

Semaphore Primitives and Starvation-Free
Mutual Exclusion

EUGENE W. STARK

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. Most discussions of semaphore primitives m the literature provide only an informal description
of their behavtor, rather than a more prectse definition. These informal descriptions may be incorrect,
incomplete, or subject to m~smterpretation. As a result, the literature actually contains several different
defimtlons of the semaphore primmves. The differences are important, since the particular choice of
definition can affect whether a soluuon to the mutual exclusion problem using semaphore primitives
allows the possibility of process starvation. An attempt is made to alleviate some of the confusion by
gtving precise defmittons of two varteties of semaphore prtmtttves, here called weak and blocked-set
primitives. It is then shown that under certain natural condttious, although it is possible to implement
starvation-free mutual exclusion with blocked-set semaphores, it is not possible to do so with weak
semaphores. Thus weak semaphores are strictly less "powerful" than blocked-set semaphores.

Categories and Subject Descnptors' D.I.3 [Programming Techniques]: Concurrent Programming;
D.3.1 [Programming Languages]: Formal Definitions and Theory--semantics; D.3.3 [Programming
Languages]: Language Constructs--concurrent programming structures; D.4.1 [Operating Systems]:
Process Management--concurrency', mutual exclusion, synchronization

General Terms. Algorithms, Theory

Additional Key Words and Phrases: Semaphores

1. Introduction

The mutual-exclusion problem is the problem o f synchronizing a n u m b e r o f concur-
rently executing sequential processes to ensure that the execution o f certain critical
regions o f the p rogram for one process is not interrupted by the execution o f similar
regions o f the p rogram for another process. Various synchronization primitives, or
p rogramming language constructs for expressing synchronizat ion, have been pro-
posed for dealing with this problem. Perhaps the most well k n o w n o f these synchro-
nization primitives are the so-called semaphore primitives.

Most discussions o f semaphore primitives in the literature provide only an informal
description o f their behavior. These informal descriptions m a y be incorrect, incom-
plete, or subject to misinterpretation. As a result, the literature actually contains
several different definitions o f the semaphore primitives. The differences are impor-
tant, since the particular choice o f definit ion can affect whether a solut ion to the
mutual-exclusion problem using semaphore primitives allows the possibility o f
process starvation.

This work was supported m part by a National Science Foundation Graduate Fellowship.
Author's address: Laboratory for Computer Science, Massachusetts Instttute of Technology, 545 Tech-
nology Square, Cambridge, MA 02139.
Permtssion to copy wtthout fee all or part of thts material is granted provided that the copies are not made
or distributed for dtrect commercial advantage, the ACM copyright notice and the title of the publicauon
and tts date appear, and nottce is given that copying is by permisston of the Association for Compntmg
Machinery To copy otherwise, or to repubhsh, requires a fee and/or specific permission.
© 1982 ACM 0004-5411/82/1000-1049 $00.75

Journal of the ~ c t a u o n for Computm 8 Machinery, Vol 29, No 4, October 1982, pp 1049-1072

1050 EUGENE W. STARK

This paper attempts to alleviate some of the confusion by giving precise definitions
of two varieties of semaphore primitives, here called weak and blocked-set primitives.
The properties of symmetry, no busy-waiting, and no memory are identified as natural
conditions satisfied by "good" solutions to the mutual-exclusion problem. It is then
shown that under certain combinations of these conditions, although it is possible to
implement starvation-free mutual exclusion with blocked-set semaphores, it is not
possible to do so with weak semaphores. Thus weak semaphores are strictly less
powerful than blocked-set semaphores.

1.1 VARIOUS INFORMAL DEFINITIONS OF SEMAPHORES. Dijkstra [6] defines a
semaphore as a special type of program variable, shared between processes, which
may be manipulated only by two special operations, designated P and V. A
semaphore variable may take on only nonnegative integer values. His definition of
the effect of the semaphore operations is as follows. A process performing a P
operation on a semaphore variable s tests the value of s to see if it is greater than
zero. If so, then s is decremented, and the process proceeds. The test and resultant
decrement are performed in one indivisible step. If the value of s is not greater than
zero, the process is said to become blocked on the semaphore s and must wait to be
signaled by some process executing a V(s) operation. A process executing a V(s)
operation checks to see if there are any processes blocked on s. If there are blocked
processes, then one of them is signaled and allowed to proceed. If there are no
blocked processes, then s is simply incremented. The V(s) operation is assumed to be
performed in a single indivisible step.

In Dijkstra's definition of semaphores, processes that are blocked within a P
operation on a semaphore variable s are distinguished from processes that are about
to execute a P(s) but have not yet become blocked. This distinction is important in
that the execution of a V(s) will cause a blocked process to be selected in preference
to a process that is not blocked. However, all blocked processes are treated equally
as far as being selected is concerned: no effort is made to distinguish processes that
have been blocked for a short length of time from those that have been blocked for
a longer period. The group of blocked processes at any instant of time may therefore
be modeled as a set, from which a V operation chooses at random a process to be
signaled. Let us call semaphores with this type of blocking discipline blocked-set
semaphores. It is also possible to define blocked-queue semaphores, which are like
blocked-set semaphores except that the group of blocked processes is maintained as
a FIFO queue, instead of as a set. Processes becoming blocked are placed at the end
of the queue, and processes are selected for signaling from the head of the queue.

As was mentioned above, it appears that blocked-set semaphores are the type that
Dijkstra intended to define in [6]. In [7] he indicated the possibility of defining
blocked-queue semaphores as well. Blocked-set semaphores also appear to be the
type used in [4, 5, 9, 15]. However, a third type of semaphore, much different than
either blocked-set or blocked-queue semaphores, is also found in the literature. This
is the type of semaphore that may be implemented with indivisible "test-and-set"
instructions as follows. A process attempting to perform a P operation on a semaphore
variable s executes a busy-waiting loop in which the value of s is continually tested.
As soon as s is discovered to have a value greater than zero, it is decremented, the
decrement and immediately preceding test being performed as one indivisible step.
A V operation simply increments s in an indivisible step. We will call this type of
semaphore a weak semaphore. We prove that this choice of terminology is justified,
in that weak semaphores are significantly "weaker" than blocked-set or blocked-
queue semaphores when their starvation properties are considered.

Semaphore Primitives and Starvation-Free Mutual Exclusion

semaphore s initially 1,
loop: (noncrlucal region)

P(s);
(critical regwn)
V(s),
ROte loop;

FIG. 1. Soluuon to the mutual-exclusion problem.

1051

Definitions of weak semaphores equivalent to the definition above may be found
in [13, 19, 20]. However, it is here that confusion over the definitions of the semaphore
operations becomes evident. The definitions given by Presser [19] are at best
incomplete. Under the most straightforward interpretation, though, they appear to
define weak semaphores. Habermann [10l criticizes Presser for this, and for presenting
a definition of weak semaphores without indicating the difference between this
version and the blocked-set semaphores defined by Dijkstra.

Dijkstra [6] also distinguishes between binary and general semaphores. In the
discussion above we informally defined weak, blocked-set, and blocked-queue general
semaphores. Binary semaphores are similar to general semaphores, except that the
binary semaphore variable may take on only the values zero and one. The effect of
a binary P operation is identical to that of a general P operation. However, to ensure
that the value of the variable s never exceeds one, a binary V(s) operation will simply
set s to one, rather than incrementing s as is done in a general V(s) operation. Note
that if the value of a binary semaphore variable s is one, which implies that there are
no processes blocked on s, then execution of a V(s) operation has no effect.

The types of semaphore primitives found in the literature are by no means limited
to those described above. For example, [3, p. 68] defines a kind of weak semaphore
whose behavior is significantly different from the other definitions discussed above.
As a final indication of the confusion in the literature on semaphores, it is interesting
to note that all the sources above claim that their definitions define "Dijkstra's
semaphore primitives."

1.2 STARVATION PROPERTIES OF THE VARIOUS DEFINITIONS. The weak, blocked-
set, and blocked-queue semaphore primitives defined above have different starvation
properties. To see why this might be true, let us see what happens when each
definition is used in a simple attempt to solve the mutual-exclusion problem. Consider
a number of processes, each executing the program shown in Figure 1. Each process
continually alternates between its critical region and its noncritical region. In order to
ensure that mutual exclusion of critical regions among all the processes is obtained,
the critical region is bracketed by a P(s)-V(s) pair. Since the value of the semaphore
variable s is initially one, and a process desiring to enter the critical region must first
perform a P(s) operation, whenever some process is in its critical region, the value of
s is zero. Hence other processes attempting to perform P operations and enter their
own critical regions must wait. Mutual exclusion is therefore obtained regardless of
whether weak, blocked-set, or blocked-queue semaphores are used.

Suppose that the semaphore operations are of the weak variety, and consider the
execution of two processes, process 1 and process 2. Suppose that process 1 finds the
value of s to be one and proceeds into its critical region. Since the value of s is now
zero, process 2 is unable to complete its P(s) operation and therefore waits within the
P operation for the value of s to become positive. Now suppose that process 1
completes execution in its critical region and performs the V(s) operation, setting s to
one. Since we have assumed the semaphore operations to be weak, process 2 does
not complete its P(s) operation immediately but must retest the semaphore variable

1052 EUGENE W. STARK

s. It is possible, if process 1 executes quickly enough, for it to loop around and
perform another P(s) operation, resetting s to zero, before process 2 could get around
to noticing that s ever had the value one. This scenario may continue indefinitely, with
the result that process 2 "starves" forever within its P(s) operation. Note that this
argument relies on the fact that in determining the behavior of a system of concurrent
processes, we may make no assumptions about the relative speeds of the processes
(except for the finite delay property to be discussed below) and must consider all
possible orders of executions of steps of the processes as legitimate.

Now, suppose instead that the semaphore operations are defined to be blocked-set
operations. The scenario described in the preceding paragraph is no longer possible,
since the execution of a V operation by process 1 immediately causes process 2 to
complete its P(s) operation. Since s is never set to one, it is not possible for process
1 to complete another P(s) before process 2 finishes its critical region and performs
a V(s). However, although starvation is no longer possible with two processes, with
three or more processes it again becomes possible for a process to wait forever within
the P(s) while other processes successfully complete infinitely many P(s) operations.
The reason for this is that the blocked-set V operation selects the blocked process to
signal at random and, in particular, gives no preference to a process that may have
been blocked for a long time. The situation may be remedied if blocked-queue
semaphores are used.

1.3 RELATIVE POWER OF TIlE TYPES OF SEMAPHORES. The simple scenario just
presented indicates that although weak, blocked-set, and blocked-queue semaphores
are all able to implement mutual exclusion of critical regions, the three types of
semaphores are evidently not equivalent if the possibility of starvation is taken into
consideration. We are interested in obtaining more detailed information of this type
concerning the relative power of the different kinds of semaphore primitives. We
obtain this information by posing and answering questions of the form: Under certain
natural constraints, is it possible to implement starvation-free mutual exclusion with
a given kind of semaphore? It turns out to be trivially possible to implement
starvation-free mutual exclusion with either blocked-queue binary or blocked-queue
general semaphores, under any of the constraints we impose. We therefore concen-
trate our efforts on determining the differences in power between weak binary, weak
general, blocked-set binary, and blocked-set general semaphores.

The flavor of this investigation is similar to that of [2], where solutions to the
mutual-exchision problem are studied for a system of processes that synchronize not
with semaphore operations but with a generalized "test-and-set" operation on a
single shared variable. In that study, bounds are obtained on the number of distinct
values that this variable must be able to record, if solutions are to exist to the mutual-
exclusion problem and to the starvation-free mutual-exclusion problem. The most
important similarity between our study and that of [2] is that in both, results are
stated and proved asserting the existence or nonexistence of solutions to the mutual-
exclusion problem satisfying various properties. In both studies, existence results are
proved by displaying a solution to the mutual-exclusion problem. Results asserting
the nonexistence of solutions are proved indirectly by assuming the existence of a
solution satisfying the stated properties and then inferring the existence of a com-
putation that contradicts one or more assumptions.

In other related investigations [8, 14] weak semaphore operations are viewed as
conceptual abstractions/reductions of blocked-set and blocked-queue operations.
Given any program, its abstraction may be formed by "deleting the scheduler state";
that is, the queuing information maintained inside of blocked-set and blocked-queue

Semaphore Primitives and Starvation-Free Mutual Exclusion 1053

semaphores is ignored. In [8] Doeppner shows that a program is deadlock frc¢ if and
only if its abstraction is deadlock free. Kwong [14] identifies two types of starvation
and shows essentially that abstraction increases the possibility of starvation. Kwong
also observes that starvation is not preserved by Lipton's type of reduction [16].

1.40UTLINF. OF PAPER. The remainder of the paper is organized as follows. If
we are to prove results concerning the existence or nonexistence of solutions to the
starvation-free mutual-exclusion problem, then we must precisely define the class of
candidate solutions. These defmitions are the subject of Section 2. This section
culminates in the definition of a mutual-exclusion system, which models a number of
concurrently executing sequential processes competing for access to critical regions.
A solution to the mutual-exclusion problem is defined as a mutual-exclusion system
with certain desirable properties.

In Sections 3-5 the basic defmitions are used to prove results that indicate the
differences in power between the various types of semaphore primitives. To highlight
these differences, and to eliminate from consideration solutions to the mutual-
exclusion problem that do not use semaphores at all, the properties of no busy-
waiting, symmetry, and no memory are defined, and we restrict our attention to
mutual-exclusion systems satisfying one or more of these properties. We will see that
there are situations in which it is possible to solve the starvation-free mutual-exclusion
problem with blocked-set semaphores but not with weak semaphores. We will also
see that weak general semaphores are slightly more powerful than weak binary
semaphores in a certain sense.

Finally, Section 6 summarizes the results proved and offers a suggestion for future
investigation.

2. Basic Definitions

In this section we def'me the term solution to the mutual-exclusion problem. This
definition consists of several stages. We first define a simple programming language

which contains an assignment statement, control statements for alternation and
iteration, and P and V semaphore statements. The language L# is what we will use
to express solutions to the mutual-exclusion problem. The exact details of this
language are not critical; the only important requirement is that a single assignment
statement not both depend on and affect the same global variable. Intuitively, this
requirement captures the idea that a shared memory location may not be both read
and updated in a single indivisible step.

To be able to reason about programs in Ag, we require a formal semantics for this
language. For this reason, we define a model of concurrent computation called
parallelprograms. The parallel-program model is a state-transition model similar to
that introduced in [11]. The general parallel-program model does not have sufficient
structure for our purposes, and we therefore define a restricted subset of parallel
programs, called systems of processes. A system of processes models a collection of
concurrently executing sequential processes. The language L/' will be given a formal
semantics by showing how a collection of N statements of L# defines a system of N
processes.

Finally, we define mutual-exclusion systems to be systems of processes that model
a number of processes competing for access to critical regions. A solution to the
mutual-exclusionproblem will be a mutual-exclusion system that has certain desirable
properties, including the mutual-exclusion property and freedom from deadlock. A
solution to the starvation-free mutual-exclusion problem will be a solution to the
mutual exclusion problem that is in addition starvation free.

1054 E U G E N E W . S T A R K

For the remainder o f this paper let G, L, and S be fixed fmite sets of global, local,
and semaphore variables, respectively. Let ~e" be a domain o f values for these variables
which includes at least the set of natural numbers IN and the set of all finite subsets
of natural numbers.

2.1 A SIMPLE PROGRAMMING LANGUAGE. The language .Y is defined inductively
as follows:

(1) skip is a statement in ~.
(2) I f s E S, then the P operations Pwb(s), Pwg(S), Pbeb(S), and Pbss(S) and the V

operations Vwb(S), Vwg(s), Vb~b(S), and Vb~g(S) are statements. The statements Px(s)
and Vx(s) are called weak binary, weak general, blocked-set binary, or blocked-set
general semaphore operations, when x is wb, wg, bsb, or bsg, respectively.

(3) I f Us, u2 u,,,, and v~, v2 Vn are elements o f G t3 L, such that i ~ j implies
u~ # u~ and v, # vj, and such that {ul, u2 urn} N {v~, v2 v,,} contains no
elements of G, then the assignment statement

(Ul, U2 , Urn) :ffi F(vl, V2 Vn)

is a statement, where F(v~, v2 vn) is an expression over the variables v~, v2,
. . . . v,, which defines a function from ~'~ to ~.~m.

(4) I f v~, v2 v,, are distinct elements of G U L and S~, S2 E ~ , then the conditional
statement

and the loop statement

if B(v~, v2 , v~) then $1 else $2

while B(vl, v2 vn) do 5'1

are statements, where B(vl, v2 vn) is an expression over v~, v2 vn which
defines an n-placed relation over ~.

(5) I f $1, $2 Sm are statements, then the compound statement

b e g i n $ 1 ; $ 2 ; . . . ; S r n end

is a statement.
(6) The only statements in .~ are those that can be formed by a ['mite number of

applications of (1)-(5).

I f E(vl, v2 vn) is an expression over the variables v~, v2 vn, then we
will use the notation E[Xl, x2, . . . , x~] to denote the result obtained by evaluat-
ing E(vl, v2 vn) after substituting the values xl, x2 xn for the variables
V1, V2, • • • , Vn.

2.2 PARALLEL PROGRAMS. A parallelprogram P is a four-tuple (V, Q, T, qi),
where

(1) V is a finite set of variables.
(2) Q = C × D is the set of states for l", where C, the set of control states, is f'mite,

and D, the set o f data states, is the set o f all functions from V to ~. I f q E Q, then
we write cnt(q) for the control state component of q and dat(q) for the data state
component.

(3) T is a finite set of transitions. Each t E T is a pair (ena(t), nxt(t)), where ena(t)
is a predicate on Q called the enabling predicate for t and nxt(t) is a partial
function from Q to Q called the action function for t. The function nxt(t) is
defmed for a state q iff (ena(t))(q) is true.

(4) The state qX is a distinguished element of Q called the initial state.

Semaphore Primitives and Starvation-Free Mutual Exclusion 1055

If (ena(t))(q) is true, then we say that t is enabled in state q. I f q E Q and v E V,
then we abbreviate (dat(q))(v) as q(v). To avoid superfluous parentheses, we also
abbreviate (nxt(t))(q) as nxt(q, t). I f a ffi tot1 . . . is a finite or infinite sequence o f
transitions and o ffi q0ql • .- is a finite or infinite sequence of states, then we define
a(i) ffi ti and o(i) ffi q,. It is also convenient to define ~x(i, j) = t, . . . b-1 if i < j , and
a(i, j) ffi q, . . . qj if i ___ j. I f j __. i, then a(i, j) ffi A (the null sequence), and i f j < i, then
o(i, j) ffi A.

A finite or infinite sequence of transitions a is an execution sequence f r o m qofor
F, with corresponding state sequence o, if I o l = [a I + 1, o(0) -- qo, and for each i such
that 0 _ i < [a 1, transition a(i) is enabled in state o(i) and off + 1) ffi nxt(o(i) , aq)).
If o(0) = qI, then a is an initial execution sequence for I'. I f I a I " n, then we define
nxt(o(O), a) = o(n), and we say that o(n) is reachable f r o m o(0). A reachable state is
simply a state that is reachable from ql.

Keller [11] shows how parallel programs can be used to model various kinds of
concurrent computation. The notion of control state is convenient for modeling the
instruction counters of a number of concurrently executing sequential processes, as
we shall now see.

2.3 SYSTEMS OF PROCESSES. A system o f N processes is a parallel program I" ,,,
(V, Q, T, qi) with the following properties:

(1) If C is the set of control states for F, then C ffi II~x c~. The set C, is called the set
of control states f o r process L We write cnt,(q) for the projection o f q into Ci.

(2) T = Ll~l T,, where the T, are disjoint sets of transitions f o r process £
(3) For all q, q ' ~ Q, if cnt,(q) = cnt,(q') and dat(q) = dat(q'), then for all t E T,,

(a) (ena(t))(q) is true iff (ena(t))(q') is true;
(b) cnt,(nxt(q, t)) = cnt,(nxt(q', t)) and dat(nxt(q, t)) = dat(nxt(q' , t));
(c) cntj(nxt(q, t)) = cntl(q) for a l l j # i with 1 _<j __ N.

Thus in a system of N processes the control state models the N instruction counters.
The program being executed by process i is modeled by the set of transitions T,.
Condition (3) above stipulates that a transition for process i must neither depend on
nor affect the instruction counter of some other processj # L

We will denote a transition for process i in a system of processes by an expression
of the form

when cl and B(vl, v2 v,,) do (ux, u2 urn) - - F(vl, v2 vn) then o2,

where Cl, c2 E C,. Such an expression defines a transition t as follows:

(1) (ena(t))(q) is true iff cnt,(q) ffi cl and B[q(vl), q(v2) , q(v,,)] is true.
(2) I f (ena(t))(q) is true, then the state q' ffi nxt(q, t) is related to q by

(a) cnt,(q') = c2;
(b) cntj(q') = cnt:(q) for a l l j ~ / w i t h 1 <_j<_ N;
(c) q'(v) = q(v) for all v ~ V - {m, u2 Urn};
(d) q'(uj) ffi F:[q(vx) q(v,,)] for a l l j with 1 < j _< m, where F: denotes the

projection of F on the j th coordinate.

We say that a transition depends on a variable if that variable occurs among the v,
in its defining expression, and that a transition affects a variable if that variable
occurs among the u, in its defining expression. In addition, we will often abbreviate
the defining expressions for transitions by omitting the and clause if B is identically
true and the do clause if m I, O.

1056 EUGENE W. STARK

Let 1" be a system of N processes, and let a be an execution sequence for 1 ~, with
corresponding state sequence o. Then a has the finite-delay property unless it is
infinite and there exists i with 1 _< i _< N, and k _> 0, such that

(1) for each j _> k, some transition in T, is enabled in state a (j) ;
(2) for n o j _> k is a (j) E Ti.

I f o~ has the Emite-delay property, then we also say that a is valid. The t'mite-delay
property characterizes those execution sequences in which no process runs infinitely
more slowly than another. Another way o f stating this is that valid execution
sequences satisfy the requirement of "fair scheduling" of processes. The finite-delay
property is mentioned in [11, 17] and used in definition of an "admissible schedule"
in [2]. It appears to be necessary for any discussion o f starvation-free synchronization.

2.4 SEMANTICS OF .~. In this section we give a formal semantics to the language
L~ by showing how each statement A of .~ defines a set ~,(A) of control states and
a set :~(A) o f transitions for process i in a system of processes. Before we can defme
these sets of states and transitions, however, we must determine an appropriate set of
variables V for this system of processes. We cannot simply let V = G U L U S, since
we have yet to capture the idea that each process should have its own copy of the
local variables in L. Also, we will need extra variables to represent the sets of blocked
processes associated with blocked-set semaphore variables. Therefore, let L, =
L × { i } , and let L * - U ~ L,. Let Bs be the set which contains, for each s E S, a
new scheduler variable b~ All scheduler variables are set variables; that is, they will
always have finite sets of natural numbers as their values. Let V ffi G U L* U S U Bs.

For each statement A ~ L# define the set ~ (.4) of control states of A for process i
as follows. I fA is not a blocked-set P operation, then :~i(A) is defmed recursively by
~f,(A) ffi {before,(A), after,(A)} U SUBST, where SUBST is the union of all ~,(A')
with A' a proper substatement of A. I f A is a blocked-set P operation, then
~,(A) -~ {before,(A), after,(A), waiting,(A)}. As their names suggest, the control states
before,(A) and after,(A) represent the points in the code for process i just before and
just after the statement A, respectively. Similarly, waiting,(.4) identifies the control
point within a blocked-set P operation where process i resides while it is blocked.

We can now deirme the set ~ (A) for each A E L~' by induction. In the following,
as in the remainder of the paper, we will abbreviate (v, i) E L i by v'. In addition, it
will be notationally convenient to define v i - v for v E V - L*. In cases (2b) and
(2d) below, replace INCR by s :-- 1 for a binary V operation and by s := s + 1 for a
general V operation.

(1) I fA = skip, then

.~;(A) = {when before,(A) then after, (A) }.

(2a) I f A -- Pwb(s) or A = Pwg(s), then

~r,(A) -- {when before,(A) and s > 0 do s := s - 1 t h e n after,(A)}.

(2b) If A = Vwb(s) or A = Vwg(s), then

.~,(A) = (when before, (A) do INCR then after, (A)}.

(20 If A = Pb,b(S) or A = P~g(s), then

.~(A) = {when before,(A) and s > 0 do s := s - 1 then after,(A),
when beforei(A) and s = 0 do bs :-- b, U {i) then waiting,(A),
when waitingi(A) and i ~ bs then after,(A)}.

Semaphore Primitives and Starvation-Free Mutual Exclusion

(2d) I f A = Vb~b(S) or A = Vb~g(s), then

1057

~(A) -- oN1 {when before~(A) and j E b~ do b, : - b~ - {j} then afteri(A)}
U {when before~(A) and b, = ~ do I N C R then afteri(A)}.

(3) If A = (ul, u2 urn) :~= F(vl, v2 vn), then

~(A) --- {when before,(A)
do (u[, u [, . . . , u~) := F(v~, v[. v'~) then afteri(A)).

(4a) IrA = i fB(v l , v2 , v~) then Sx else $2, then

.~r,,(A) = {when before,(A) and B(v~, v[, . . . , v~) then beforei(S1),
when before,(A) and ~B(v~l, v[. . . . , v~) then beforei(S2),
when after,(S1) then after,(A),
when after~(S2) then after,(A)} L} ~-/,(Sl) LI ~'~,(S~).

(4b) I fA = while B(v~, v2 vn) do S1, then

.~,(A) = {when before~(A) and B(v~, v~ v~) then before,(SO,
when before,(A) and ~B(v[, v[. v~) then after~(A),
when after,(S1) then before,(A)} t3 ~7~($1).

(5) I rA = begin S~; $2; . . . ;Sm end, then

.~,(A) = {when before~(A) then beforei(SO,
when after,(S1) then before,(S~), . . . ,
when after,(Sm-O then before,(Sm),
when after,(Sm) then after,(A) }
u ~ (s1) u J ,(s~) u . . . o ~,(s~).

Note how case (2) above makes precise the informal det'mitions of the various
types of semaphores presented earlier. Weak semaphore operations consist of a single
transition. A process cannot execute a weak P(s) operation until a state is reached in
which the semaphore variable s has a positive value. When this occurs, s is decre-
mented and the process proceeds. A weak general V(s) causes s to be incremented,
and a weak binary V(s) operation simply causes s to be set to one.

The operation of blocked-set semaphore operations is somewhat more complicated.
Associated with each semaphore variable is a scheduler variable b,. In any given state
the value of b, represents the set of processes blocked on the semaphore variable s in
that state. A process executing a blocked-set P(s) operation first checks to see if s has
a positive value. I f so, then s is decremented and the process proceeds. I f the value
of s is found to be zero, then the process enters its index in the set b, o f blocked
processes and then waits for some process executing a V(s) operation to signal it by
removing its index from b,. A process executing a blocked-set V(s) operation either
determines that b~ is empty, in which case s is incremented (set to one, in the case of
a blocked-set binary V(s)), or makes a nondeterministic selection o f one of the indices
in b, which it removes, thus signaling the corresponding waiting process. This
nondeterministic selection is modeled by the set of transitions [. j N {when before,(A)
a n d j ~ b, do b, := b, - {j} then after,(A)}.

We will say that a transition t is part o f a semaphore operation i f t E .~(A), where
A is a P or V operation. Note that since ~-i~(A) is a singleton set if A is a weak P or
V operation, we may, without ambiguity, say that t is a P or V operation if t is the
element of such a singleton set.

2.5 MUTUAL-EXCLUSION SYSTEMS. We wish to model a system in which each
process continually alternates execution between a critical region and a noncritical

1058 EUGENE W. STARK

region. A process leaving its noncritical region and attempting to enter its critical
region must first execute the synchronization protocol in the trying region. Similarly,
a process leaving the critical region and returning to the noncritical region must
execute the synchronization protocol in the leaving region. The fact that a process
may remain in the noncritical region forever is modeled by allowing a process in the
noncritical region to become halted rather than executing the trying region protocol.

More precisely, suppose N _> 1, and for each i with 1 ___ i <_ N let Tr, and Lv, be
given statements of A '~ called the trying region and leaving region, respectively, for
process i. Define

C, = c~,(Tr,) O c~,(Lv,) U {critical,, noncritical,, halted,},
T, = .~,(Tri) t3 ~(Lv,) U {when noncritical, then before,(Tr,),

when noncritical, then halted,,
when afteri(Tr,) then critical,,
when critical, then before,(Lv,),
when afler,(Lv,) then noncritical, }.

Let C = lI~-i c , and T =~ L.l~_l T,, let D be the set of all functions from V to 3C,
and let Q ~= C × D, and suppose q~ ~ Q is given such that cnt,(q I) = noncritical,, for
1 _-. i _< N, and ql(bs) = ~ for all scheduler variables bs. Then the parallel program
r = (V, Q, T, qt) is a mutual-exclusion system of Nprocesses.

Suppose q E Q. Then we say that process i is in the noncritical region (respectively,
in the critical region, halted) in state q if cnt,(q) ~ noncritical, (respectively, criticali,
halted,). Process i is in the trying region (respectively, in the leaving region) in state q
if cnt,(q) E c~,(Tr,) (respectively, c~,(Lv,)). The transition when noncritical, then

¢
before,(Tr,) (respectively, when critical, then before,(Lv,), when noncritical, then
halted,) is called the trying transition (respectively, leaving transition, halting transition)
for process i.

A mutual-exclusion system with weak binary semaphores is a mutual-exclusion
system such that the only semaphore operations in the trying and leaving regions are
weak binary semaphore operations. Mutual-exclusion systems with weak general
semaphores, blocked-set binary semaphores, and blocked-set general semaphores are
defined similarly.

2.6 SOLUTIONS TO THE MUTUAL-EXCLUSION PROBLEM. A mutual-exclusion sys-
tem has the mutual-exclusion property if there is no reachable state q such that more
than one process is in the critical region in state q.

Process i in a mutual-exclusion system is deadlocked in a state q if process i is in
the trying or leaving region in state q and there is no finite execution sequence a
from q consisting only of transitions for processes in the trying region, critical region,
or leaving region, such that process i is not in the trying or leaving region in state
nxt(q, a). A mutual-exclusion system is deadlock free if no process is deadlocked in
any reachable state.

A mutual-exclusion system is free from indefinite postponement if there is no valid
infinite initial execution sequence, with corresponding state sequence o, such that for
some k and a l l j > k no process is in the critical region in state o(j). The requirement
of freedom from indefinite postponement implies Dijkstra's requirement on a solution
to the mutual-exclusion problem that, "I f two processes are about to enter their
critical regions, it must be impossible to devise for them such finite speeds, that the
decision which one of the two is the first to enter its critical region is postponed to
eternity."

Semaphore Primitives and Starvation-Free Mutual Exclusion 1059

A mutual-exclusion system is starvation free if there is no valid infinite initial
execution sequence, with corresponding state sequence o, having the following
properties:

(1) There is a process i such that for all k _> 0, there exist m _> k and n _ k with
process i in the critical region in state o(m) and not in the critical region in state
o(n).

(2) There is a process i ' and a k ' > 0, such that for all j >>_ k', process i ' is in the
trying or leaving region in state o(j) .

A solution to the mutual-exclusion problem for N processes is a mutual-exclusion
system of N processes that has the mutual-exclusion property, is deadlock free, and
is free from indefinite postponement. A solution to the starvation-free mutual-exclusion
problem is a solution to the mutual-exclusion problem that is starvation free.

3. Busy-Waiting and Symmetry

With the basic definitions out of the way we may now proceed with our investigation.
The first question it is reasonable to ask is whether there are any solutions at all to
the starvation-free mutual-exclusion problem. We assume implicitly that N >_ 2, since
it is trivial to solve the problem for N = 1 process. We immediately see that the
answer to this question is "yes," as is illustrated by any of a number of solutions to
be found in the literature, for example, Knuth's solution in [12]. Moreover, Knuth's
solution illustrates the fact that it is not even necessary to use semaphores to solve
the problem. Thus we will not be able to compare the power of semaphore primitives
on the basis of their ability to implement starvation-free mutual exclusion unless we
impose restrictions sufficient to eliminate semaphore-free solutions from considera-
tion.

Knuth's solution has two properties that might be viewed as undesirable i f found
in a solution using semaphores. We will term these properties busy-waiting and
asymmetry. Busy-waiting means that processor time is used for waiting, rather than
for more useful computation. One reason semaphores were introduced was to allow
the mutual-exclusion problem to be solved without busy-waiting. Knuth's solution is
asymmetric in the sense that processes do not all execute identical program text;
rather, the program to be executed by process i depends explicitly on the process
number i. In contrast, few solutions in the literature that use semaphores are
asymmetric. Thus it seems reasonable to restrict our attention solely to symmetric
mutual-exclusion systems, and to mutual-exclusion systems with no busy-waiting, in
an attempt to eliminate semaphore-free solutions. In this section we precisely define
these notions and show that indeed there are no semaphore-free symmetric solutions
to the mutual-exclusion problem and no semaphore-free solutions without busy-
waiting.

We first prove that any solution to the mutual-exclusion problem has a particular
execution sequence in which all processes other than processes 1 and 2 become
halted, and process 1 executes infinitely many critical and noncritical regions while
process 2 remains in the noncritical region. This execution sequence, though not
valid, will be useful for constructing various execution sequences that are valid.

LEMMA 3.1. Let r be a solution to the mutual-exclusion problem. I f qo is a
reachable state such that process 1 is in the noncritical (respectively, critical) region in
state qo and all other processes are either halted or in the noncritical region in state qo,

1060 EUGENE W. STARK

then there is a finite execution sequence a for process l from qo such that process 1 is in
the critical (respectively, noncritical) region in state nxt(q, at).

PROOF. An execution sequence for process 1 is an execution sequence consisting
only of transitions in 7"1. Let to be the trying (respectively, leaving) transition for
process 1. Then process 1 is in the trying (respectively, leaving) region in state ql =
nxt(qo, to), and all other processes are either halted or in the noncritical region in
state q~. Since F is deadlock free, there is an execution sequence t~ . - . t,~-~ for process
1 such that process 1 is in the critical (respectively, noncritical) region in state qn =
nxt(q~, tl . . . t,,-~). Let ~ = tot1 . . . tn-1. []

LEMMA 3.2. Let F be a solution to the mutual-exclusion problem for N >_ 2
processes. Then there is an infinite initial execution sequence a for r with corresponding
state sequence o, along with indices ncr, and cr, for each i >_ 1, such that

(1) Processes I and 2 are in the noncritical region in state o(ncr~).
(2) For all variables v, (o(ncrl))(v) = qI(v).
(3) For all j>_ ncrl and all k with 3 <_: k <_ N, process k is halted in state o(j) .
(4) For a l l j >_ ncrl, or(j) E Tt.
(5) For all i >_ 1, cr, is the least j > ncr, such that process 1 is in the critical region in

state o(j) , and ncr~+l is the least j > cr~ such that process 1 is in the noncritical
region in state o(j) .

PROOF. We inductively construct an increasing sequence a~, a2 , . . , o f finite initial
execution sequences, along with the indices ncr, and cri. The sequence a will be the
unique infinite initial execution sequence with all o f the ai as prefixes. It will follow
from the construction that a has properties (1)-(5).

Basis. Define al ffi tot~ . . . tN-8, where t, is the halting transition for process
i + 3 for each i with 0 _< i <_ N - 3. Clearly a~ is an initial execution sequence for
F, and if we define ncr~ ffi N - 2 and qncr~ ffi nxt(q I, al), then processes 1 and 2 are
in the noncritical region in state qncr,, proceSS k is halted in state qnc~l for all k with
3 _< k <_ N, and qn~(v) ffi qI(v) for all variables v.

Induction step. Suppose, for some i _> 1, that a, is an initial execution sequence
for F such that if qn~, ffi nxt(qi, a,), then processes 1 and 2 are in the noncritical
region in state q ~ , and process k is halted in state q,~, for all k with 3 _< k <_ N. By
Lemma 3.1 there is an execution sequence /~ of length m,, consisting only of
transitions for process 1, such that i f cr, ~ n c r , + m~ and q~, ffi nxt(qn~r,, fl,), then
process 1 is in the critical region in state q~,. Similarly, there is an execution sequence
y, o f length n,, consisting only o f transitions for process 1, such that if ncr/+l .ffi
cr, + n, and q.~,+~ ffi nxt(q~,, y,), then process 1 is in the noncritical region in state
q~,+,. We may assume, without loss of generality, that fl, and y~ are the shortest
sequences with this property. Define a,+~ ffi a,/~ly~. Then q.~r,+~ ffi nxt(q~, a,+0, and
process 1 is in the noncritical region in state q~c~,+,. Since/] , and y, contain only
transitions for process 1, it is clear that process 2 is in the noncritical region in state
q~,÷,, and process k is halted in state qn~,÷~ for all k with 3 _< k _< N. []

3.1 BUsY-WAITING. A mutual exclusion system has busy-waiting i f for every
M >_ 0 there is a process i, indices m and n, and an initial execution sequence a, with
corresponding state sequence o, such that

(1) For a l l j with m <_j <_ n, process i is in the trying or leaving region in state o(j) .
(2) The number of a(m), a(m + 1), . . . , a(n) that are transitions for process i is at

least M.

Semaphore Primitives and Starvation-Free Mutual Exclusion 1061

This definition captures the notion that the essence of busy-waiting is that no a
priori bound may be placed on the number of transitions a process may execute in
the trying or leaving region. Let NBW denote the class of all mutual exclusion
systems with no busy-waiting.

THEOREM 3.1. Every semaphore-free solution to the mutual-exclusion problem has
busy-waiting.

PROOF. Let 1-' be a semaphore-free solution to the mntual-exclnsion problem. Let
a be the execution sequence for I" constructed in Lemma 3.2, and let o be the
corresponding state sequence. Clearly the subsequence a(0, erx) of a is an initial
execution sequence for F such that process 1 is in the critical region in state a(crx). It
is easily seen by the definition of a mutual-exclusion system and of the semantic
mapping 97, that since I" is semaphore free, process 2 has an enabled transition in any
reachable state in which it is not halted. In addition, whenever process 2 is in the
noncritical region, it has the option of executing the trying transition, rather than the
halting transition. Thus, corresponding to each n > 0 is a finite execution sequence
fin of length n from state o(ncrx) which contains only transitions for process 2. By the
definition of a mutual exclusion system, and because 1" has the mutual-exclusion
property, process 2 must be in the trying region in state nxt(o(crO, fin(0, j)) for all j
with 0 < j _ n. Since n may be chosen arbitrarily large, F has busy-waiting. []

3.2 SIMILAR PROCESSES Argo SYMMETRY. We say that processes i and j in a mutual
exclusion system are similar if Tr, = Tb and Lv, = Lvs. Note that if i a n d j are similar
processes, then there is a natural bijection cp,s between the sets of control states C, and
Cs (~P,s :noncritical ~-> noncriticals, ~P,s :before,(A) ~ befores(A), etc.). In addition, it is
easily proved by structural induction on LP that there is a bijeetion q~,i between the
sets of transitions 1", and Ts, where if t' ~ "1", is not part of a semaphore operation,
and

t' = w h e n cl and B(v{ , . . . , v~) do (u | , u~) := F (v | vi~) t h e n c2,

then

t ' = ~k,s(t') --- when q%(cO and B(v~ vh)
do (uS , . . . , uS) := F(v:~, . . . , v~) then %s(c2).

It will be convenient to use superscripts to indicate correspondence under ~o; thus in
the sequel t' and t s will always denote corresponding transitions in the similar
processes i and j.

Let i a n d j be similar processes in a mutual-exclusion system F, and let q and q' be
states of F. We say that q looks to process i as q' looks to process j (in symbols,
q ,% q') if

(1) ~p,s(cnt,(q)) = cn6(q'),
(2) q(v') = q'(v s) for all v' E G U L,.

If q ,=s q, then we say that state q looks alike to processes i andj. If q i=i q', then
we say q looks like q' to process i. Note that

(1) q ,--, q,
(2) q , ~ q' i f f q ' s=, q,
(3) i fq ,=s q' and q ' j=~ q", then q ,=h q".

LEMMA 3.3. Let i and j be similar processes in a mutual-exclusion system r . Let t'
be a transition for process i, not part o f a semaphore operation, and let q and q' be

1062 E U G E N E W . S T A R K

states such that q ~=s q'. I f t' is enabled in state q, then t J is enabled in state q', and
nxl(q, t i) ~=j nxt(q' , t:).

PROOF. The lemma follows directly from the definition of ~,s. []

A mutual exclusion system is symmetric i f for every two processes i and j,

(1) processes i a n d j are similar, and
(2) ,--,

Let SYM denote the class of symmetric mutual-exclusion systems. We have one
important technique for proving results about symmetric mutual-exclusion systems.
This technique, embodied in Lemma 3.5 below, states that if a state qo looks alike to
the similar processes 1 and 2, and process 1 can execute some sequence of transitions
a from state qo, then as long as a contains no transitions that are part of semaphore
operations, processes l and 2 can execute in "lock-step" from q0. This means that
processes 1 and 2 alternate execution of corresponding transitions, with the result
that neither process 1 nor 2 is aware of the other's existence. Later we will generalize
this result to apply to sequences a containing semaphore operations.

t o l l • • • iS If processes i and j in a mutual exclusion system are similar, and if oe i ,
a sequence of transitions in T,, then let ally(it, m, n) denote the sequence
t t ~J ~t , J t J re, m,,,+1,,,+1 • "" t,,-lta-1, i f n > m, or A, i f n ~ m. We will omit the subscripts and
write all(a, m, n) when i and j are clear from the context.

LEMMA 3.4. Let processes 1 and 2 be similar processes in a mutual-exclusion
system, and let q be a state such that q 1--2 q; suppose transition t 1 E 7"1, not part o f a
semaphore operation, is enabled in state q, and suppose q' = nxt(q, tl). I f the transition
t ~ ~ T2 corresponding to t 1 depends on no variables affected by t 1, then t 2 is enabled in
stale q', and i f q" = nxt(q ' , t 2) , then q" 1=2 q " and q" 1=1 q'.

PROOF. The essence of the proof is that process 1 sees the same values of variables
in state q as process 2 sees in state q'. Because of this, even though t 2 may overwrite
global variables that were affected by t 1, the values written by t 2 are the same as
those written by t 1.

More precisely, suppose

P = when cl and B(v~ v~) do (u 1 u~) .--- F(v l v~) then c2.

Then

t 2 = when qOlz(Cl) and B(v~ v~) do (uL . . . , uL) := F(v] v~) then ~12(cz).

Since cntl(q) = c~, q 1=2 q, and executing t 1 cannot change the control state of process
2, we have that cnt2(q') = qolz(cl). Since t 2 depends on no variables affected by t 1, we
know that q'(v~) = q(v2,) = q(v}) for 1 _< i _~ n. Since 11 is enabled in state q, we
have that B[q(v~) q(v~)] is true, hence B[q'(v~) q'(v~)] is true, and therefore
t 2 is enabled in state q'. Let q" = nxt(q ' , t2). Note that cnt2(q") = q~2(c2), cntl(q ')
= e2, and hence cn6(q") = c2, since execution of t 2 cannot change the control state
for process 1.

To show that q" 1=2 q" and q" 1=1 q', we must show that if w E G, then q" (w)
= q'(w), and i f w 1 E L1, then q " (w 1) = q ' (w 1) and q " (w 1) = q"(w2). Suppose w E G.
I f w is not affected by t 2, then q" (w) = q'(w). I f w is affected by t 2, then w = u, 2 for
some i. But then q" (w) = F,[q'(v~) q'(v~)] = F , [q(v~) , . . . , q(v~)] = q'(w).

Finally, suppose w 1 E L1. Then q " (w 1) = q'(wl), since t 2 cannot affect variables in
LI. I f w 1 is not affected by t 1, then w z is not affected by t 2, and hence q "(w 1) = q,(w 1)
= q(w 1) = q(w ~) == q ' (w 2) == q"(w2). I f w 1 is affected by t 1, then w 1 = u~ for some i.

Semaphore Primitives and Starvation-Free Mutual Exclusion 1063

In this case, q"(w 1) = q'(w l) = F,[q(v~) q(v~)] =~ Fi[q'(v~), . . . , q'(v~)]
= q"(w2). [:]

LEMMA 3.5 (LOCK-STEP LEMMA). Suppose processes I and 2 are similar processes
in a mutual-exclusion system, qo is a state such that qo 1=2 qo, and a is an execution
sequence of length m for process I from qo. I f ~ contains no transitions that are part o f
semaphore operations, then t~ -- alt(a, O, m) is also an execution sequence from qo. In
addition, if qm = nxt(qo, a) and q" --- nxt(qo, fl), then q" 1=2 q ' , q'~ 1=1 qm, and

r S q,,() = qm(s) for all semaphore variables s.

PROOF. The proof is by induction on m.

Basis. If m = 0, then a -- A, and the lemma holds trivially.

Induction step. Suppose the lemma holds for sequences of length m _ 0. We shall
show that the lemma holds for sequences a of length m + 1. Suppose a = totxl 1 . . . t~,
and let o = qoql . . . qm+l be the corresponding state sequence. Application of the
lemma to the subsequence a(0, m) of length m shows that alt(a, O, m) is an execution
sequence from q0. If q" = nxt(qo, alt(a, O, m)), then q" 1=2 q ' , q " 1"1 qm, and q'(s)
= qm(s) for all semaphore variables s. Since q" 1=1 qm and t~ is enabled in state q~,
t~ is enabled in state q" by Lemma 3.3. Let q~ = nx t (q ' , t~). Since t~ (and hence
t~) is not part of a semaphore operation, t~ depends on no variables affected by t~.
Hence Lemma 3.4 implies that t~ is enabled in state q~, and if q~+~ -- nxt(q~,, t~),
then q '+l x=2 q '+l and q '+l 1=1 qm+l. Since neither t~ nor t~ can affect a semaphore
variable, we have that q'm+l(S) = qm+l(S) for all semaphore variables s. []

THEOREM 3.2. Every solution to the mutual-exclusion problem in S Y M uses
semaphores.

PROOF. Suppose r is a solution to the mutual-exclusion problem that is in SYM
but uses no semaphores. Let a be the execution sequence for 1 ~ constructed in Lemma
3.2 Then a(ncrl) 1--2 a(ncrl), and a(ncr~, crl) is an execution sequence for process 1
from a(ncr~) which contains no transitions that are part of semaphore operations.
Application of Lemma 3.5 shows that ~ = alt(a, ncrl, cra) is also an execution
sequence from o(ncrl) for 1", and i fq -- nxt(a(ncrl), fl), then q 2=h q and q 1ffil o(crl).
But this means that processes 1 and 2 are both in the critical region in state q. Since
q ffi nxt(q ~, a(O, ncrt)fl), we have a contradiction of the assumption that 1" has the
mutual-exclusion property. []

4. Weak and Blocked-Set Semaphore Solutions in N B W and S Y M

Now that we have shown that there are no semaphore-free solutions to the mutual-
exclusion problem in either NBW or SYM, it is reasonable to ask whether there are
any weak or blocked-set semaphore solutions in these classes. The answer to these
questions is "yes," as will now be shown. In this paper, existence results are argued
by displaying a purported solution to the starvation-free mutual-exclusion problem
in the desired class. They are stated as examples rather than theorems, since rigorous
proofs of correctness are not supplied.

Example 4.1. There exists a solution to the starvation-free mutual-exclusion
problem in NBW f3 SYM with either blocked-set binary or blocked-set general
semaphores. []

Such a solution, due to Morris [18], is displayed in Figure 2. This solution is
surprisingly difficult to understand, and no attempt to explain its operation will be

1064

G = {countl, count2} initially {0, O}
L - {local} initially {0}
s - {a, b, m} initi~y {l, l, O}

(Trying region Tr,)

P~b(b);
local :== countl;
countl :-- local + 1;
Vb.b(b);
P~,~(a);
P~b(b);
local :== countl;
countl : - l o c a l - 1;
local : - count2;
count2 : - local + 1;
if countl > 0 then beam

VbJb(b),
Vb~(a)

end else begin
Vbeb(b),
V/~b(m)

end;
Pb, b(m)

end

FIG. 2.

EUGENE W. STARK

(L~ving region Lv,)

local :.= count2;
count2 :ffi l o c a l - 1;
ff count2 > 0 then V~b(m)
else Vb.b(a);
local :.~ 0

end

Morris' solution to starvation-free mutual exclusion.

made here. The reader who is interested in a detailed discussion of this solution
should refer to the explanation and informal correctness argument given in [18] or to
the more formal correctness proof of [1], which uses temporal logic techniques. It is
important to note that the freedom from starvation of this solution depends crucially
on its use of blocked-set semaphores rather than weak semaphores.

Example 4.2. There exists a solution to the starvation-free mutual-exclusion
problem in NBW n SYM with either weak binary or weak general semaphores. []

Figure 3 displays a weak semaphore solution in NBW - SYM, and Figure 4 shows
how to use this solution to construct a solution in NBW n SYM through the addition
of a new semaphore variable. The lines preceded by asterisks in Figure 3 are not in
the language .Y; however it is a straightforward but tedious process to rewrite these
lines as statements of ~..

The solution of Figure 3 uses the collection of variablesflag,, along with the roving
pointer next to implement a fair, but not FIFO, queuing discipline among the N
processes. When process i wishes to execute in its critical region, it first indicates this
to the other processes by setting flag, to one. It then checks the variable empty to see
if any process is currently executing in its critical region. If not, then process i
proceeds into its critical region. If there is another process in its critical region, then
process i waits on its private semaphore variable s,. When a process leaves its critical
region, it examines the variables flag~ to select the next process to execute in the
critical region. Although weak semaphore operations on the variable mutex 1 are used
to obtain mutually exclusive access to the variable empty, no starvation is possible,
since the use of next ensures that no process may overtake a waiting process more
than once.

In Figure 4, the trying regions Tr, and Lv, of Figure 3 are used in the construction
of new symmetric trying regions Tr/ and Lv'. The first time through the trying

Semaphore Primitives and Starvation-Free Mutual Exclusion 1065

G " {next, empty, fiagl,flag2 f lagN} initially {1, !, 0, 0 0}
L - - {.first} initiaUy {0}
S ~ {mutexl, sl, s2 sN} initially {I, O, O, O}

(Trying region Tr,) (Leaving region Lv,)
he~ be~On

flag, : - 1; flag, :~ O,
f irst "-- 0;, Pwb(mutex l);
Pwb(mutexl); * f o r j := next + ! to N step l, 1 to next step ! do
if empty ~ 0 then begin * i f f lagj ffi 1 then begin

empty :z 0; * next " - j ;
f irst :• 1 * Vwb(S:);

end else skip, * goto out
Vwb(mutex 1); * end else skip;
iffirst s 0 then Pwb(S,) else skip * empty : - 1;

end *out: Vwb(mutexl)
end

FIG. 3. Weak semaphore solution in NBW - SYM.

G' - G U {procno) initially {1}
L' ffi L U {tdent} initially {0}
S' - S U {mutex2} initially {1}

(Trying region T~)

befla
if ident ffi 0 then begin

Pw~(mutex2),
ident :m procno;
proeno "ffi ident + 1;
Vwb(mutex2)

end else skip,
if ident ffi 1 then Trl
else if ident -, 2 then Tr2

(Leaving region Lye)

if Ment ffi 1 then Lv~
else if tdent - 2 then Lv,

else if Merit - N then Lv•
else skip

else if ident ffi N then TrN
else skip

end

FIG. 4. Construction of solution in NBW N SYM.

region, each process "picks a number" and saves it in the local variable ident. This
value is subsequently used to select among the N trying- and leaving-region protocols.

5. "No Memory" and the Power of Weak Semaphores

The solution presented in Figure 4 has the somewhat pathological property that it is
only superficially symmetric but in essence is an asymmetric solution. This superficial
symmetry is obtained by having each process "pick a number" the first time through
the trying region. This number is retained throughout the fifetime of the process and
is used to select among the N different synchronization protocols. Thus processes
have "memory" in the sense that they retain and use information about previous
synchronization history to modify future synchronization protocols. It is noted in [2]
that few solutions to mutual exclusion in the literature have this memory property.

We may formalize the notion of memory by saying that a mutual-exclusion system
has no memory if for each process i, variable v' E L,, and reachable state q such that
process i is in the noncritical region in state q, q(v i) ffi qI(vi). Let NM denote the set

1066 EUGENE W. STARK

of all mutual-exclusion systems with no memory. Note that the solution of Figure 2
has the no-memory property, and thus there is a blocked-set semaphore solution to
the starvation-free mutual-exclusion problem in NBW N SYM rl NM. In contrast,
the results of this section will show that there is no such solution using weak
semaphores.

LEMMA 5.1 (WEAK BINARY LOCK-STEP). Lemma 3.5 holds for mutual-exclusion
systems with weak binary semaphores even if ~ is allowed to contain V operations.

PROOF. The details of the proof by induction on the length of a are omitted. []

LEMMA 5.2. Let [' be a mutual-exclusion system with weak binary semaphores.
Suppose a is an execution sequence for process 1 from a state qo. I f q~ is a state such
that q~ ~ffil qo, and if q~(s) >_ qo(s) for all semaphore variables s, then ~ is an execution
sequence from q~ as well.

PROOF. Note that it suffices to prove the lemma for finite sequences a, since if
a is infinite, then application of the finite case shows that any finite prefix of a is an
execution sequence from q6, and h e n c e , itself is an execution sequence from q6. It
is convenient to prove a somewhat stronger result, namely, in addition to proving
that a is an execution sequence from q6, prove that if qm -~ nxt(qo, a) and qg =
nxt(q6, a), then qm 1=~ q " and qg(s) >_ qm(s) for all semaphore variables s. The
details introduce nothing new and are omitted. []

THEOREM 5.1. There is no solution to the starvation-free mutual-exclusion problem
in S YM A N M that has weak binary semaphores.

PROOF. Suppose F is a solution to the starvation-free mutual-exclusion problem
that is in SYM N NM. Suppose further that l" has weak binary semaphores. We will
construct an execution sequence for 1 ~ that starves process 2. Since this contradicts
the assumption that F is starvation free, we conclude that F cannot exist.

Let o~ be the execution sequence for process 1 constructed in Lemma 3.2, and
let o be the corresponding state sequence. We will first show that for each i > 0,
a(ncr,, cr,) contains at least one P operation. To see this, suppose there were no P
operations in a(ncr,, cr,) for some i. Because P is in SYM N NM, we know that
processes 1 and 2 are similar and that o(ncri) ~ffi2 o(ncr,). Application of Lemma 5.1
shows that air(a, ncr,, or,) is also an execution sequence from o(ncr,), and that if
q ffi nxt(o(ncr,), ait(a, ncr,, cr,)), then q 1ffi2 q and q 1,=~ o(cr,). Hence processes 1 and
2 are both in the critical region in state q, a contradiction of the assumption that F
has the mutual-exclusion property.

Thus each o~(ncr,, cr,) must contain at least one P operation. Let the indices
pl, p2 be defined so that a(p,) is the first P operation in a(ncr,, cr,), and let s,
be the corresponding semaphore variable. Since S is finite but there are infinitely
many s,, there must be one semaphore variable Y such that s, -- i for infinitely
many i. Let k be the least i for which s, --- Y. We will now show that /~ =
a(O, ncrk)alt(a, ncrh, pk)a(pk, oo) is an initial execution sequence for F that starves
process 2.

Obviously a(0, ncrk) is an initial execution sequence for F. Now a(ncrk, pk)
contains no P operations, and o(ncrk) ~ffi2 o(ncrk). Application of Lemma 5.1 shows
that alt(a, ncrk, pk) is an execution sequence from state o(ncrk). In addition, if q =
nxt(o(ncrk), air(a, ncrk, pk)), then q 1=~ q and q 1=1 o(pk). Thus in state q both
processes 1 and 2 are about to execute P(Y) operations. In addition, all semaphore
variables have the same values in state q as they do in state o(ph). Lemma 5.2

Semaphore Primitives and Starvation-Free Mutual Exclusion 1067

therefore shows that a(pk, o0) is an execution sequence from q for r . Thus fl is an
infinite initial execution sequence for 1-'.

To show that fl starves process 2, note that process 1 enters and exits its critical
region infinitely often in fl, as a consequence of the construction of ot in Lemma 3.2.
Also, process 2 remains forever in the trying region in fl, about to execute a P(s-)
operation. Since a(pk, oo) contains infinitely many P(~) operations and each P(k')
sets Y to zero, process 2 is disabled infinitely often in ft. The sequence fl is therefore
a valid execution sequence in which process 2 starves. This contradicts the assumption
that 1" is starvation free, and we conclude that r cannot exist. []

If a is a finite sequence of transitions for a mutual-exclusion system with weak
general semaphores, and i f s is a semaphore variable, then define the index of a with
respect to s, denoted ind(s, a), to be the number of P(s) transitions in ot minus the
number of V(s) transitions in c~. The notion of the index of a sequence of transitions
is useful for the following reason: If q is a state and a is an execution sequence from
q, then (nxt(q, a))(s) = q(s) - ind(s, a).

LEMMA 5.3 (WEAK GENERAL LOCK-STEP). Suppose processes 1 and 2 are similar
processes in a mutual-exclusion system with weak general semaphores, qo is a state such
that qo 1=2 qo, and a is an execution sequence of length m for process I from qo. I f
qo(s) - 2.ind(s, a(O, j)) >_ O for all s E S and 0 < j <_ m, then the sequence fl -~
alt(a, O, m) is also an execution sequence from qo. In addition, i f q " ffi nxt(qo, fl), then
q" 1=2 q ' , q" 1=1 qm, and for all s E S, q ' (s) = qo(s) - 2.ind(s, a).

PROOF. The proof is by induction on the length of a as before. The additional
hypothesis is used to show that the various P operations are enabled. []

LEMMA 5.4. Let r be a mutual-exclusion system with weak general semaphores.
Suppose a is an execution sequence for process 1 from a state qo. I f q~ 1=1 qo and
q'o(s) - ind(s, a(0,j)) _> O for all s ~ S and 0 < j <_ I a [, then a is an execution sequence

from q'o as well.

PROOF. The details of the proof by induction on the length of a are omitted. []

THEOREM 5.2. Any solution to the starvation-free mutual-exclusion problem that
has weak general semaphores and is in S YM N N M also has busy-waiting.

The construction in the proof of this theorem is somewhat more involved than
those that have appeared so far, so it will be convenient to separate out some
reasonably independent parts of the proof as Lemmas 5.5 and 5.6 and Corollary 5.1.

In the sequel, let U be a solution to the starvation-free mutual-exclusion problem
that has weak general semaphores and is in SYM N NM. Let a be the infinite initial
execution sequence for F constructed in Lemma 3.2, and let o be the corresponding
state sequence. If s E S, then let #e~8)(i, j) denote the number of P(s) operations
in the subsequence a(i, j) of a. Let ind(s, i, j) abbreviate ind(s, a(i, j)) . Define
val(s, i, j) ffi (o(i))(s) - 2.ind(s, i, j) . Intuitively val(s, i, j) represents the value the
semaphore s would have if processes 1 and 2 were to execute the lock-step execution
sequence all(a, i, j) from state o(i).

The intuition behind the following lemma is that if processes 1 and 2 begin
executing in lock-step from state o(ncr,) for some i ___ 1, then there must be some P
operation before both processes reach the critical region, where the processes are
forced to "split up."

LEMMA 5.5. For each i >_ 1 there exists an index split,, which is the least j with ncr,
<_ j < cry, such that c~(j) is a P operation on some semaphore s with val(s, ncri, j) < 2.

1068 EUGENE W. STARK

Moreover, i f s* denotes the semaphore variable on which the transition ~(split,) operates,
then val(s *, ncr,, split,) -- 1.

PROOF. I f val(s, ncri, j) _> 2 for each j with ncr, _< j < cri and a(j) a P opera-
tion on some semaphore variable s, then we could apply Lemma 5.3 to show that
air(a, ncrl, crl) is an execution sequence from o(ncr,). Since this means that processes
! and 2 would both be in the critical region in state nxt(o(ncrs), alt(a, hers, ors)), it
must be the case that there is at least o n e j with ncri ~ j < crl and a (j) a P operation
on some semaphore s, such that val(s, nets, j) < 2. Let split, be the least such j, and
let s* be the corresponding semaphore variable.

It remains to be shown that val(s*, nor,, splits) ~ O. By the construction of
split, in the preceding paragraph, we know that val(s, nor,, j) >_ 0 for all semaphore
variables s and all j with hers <- j <- split,. We may therefore apply Lemma
5.3 to show that air(a, ncr,, spliti) is an execution sequence from a(ncr,). I f q =
nxt(a(ncr,), alt(a, nor,, split,)), then q(s*) = val(s*, nor,, split,). But processes 1
and 2 are both about to execute a P(s*) operation in state q and hence would be
deadlocked if q(s*) = O. This would be a contradiction, and we conclude that
val(s*, nor,, split,) = 1, as asserted. []

Processes 1 and 2 can execute the sequence alt(a, nor,, split,) from o(ncr~) before
being forced to split up, but there is no guarantee that process 1 will be able to
continue alone unhindered. We would like an answer to the question of how far it is
safe for processes 1 and 2 to execute in lock-step from o(ncr,), i f process 1 is then to
continue alone unhindered. The answer to this question depends upon how great the
values of the semaphore variables are in state o(ncr,) and is given by Corollary 5.1
below.

LEMMA 5.6. Let i > O, and let c:S --> IN, with the property that (a(j))(s) _> c(s) f o r
all j >_ ncr, and all s E S. Then there exists an index safei, which is the least j with
ncrs <_ j <_ split,, such that the transition a (j) is a P operation on some semaphore
variable s, and ind(s, ncr,, j) = c(s).

PROOF. It suffices to show the existence o f one such j , with s =. s*. Let I (j)
abbreviate ind(s*, hers, j) . Thus I(ncrs) - 0 -< c(s*). Now val(s*, nor,, splits) -, 1 by
the definition of split,. But val(s*, nor,, split,) m (o(ncr,))(s*) - 2.I(splils). Hence

I(split,) = (o(ncri))(s*) - 1(split,) - 1
= (o(split,))(s*) - 1
= (o(splits + 1)Xs*)
>_ c(s*).

Thus I(ncr,) = 0 and I(split,) >_ c(s*,). But I f (j) - l (j + 1)1 -< 1 for ncr, _<j < split,.
Hence I (j) = c(s*) for somej with nor, <_j <_ splitl. []

COROLLARY 5.1. The sequence a(safe,, oo) is an execution sequence f rom state
nxt(o(ncrs), alt(a, ncr,, safe,)).

PROOF. Let q = nxt(o(ncr,), o~(ncrs, safes)), and let

q' = nxt(a(ncr,), alt(~, nets, safes)).

By the definition of safe,, q'(s) >_ q(s) - c(s) for all s E S. Since (o(j))(s) >_ c(s) for
all j _> ncr, and all s E S, it follows that q(s) - ind(s, safe,, j) >_ c(s) for all
j >_ safe,. Thus q'(s) - ind(s, safei, j) >_ 0 for al l j >_ safei. Since q 1~2 q', Lemma 5.4
shows that a(safe,, oo) is an execution sequence from q'. []

Semaphore Primitives and Starvation-Free Mutual Exclusion 1069

PROOF OF THEOREM 5.2. We will show that r has busy-waiting by showing the
existence of a semaphore variable ~ such that for any M >__ 0 there is an m > 0 with
#p~(ncrm, crm) > M. This will be accomplished as follows. We will show the
existence of a sequence of functions Co, cl mapping S to IN such that

(1) For aft i >_ 0, c, < c,+1, where c, < c,+~ is defined to mean that for all semaphore
variables s, c,(s) <_ c,+~(s), and strict inequality holds for at least one s.

Since there are only a finite number of semaphore variables, property (1) implies
that there must be a semaphore variable ~ such that c,(s-) increases in an unbounded
fashion with increasing L We will show in addition the existence of a sequence of
natural numbers ko, k~, . . . with the properties:

(2) for all i _> 0, a l l j _ ncrk,, and all semaphore variables s, (o(j))(s) >_ ci(s);
(3) for any n there is an m _> n such that #pc~)(ncr~., erA.) :~ cm(s").

Properties (1) and (3) show that 1 ~ has busy-waiting, since given M >_ 0 we may
choose n such that cA(s-) -> M, then select m _ n so that ~e~7~(ncrk,, crk,,) --> c,,,(s-').

We now turn to the inductive construction of the functions c~ and numbers ki.

Basis. Define/co - 1, and let co(s) = 0 for all s E S. Obviously, for a l l j ~ncrko
and all s E S, (o(j))(s) > co(s).

Induction step. Suppose for some i _> 0 we have a function ei and number k~ such
that for a l l j _ ncrk, and all s ~ S, (o(j))(s) > c,(s).

Lemma 5.6 and Corollary 5.1 show the existence of safek,, such that ~8 =
alt(a, ncrk,, safe~,)a(safek,, oo) is an execution sequence from o(ncrk,) for F. In
/~, process 1 executes infinitely many critical regions while process 2 remains
in the trying region, about to execute a P operation on some semaphore, call it ~. I f
/~ were valid, then we would have a contradiction of the assumption that F is star-
vation free. Hence/3 must not be valid. The only way for this to occur is if there
exists k,+a > k, such that q j (~)> 0 for all j _> ncrk,+,, where qy -- nxt(o(ncrk,),
alt(a, ncrk,, safek,)a(safek,, j)). But since qj(Y,) > 0 and ql(~) = (o(j))(~) - ci(~), we
have that (o(j))(Y,) _> c,(Y,) + 1. Define c,.+a(s) ffi c,(s) for aft s E S with s # ~, and
define C,+l(g) = c,(Y,) + 1. This completes the construction of Ci+x and k~+l from c,
and k,.

It is easy to see that the c, and k, det'med in this way have properties (1) and (2).
To see that (3) holds as weft, let ~ be the semaphore variable, whose existence was
argued above, such that c,(s-') increases in an unbounded fashion with increasing i. It
must be the case that for infinitely many h i i s the semaphore ~. Since for each such
i, ind(~, nero,, safe~,) = c,(s-'), and since #p~)(ncr~,, safe~,) >-- ind(£, nero,, safe~,),
property (3) holds as weft. []

6. Summary and Conclusions

The differences in power among the various types of semaphore primitives are
summarized in Figure 5, where each colunm corresponds to various intersections of
the classes NBW, SYM, and NM. Each row corresponds to a type of semaphore
primitives. The entries in the table are either Y (for "yes"), indicating the existence
of a solution to the starvation-free mutual-exclusion problem in the given class that
uses the given type of semaphores, or N, which indicates that no such solution exists.
The entry 2 indicates that there is a solution to the starvation-free mutual-exclusion
problem with weak general semaphores in the class SYM ~ NM for two processes.
The solution supporting this statement was not presented in this paper but may be

1070 EUGENE W. STARK

Weak binary
Weak general
Bilked-set bmary
Blocked-set general

NBW
SYM

- - NBW
SYM SYM
NM NM

Y N N
Y 2 N
Y Y Y
Y Y Y

FIG. 5. Relative "power" of the various primitives.

found in [21]. Note that this solution, as well as that of Example 4.2, refutes Morris'
claim in [18] that weak semaphores "obviously" cannot be used to implement
starvation-free mutual-exclusion even for two processes. It is an open question
whether there exist solutions of this type for more than two processes; however, a
result of [21] shows that if such a solution exists, it must make use of local variables.

Note that five of the eight combinations of NBW, SYM, and NM are missing from
Figure 5. All these combinations except NM and NBW N NM may be filled in by
noting that if a solution exists in a given class of mutual-exclusion systems, then that
same solution is in any larger class. For the remaining two classes note that it is
meaningless to impose the requirement of no memory in the absence of symmetry,
since in an asymmetric solution global variables may be used in a disciplined fashion
to simulate the effect of local variables.

The relationship among the various types of semaphore primitives may be sum-
marized as follows. Blocked-queue semaphores are rather powerful primitives which
admit a trivial solution to the starvation-free mutual-exclusion problem. Blocked-set
semaphores are somewhat weaker than blocked-queue semaphores; however, it is
still possible to use them to implement starvation-free mutual exclusion if we are
willing to accept a somewhat more complicated solution. Weak semaphores are much
weaker than either blocked-set or blocked-queue semaphores, since there are no nice
solutions to the starvation-free mutual-exclusion problem using these primitives. The
borderline between weak binary and weak general semaphores is quite f'me, as
is evidenced by the fact that weak general semaphores barely suffice to imple-
ment starvation-free mutual exclusion in a situation where weak binary sema-
phores do not.

The existence of weak general semaphore solutions in SYM N NM, coupled with
Theorem 5.1, shows a sense in which weak general semaphores are strictly more
powerful than weak binary semaphores. Dijkstra [6] claims that general semaphores
are superfluous given binary semaphores as primitives. At least for weak semaphores,
if we are concerned about the properties of symmetry and no memory in our solution,
this is not the case. This also explains why any attempt to implement weak general
semaphores with weak binary semaphores, such as that in [20, p. 78], must either
introduce asymmetry, violate the no-memory property, or fail.

An interesting extension to the work presented here would be the investigation of
semaphore-free solutions in more detail. An unanswered question here is: How many
global variables are required to implement starvation-free mutual exclusion for N
processes7 It is not difficult to show that two processes require at least two variables,
and it seems intuitive that the number of variables should increase with the number
of processes. Semaphore-free solutions are asymmetric. Consequently, such solutions
are always presented in parameterized form; that is, the program run by process i
depends upon the number i. The question arises: Must these solutions also be
parameterized by the total number of processes N as well? It seems as though it
might be possible to use the lock-step construction to prove that this must be the

Semaphore Primitives and Starvation-Free Mutual Exclusion 1071

case. For the lock-step construction to be applicable to asymmetric solutions requires
increasing the number of processes in the system large enough to match up initial
segments of execution sequences for various processes.

The major contribution of this paper is that it brings the murky issues of fairness
often mentioned in the synchronization literature into sharper focus. The attempt at
precise definitions of the various types of semaphores helps to clear up confusion
that has resulted from informal discussion. Many pages have been, and continue to
be, spent in the literature in arguments over whether one program solves or does not
solve a particular synchronization problem. Often such arguments are useless, since
precise specifications are lacking, both for the synchronization problem itself, and
for what it means to "solve" that problem. It is hoped that this paper makes a small
step toward the resolution of this difficulty.

ACKNOWLEDGMENTS. I would like to thank Russ Atkinson, Sheng-Yang Chin,
Professor Irene Greif, Professor John Guttag, Maurice Herlihy, Jeff Jaffe, Craig
Schaffert, Carl Seaquist, Bill Weihl, and Jeannette Wing for their valuable comments
on drafts of this paper, and on my thesis [21], from which it evolved. The area editor
and the referees also provided constructive suggestions for improving this paper.
Carl Seaquist deserves the credit for discovering a crucial idea in the proof of
Theorem 5.1.

REFERENCES

1. BEN-ARI, M. Temporal logic proofs of concurrent programs. Tech. Rep. 80-44, Tel-Aviv Univ.,
Tel-Avtv, Israel, Nov 1980.

2. BURNS, J.E., JACKSON, P., LYNCH, N.A., FISCHER, M.J., AND PETERSON, G L. Data requirements for
implementation of N-process mutual exclusion using a single shared variable. Z ACM 29, 1 (Jan.
1982), 183-205

3. COFFmA~, E.G. JR, AND DENm~G, P.J. Operating System Theory. PrenUce Hall, Englewood Cliffs,
N.J., 1973.

4. COURTOIS, P.J., HEY~NS, F , AND PARNAS, D.L. Concurrent control with "readers" and "writers."
Commun. ACM 14, 10 (Oct. 1971), 667-668.

5. CougTols, P.J., HEYMANS, F., AND PARNAS, D Comments on "A Comparison of Two Synchronizing
Concepts by P. B. Hansen." Acta Inf. 1 (1972), 375-376.

6. DIJKSTRA, E.W. Cooperating sequential processes. In Programming Languages, F. Genuys, Ed,
Academic Press, New York, 1968, pp. 43-112

7. DIJKSTIO,, E.W Hierarchical ordering of sequential processes. Acta Inf. 1 0972), 115-138.
8. DOEPPNER, T W On abstractions of parallel programs. Pro¢. 8th ACM Syrup. on Theory of

Computing, Hershey, Pa., 1976, pp. 65-72.
9. HAB~RMANN, A.N. Synchromzatlon of commumcating processes. Commun. ACM 15, 3 (Mar. 1972),

171-176
10. HA~RMANN, A.N. Review of article by Leon Presser on multiprogramming coordination. Comput.

Rev. 29, 788 (Apr. 1976), 150-151
11. KELLER, R.M Formal venficaaon of parallel programs. Commun. ACM 19, 7 (July 1976), 371-384.
12. KNUTn, D.E. Ad&tional comments on a problem in concurrent programming control. Commun.

ACM 9, 5 (1966), 321-322.
13. KOSARAJU, S.R. Limitations of Dljkstra's semaphore prinmwes and Pctri nets. Rcp. No. 25,

Computer Science Dep., Johns Hopkins Univ., Baltimore, Md., 1973.
14. KWONG, Y.S. On the absence of hvelocks in parallel programs. In Semantics of Concurrent

Computation, Lecture Notes in Computer Science 70, Gilles Kahn, Ed., Springcr-Verlag, New York,
1978, pp. 172-190.

15 LIPTON, R.J. On synchromzation primitive systems. Ph.D. Dissertation, Carnegie-Mellon Univ.,
Pittsburgh, Pa., 1973.

16. LIPTON, R.J Reduction' A method of proving properties of parallel programs. Commun..4 CM 18,
12 (Dec 1975), 717-721.

17. MILLER, R.E., AND YAP, C K. Formal spectfication and analysis of loosely connected processes. IBM
Res. Rep. RC 6716, IBM Thomas J. Watson Research Lab., Yorktown Heights, N.Y., 1977.

1072 EUGENE W. STARK

18. MORRIS, I.M. A starvation-free solution to the mutual-exclusion problem. Inf. Proc. Left. 8, 2 (Feb.
1979), 76--80.

19. PRESSER, L. Multiprogramming coordination. Comput. Surx 7, 1 (Mar. 1975), 21--44.
20. SHAW, A.C. Tile Logical Design of Operating Systems. Prentice Hall, Englewood Cliffs, N.J, 1974.
21. STARK, E.W. Semaphore primitives and starvation-free mutual exclusion. Tech. Rep. TM-158, Lab.

for Computer Science, M I.T., Cambridge, Mass., 1980.

RECEIVED MAY 1980; REVISED APRIL 1981; ACCEPTED JUNE 1981

Iournal ofth© Association for Computing Machinery, Voi 29, No 4, October 1982

