Kim B, and Plouffe, William. The {Preliminary) Id Report.
University of California, Department of Information and Computer Science, TR 114.
Irvine, Ca.,, May*'1978.

Borkin, Sheldon A. “"Data Model Equivalence.” Fourth International Conference on
Very Large Data Bases, September 1978, 526-534.

Borkin, Sheldon A. Equivalence Properties of Semantic Data Models for Database
Systems. M..T, Laboratory for Computer Science, LCS/TR-206. Cambridge, Ma,
January 1979

Brock, J. Dean. QOperational Semantics of a Data Flow Language. M.IT, Laboratory
for Computer Science, LCS/TM-120. Cambridge, Ma.,, December 1978.

Brock, J. Dean. Consistent Semantics for a Data Flow Language. MIT, Laboratory
for Computer Science, Computation Structures Group, Memo 172 Cambridge, Ma,
January 1979

Computation Structures Group. Progress Report July 1976 - July 1977, MILT,
Laboratory for Computer Science, LCS/PR-XIV. Cambridge, Ma., 31-32.

Crowley, W. P; Hendrickson, Christopher P; and Rudy, Timothy E. The SIMPLE Code.
Lawrence Livermore Laboratories, Internal Report UCID-17716. Livermore, Ca,
February, 1978.

12.

13.

14.

15.

16.

17.

18

19.

20.

21.

22.

23.

18 COMPUTATION STRUCTURES GROUP

Davis, Alan L. "A Data Flow Evaluation System Based on the Concept of Recursive
Locality.” Proceedings of the 1979 National Computer Conference, AFIPS Conference
Proceedings, Vol. 48 (June 1979), 1079-1086.

Dennis, Jack B, and Misunas, David P, "A Preliminary Architecture for a Basic
Data-Flow Processor.” Conference Proceedings of the Second Annual Symposium on
Computer Architecture, January 1975, 126-132,

Gostelow, Kim P, and Thomas, Robert E. "A View of Dataflow.” Proceedings of the
1979 National Computer Conference, AFIPS Conference Proceedings, Vol. 48 (June
1979), 629-636.

Holt, Anatol W. Roles and Activities, a System of Describing Systems. Academic
Computing Center, Boston University. Boston, Ma., 1979

Johnson, D, et al. “Automatic Partitioning of Programs in Multiprocessor Systems.”
To appear in Proceedings of Spring Comcom 80, February 1980,

Kahn, Gilles. "The Semantics of a Simple Language for Parallel Programming.”
Information Processing 74. New York: American Elsevier, 1974.

Keller, Robert M; Lindstrom, Gary; and Patil, Suhas S. "A Loosely-Coupled
Applicative Multi-processing System.” Proceedings of the 1979 National Computer
Conference, AFIPS Conference Proceedings, Vol. 48 (June 1979), 613-622.

Kosinski, Paul R. Denotational Semantics of Determinate and Non-determinate Data
Flow Programs. MLT, Laboratory for Computer Science, LCS/TR-220. Cambridge,
Ma,, July 1979,

Leth, James W. An Intermediate for Data Flow Programs. §. M. Thesis, M.LT,,
Department of Electrical Engineering and Computer Science, forthcoming.’

Leung, Clement C. K. C. "ADL: An Architecture Description Language for Packet
Communication Systems.” To appear in Proceedings of the 4th International
Symposium on Computer Hardware Description Languages.

Leung, C. K. C. Fault Tolerance in Packet Communication Computer Architecture.
Ph.D Thesis, MIT,, Department of Electrical Engineering and Computer Science,
forthcoming.

Liskov, Barbara H; Snyder, L. Alan; Atkinson, Russell R; and Schaffert, J. Craig.
"Abstraction Mechanisms in CLU." Communications of the ACM Vol. 20 No. 8 (August
1977), 564-576.

COMPUTATION STRUCTURES GROUP 19

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Liskov, Barbara H; Moss, J. Eliot; Schaffert, J. Craig; Scheifler, Robert W.; and Snyder,
L. Alan. CLU Reference Manual. M.T, Laboratory for Computer Science,
Computation Structures Group, Memo 161. Cambridge, Ma., July 1978,

Mead, Carver, and Conway, Lynn. Introduction to VLS| Systems. Addison-Wesley,
1979

Misunas, David P. Report on the Second Workshop on Data Flow Computer and
Program Organization. M.LT, Laboratory for Computer Science, LCS/TM-136.
Cambridge, Ma,, May 1975,

Montz, Lynn B. Safety and QOptimization Transformations for Data Flow Programs. S.
M. Thesis, M.T, Department of Electrical Engineering and Computer Science,
forthcoming. '

Myers, John. Analysis of the SIMPLE Code for Data Flow Computation, MLT.,

——————— — 2, ZUlg

Laboratory for Computer Science, LCS/TR-216. Cambridge, Ma,, May 1979

Pease, Marshall C. "The Indirect Binary N-Cube Microprocessor Array.” IEEE
Transactions on Computers, Vol. C-26 No. 5 (May 1977), 458-473.

Redford, John L. "A Design for a Routing Module.” S. B. Thesis, M.LT., Department of
Electrical Engineering and Computer Science, January 1979,

Ressler, Paul £ "Simulation of a Highly Parallel Processor.” S. B. Thesis, MLT,
Department of Electrical Engineering and Computer Science, January 1979,

Rumbaugh, James E. A Parallel Asynchronous Computer Architecture for Data Flow
Programs. M.IT, Laboratory for Computer Science, LCS/TR-~150. Cambridge, Ma,,
May 1975,

Rumbaugh, James E. "A Data Flow Muitiprocessor.” IEEE Transactions in Computers,
Vol. C-26 No. 2 (February 1977), 138-14s,

Vishniac, Ephraim M. A Processor Module for Data Flow Computer Development.
M.LT,, Laboratory for Computer Science, Computation Structure Group, Memo 176.
Cambridge, Ma, May 1979

Watson, lan, and Gurd, John. "A Prototype Data Flow Computer with Token
Labelling." Proceedings of the 1979 National Computer Conference, AFIPS Conference
Proceedings, Vol. 48 (June 1979), 623-628.

Weng, Kung-Song. Stream-Oriented Computation in Recursive Data Fiow Schemes.
M.IT, Laboratory for Computer Science, LCS/TM-68. Cambridge, Ma,, October 1975,

20 COMPUTATION STRUCTURES GROUP

37. Weng, Kung-Song. An Abstract Implementation for a Generalized Data Flow

Language. Ph. D Thesis, M.LT,, Department of Electrical Engineering and Computer
Science, forthcoming,

COMPUTATION STRUCTURES GROUP 21

Publications

1.

10.

Il

Ackerman, William B. "A Structure Processing Facility for Data Flow Computers.”
Proceedings of the 1978 International Conference on Parallel Processing, August
1978. Also M.LT, Laboratory for Computer Science, Computation Structures Group,
Memo 165. Cambridge, Ma., July 1978.

Ackerman, William B. "Data Flow Languages.” Proceedings of the ACM 1979 National
Computer Conference. Also MLT., Laboratory for Computer Science, Computation
Structures Group, Memo 177 Cambridge, Ma. May 1979,

Ackerman, William B, and Dennis, Jack B. VAL -- A Value-Oriented Algorithmic
Language, Preliminary Reference Manual. MIT, Laboratory for Computer Science,
LCS/TR-218. Cambridge, Ma., June 1979,

Borkin, Sheldon A. “Data Model Equivalence.” Proceedings of the Fourth International
Conference on Very Large Data Bases. New York: ACM. Also M.T,, Laboratory for
Computer Science, LCS/TM-118. Cambridge, Ma., December 1978,

Borkin, Sheldon A. Equivalence Properties of Semantic Data Models for Database
Systems. M.LT, Laboratory for Computer Science, LCS/TR-206. Cambridge, Ma,,
January 1979,

Brock, J. Dean. Operational Semantics of a Data Flow Language. M.LT,, Laboratory
for Computer Science, LCS/TM-120. Cambridge, Ma,, December 1978,

Brock, J. Dean. Consistent Semantics for a Data Flow Language. MLT., Laboratory
for Computer Science, Computation Structures Group, Memo 172. Cambridge, Ma,,
January 1979,

Bryant, Randal E., and Dennis, Jack B. "Concurrent Programming.” Research Directions
in Software Technology. Edited by P. Wegner. Cambridge, Ma.: The MIT Press, June
1979, 584-610.

Denning, Peter J; Dennis, Jack B; and Qualitz, Joseph E. Machines, Languages, and
Computation. Englewood Clitfs, N. J. Prentice-Hall, Inc,, 1979,

Dennis, Jack B. Associate Editor, Research Directions in Software Technology.
Edited by P. Wegner. Cambridge, Ma.: The MIT Press, June 1979

Dennis, Jack B. "Introduction to Part Il. 2 Computer Systems Methodology.” Research
Directions in Software Technology. Edited by P, Wegner. Cambridge, Ma.: The MIT
Press, June 1979, 421-424.

12.

13.

14.

15.

16.

17.

22 COMPUTATION STRUCTURES GROUP

Bennis, Jack B; Fuller, Samuel H; Ackerman, William B,; Swan, Richard J;and Weng,
Kung-Song. "Research Directions in Computer Architecture.” Research Directions in
Software Technology. Edited by P. Wegner. Cambridge, Ma.: The MIT Press, June
1979, 514-556.

Feridun, Arif. Design of an On-Line Byte-Level Pipelined Arithmetic Processor. M.LT.,
Laboratory for Computer Science, Computation Structures Group, Memo 162
Cambridge, Ma,, July 1978.

Jacobsen, Robert. Analysis of Structures for Packet Sorting Networks. M.LT,,
Laboratory for Computer Science, Computation Structures Group, Memo 163.
Cambridge, Ma,, July 1978,

McNally, Mary. The Design of an Arbitration Network for a Data-Flow Processor.

M.LT., Laboratory for Computer Science, Computation Structures Group, Memo 164.
Cambridge, Ma., July 1978. '

Misunas, David P. Report on the Second Workshop grj_ Data Flow Computer and
Program Organization. MLT., Laboratory for Computer Science, LCS/TM-136.
Cambridge, Ma., June 1979,

Vishniac, Ephraim. A Processor Module for Data Flow Computer Development. M.T,,
Laboratory for Computer Science, Computation Structures Group, Memo 176.

- Cambridge, Ma., May 1979.

Accepted for Publication

Arvind, and Bryant, Randal E. “Parallel Computers for Partial Differential Equation
Simulation.” To be published in Proceedings of Scientific Computer Information
Exchange Meeting.

Brock, J. Dean, and Montz, Lynn B. “"Translation and Optimization of Data Flow
Programs.” To be published in Proceedings of the 1979 International Conference on
Parallel Processing.

Bryant, Randal E. “Simulation on a Distributed System.”" To be published in
Proceedings of the First International Conference on Distributed Computing Systems.

Dennis, Jack B. "The Varieties of Data Flow Computers.” To be pﬁblished in
Proceedings of the First International Conference on Distributed Computing Systems.

Dennis, Jack B., and Weng, Kung-Seng. “An Abstract Implementation for Concurrent
Computation With Streams.” To be published in Proceedings of the 1979 International
Conference on Parallel Processing.

COMPUTATION STRUCTURES GROUP 23

Dennis, Jack B; Leung, Clement K. C; and Misunas, David P, "A Highly Parallel
Processor Using a Data Flow Machine Language.” To be published in IEEE
Transactions on Computers, ‘

Leung, Clement K. C. "ADL -- An Architecture Description Language for Packet
Communication Systems.” To be published in Proceedings of the 1979 International

Symposium on Computer Hardware Description Languages and Their Applications.

Theses Completed

1.

Borkin, Sheldon A, Eaquivalence Properties of Semantic Data Models for Database
Systems. Ph.D. Thesis, MLT., Department of Electrical Engineering and Computer
Science, January 1979,

Brock, Jarvis D. Operational Semantics of a Data Flow Language. SM. Thesis, M..T.,
Department of Electrical Engineering and Computer Science, October 1978,

Hong, Peter. “Analysis of Buffering Requirements in a Data Flow Processor.”
unpublished S.B. Thesis, M.LT., Department of Electrical Engineering and Computer
Science, May 1979, _

Kosinski, Paul. Denotatijonal Semantics of Determinate and Non-Determinate Data
Flow Programs. Ph.D Thesis, MLT, Department of Electrical Engineering and
Computer Science, May 1979.

Redford, John L. “A Design for a Routing Module.” unpublished S.B. Thesis, M.LT,,
Department of Electrical Engineering and Computer Science, January 1979,

Ressler, Paul. "Simutation of a Highly Parallel Processor.” unpublished S.B. Thesis,
January 1979,

Tetrick, Scott. “An Instruction Cell Block Design for a Data Flow Computer.”
unpublished S.B. Thesis, M.LT., Department of Electrical Engineering and Computer
Science, May 1979

Vishniac, Ephraim M. A Processor Module for Data Flow Computer Development. S.B.

T e M MUWG

Thesis, M.LT.,, Department of Electrical Engineering and Computer Science, May 1979.

Weng, Kung-Song. An Abstract Implementation for a Generalized Data Flow Language.
Ph.D Thesis, M.LT, Department of Electrical Engineering and Computer Science, May
1979

Theses in Progress

1.

2.

3.

24 COMPUTATION STRUCTURES GROUP

Isaman, David L. "Systems of Data Structuring Operations for Parallel Processors.”
Ph.D Thesis, M.I.T, Department of Electrical Engineering and Computer Science,
expected date of completion, September 1979,

Leung, Clement. "Fault Tolerance in Packet Communication Computer Architecture.”
Ph.D Thesis, M.LT,, Department of Electrical Engineering and Computer Science,
expected date of compietion, March 1980.

Montz, Lynn B. "Safety and Optimization Transformations for Data Flow Programs.”
SM. Thesis, M.LT,, Department of Electrical Engineering and Computer Science,
expected date of completion, February 1980.

Talks

1.

Ackerman, William B. “History Functions Cannot Describe All Packet Communication
Systems.” Second Workshop on Data Flow Computer and Program Organization, M..T.,
Dedham, Ma,, July 1978.

Ackerman, William B. "A Structure Processing Facility for Data Flow Computers.” .
International Conference on Paraliel Processing, August 1978.

Ackerman, William B. “Data Flow Languages.” National Computer Conference, New
York, N. Y., June 5, 1979.

Arvind. “Irvine Dataflow Language.” Oxford University, Oxford, U. K., August 8, 1978.

Arvind. “An Asynchronous Programming Language and Computing Machine.”
Distributed Computing Panel, Rutherford Laboratory, Oxfordshire, U. K., August 9,
1978; University of Newcastle Upon Tyne, Newcastle Upon Tyne, U. K, August 14,
1978; University of Minnesota, Minneapolis, Minn., November 8, 1978; Michigan State
University, East Lansing, Mich., November 9, 1978.

Arvind. "Nondeterministic Programming in Dataflow." Rutherford Laboratory,
Oxfordshire, U. K., August 9, 1978; University of Newcastle Upon Tyne, Newcastie
Upon Tyne, U. K, August 15, 1978.

Arvind. "Computing With Streams.” Laboratory for Computer Science, M.LT,,
Cambridge, Ma.,, November 14, 1978; Dataflow Workshop, CERT, Toulouse, France,
February 13, 1979.

Arvind. "A Brief Introduction to Dataflow.” National Computer Conference, New York,
N. Y, June 5, 1979, '

Arvind. "Mapping a Hydrodynamics and Heat Conduction Problem on a Dataflow
Computer." National Computer Conference, New York, N. Y., June 5, 1979,

COMPUTATION STRUCTURES GROUP 25

10.

11.

12.

13.

14,

15,

16.

17.

18.

19.

20.

21.

22.

Borkin, Sheldon A. "Data Model Equivalence.” Fourth International Conference on
Very Large Data Bases, W. Berlin, Germany, September 1978.

Boughton, George A. "Structure of Routing Networks.” Second Workshop on Data
Flow Computer and Program Organization. M.LT., Dedham, Ma., July 12, 1978.

Bryant, Randal E. "Analytical Models for Interconnection Networks." Second
Workshop on Data Flow Computer and Program Organization. MLT., Dedham, Ma,
July 12, 1978

Dennis, Jack B, I“Status and Goals of Data Flow Research at M.L.T." Second Workshop
on Data Flow Computer and Program Organization. M..T., Dedham, Ma, July 10, 1978.

Dennis, Jack B. "“A User Language for Data Flow Computation.” Second Workshop on
Data Flow Computer and Program Qrganization. M.T., Dedham, Ma., July 10, I978.

Dennis, Jack B. "Data Flow Computer Architecture.” Burroughs Corp., Paoli, Pa., July
17, 1978; University of Toronto, Toronto, Canada, October 25, 1978; University of
Texas, Austin, Tx, December 11, 1978; Avionics Laboratory, Wright-Patterson Air
Force Base, Ohio, December 13, 1978; Carnegie Melion University, Computer Science
Department, December 14, 1978. :

Dennis, Jack B. "The Programming Language VAL." University of Waterloo, Computer
Science Department, Waterloo, Ontario, Canada, October 26, 1978.

Dennis, Jack B. “Research Directions in Computer Architecture.” University of
Waterloo, Computer Science Club, Waterloo, Ontario, Canada, October 26, 1978,

Dennis, Jack B. "Data Flow Computing: Architecture and Issues.” Prime Computer,
Inc., Framingham, Ma., October 31, 1978

Dennis, Jack B. “The Varieties of Data Fiow Computers.” National Computer
Conference, New York, N. Y., June 5, 1979,

Hirschman, David. "Translation of a Large Fortran PDE Code into Data Fiow Form.”
Second Workshop on Data Flow Computer and Program Organization, M.LT., Dedham,
Ma, July 11, 1978,

Leung, Clement K. "Fault Tolerance in Packet Communication Architecture.” Second
Workshop on Data Flow Computer and Program Organization, M.LT, Dedham, Ma., July
12, 1978.

Montz, Lynn. "Safety and Optimization Transformations for Data Flow Programs.™
Second Workshop on Data Flow Computer and Program Organization, M..T., Dedham,
Ma, July 11, 1978,

26 COMPUTATION STRUCTURES GROUP

23. Weng, Kung-Song. “An Approach to Data Flow Support for Procedure Invocation and

Streams.” Second Workshop on Data Flow Computer and Program QOrganization, M.LT,,
Dedham, Ma,, July 1.1, 1978

