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1. Introduction

The Data Flow Machine being developed at MIT is désigned with concurrency of instruction
execution in mind. The desire in constructing a data flow machine is to attain a greater computation
speed than that achieved by traditional machines, by taking advantage of parallelism in programs.
Conventional computers perform instructions one lat a time, in sequence, while the data flow machine
is to perform an instruction as soon as it has received all of its operands, and has a number of
independent functional units to do so. The machine identifies each instruction that has been enabled
by the arrival of its operahds. selects an available functional unit to execute it, and delivers the results
to specified destination instructions. An applicative flow of instruction e;cecution is thereby attained,
driven by the availability of data. An applicative language, VAL, has been designed for use on the
data flow machine; see [Ackerman-VAL]

In a practical form of a data flow processor, Instruction Cells are grouped into Cell Blocks
[Dennis-Prototypes]. When an Instruction Cell is enabled by the arrival of all of its operands, an
operation packet is sent to an Arbitration Network. The Arbitration Network dispatches the operation
packet to an availabie functional unit appropriate for the operation code included in the packet. The
functional units send result backets to a Distribution Network, which passes the resuli packets to
proper Cell Block destinations.

The first data flow machine prototype for construction, shown in Figure 1, combines the actions
of a Cell Block and functional unit into a Processing Unit {PU). The prototype consists of 4 PUs
connected 1o a 4 by 4 Routing Network, which sends result packets to the proper PUs. The aim of
this thesis is to describe how the arithmetic operations of addition-subtraction and muitiplication
might be implemented for the PU.

The PU is an 8 bit micrbprocessor which can be programmed to emulate any byte-serial packet

communication module [Ackerman-PU]. A diagram of the PU's data paths is given in Figure 2. The
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Figure 1. First Data Flow Machine Prototype
[Dennis-Prototypes]
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TOPL supervisory routine specified in [Feridun-Module] acts as a scheduler to perform the actions of
the Cell Block unit and functional unit. The data memory of the PU contains a block of cell-state
information, a block of operation packets, and a bitmap of enabled cells. When the PU receives a
resﬁlt packet, it is delivered to the appropriate operation packet operand slot, and if that packet has
received all of its operands (detected by examining the cell-state information), it is marked in the
bitmap as enabled. When a functional unit is simulated, an enabled cell's operation is performed, and
the results are transmitted to destination PUs via the router network, if possible.

Operands for operations are part of the operation packet stored in the PU's data memory. An
operation program can access operands through the use of a pointer into the appropriate operation
packet. This pointer is set up by a functional unit routine {known as OPER in Feridun-Module] which
picks an enabled instruction cell, invokes the appropriate operation for it, delivers results to

destinations specified in the operation packet, and sends acknowledge signals.
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Figure 2. Logical Diagram of the Processing Unit
[Ackerman-PU & Feridun-Module]
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1.1 Limitations of the PU

The PU's program memory has a capacity of 4K (4006.) _40 bit instructions. All the software to
manage the cell-blocks and to perform arithmetic and other functions must fit within the 4K memory.
This fimitation requires a careful analysis of the decisions to be made in implementing a particular
action. While it may be preferable to implement a particular function to VAL's specifications, it may
be undesirable if PU program space is cramped. Certainly there are minimal necessities for an
adequate implementation of any particutar function. It might be a good idea to make changes to the
PU hardware which would allow for shorter program;s. e.g. the addition of a single instruction to
increment or decrement the memory address register (MAR).

The PU's 16 scratch-pad registers and most of its operations work with 8 bit bytes. Integers and
fioating point numbers of single precision (32 bits) require operations on them to manipulate bytes
among the registers and in an External Buffer (in the data memory) if necessary. Numbers of a
greater fixed precision, or of an unfixed precision, are not easily handled within the 16 scratch-pad
registers, particularly in multiplication. A method of handling multiple byte arithmetic in a signed-digit

byte-serial fashion is described in [Feridun-Pipeline).
1.2 Programming Conventions

At invocation of an operation, the PU's scratch-pad registers 10. and 11. shouid contain the
Bitmap pointer (high and low order bytes), registers 12. and 13. the External Buffer pointer, and
registers 14. and 15. the Operalioﬁ Packet pointer. The External Buffer is a section of the Data
Memory available for various uses including as a scratch-pad area for operations. Therefore
operations may use registers 0 through 9., and, if desired, the registers 10., 11, 14., and 15. may be
saved in the External Buffer and reétored before returning to the scheduler. The arithmetic

operations by convention leave a 4 byte result in registers 7 (high order byte) through 4 (low order
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byte). The External Buffer pointer should be the same after an operation is finished as it was when
invoked, i.e., nothing should be left in the External Buffer between operations. (For multiple precision

operations, parts of a result might be left in the External Buffer.)
2. Number Representations.

2.1 Error Values

In the data flow machine, there can be no interruption of program execution to handle
exceptions, due to the concurrency of instruction execution. Therefore, operations produce error

values for exceptional results. The error values used in VAL are described in Figure 3.

Figure 3. VAL's error values

pos_over and neg_over for results of a magnitude larger than can be represented (in single
precision};

pos_under and neg_under for results of a magnitude smalier than can be represented (in
single precision);

unknown for a resuilt that cannot be calculated due to the limitation of representation capacity
arising on a previous operation,

undef for a value that is not in the domain of an operator;
miss_elt for a missing element of an array within the array range; and

zero_divide for a result from a division by zero.

if a data flow program (in VAL) does not make explicit checks for error values, they will
propagate. Tracing the data flow path that produced a particular error is likely to be difficult. It has
been suggesied [in McGraw-VAL] that each error value have an audit trail associated with it, to

provide information regarding its origin and how it propagated. How any error tracing system could
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interact with VAL is difficult to envision. When an error va_lue results from an operation, some
associated information could be transmitted upon a stream. The role of the functional unit operations
when producing and propagating errors might be to encode extra information into an error value for
error interceptors ahead. Any sort of error recording system is likely to be expensive in terms of its
interfering with coﬁcurrent instruction execution. The value of any underlying error tracing effort
would be in its ability to associate errors with their origins in a VAL program, and is outside the

domain of this report.

2.2 Integer Representation

Single precision integers are represented in 4 bytes of 8 bits each, in two's complement form.
Error values are represented'in a manner suggested in [Aoki-Instruction Set]: the first bit of the high
order byte is 1, and the rest of that byte can be decoded to identify the particular error value; see
Figure 4. The implementation of inteéer arithmetic deals with error values in the same way specified
by VAL.

The actual representation of integers is as follows:

high Tow
RSITIIIT FIXIIIET IXITININIT IIINIIIII

where R is the error bit; if R is on, then the rest of the high byte signifies the error code; if R is off, then

S and the | bits represent the integer in two’s complement, S indicating the sign.
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Figure 4. Representations of Error Values, Error-Byte First Method

76543210 (bits)

10000000 unknown

10100000 pos_over

11000000 neg_over

10010000 pos_under (not applicable to integers)
11010000 neg_under (not applicable to integers)
10001100 zero_divide

10001000 miss_elt

10000100 undef

bit 7 on if an error value

bit 6 on if negative

bit 5 on if overflow {when bit 7 is on)
bit 4 on if underflow (when bit 7 is on)

2.3 Floaling Point Representation

There are several proposed standards for floating point arithmetic under consideration by the
IEEE Computer Society's Microprocessor Standards Subcommitiee. None of the proposals yet has
been deemed as officially approved by the IEEE, although one appears to have greater support than
the others. That proposal is the one by Coonen, described in [Signum-Oct 1979] and
[Coonen-Computer]. Payne & Sirecker and Fraley & Walther also have submitted proposed
standards.

The specifications of the Coonen standard include:

precisions: single, double, guad; single-extended, double-extended
results for add, subtract, multiply, etc.

rounding modes: round toward nearest, zero, plus infinity, minus infinity
infinity arithmetic modes: projective, affine

denormalized arithmetic modes: warning, normalizing

exceptions with optional traps: invalid_operation, overflow, underﬂdw, divisibn,by_zero.
inexact_resuit
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This proposed Floating Point Standard calls for a single precision fioating point number to be
represented by a bit string of 32 bits, with the leading bit indicating the sign of the number, the
following 8 bits for the biased exponent, and the remaining 23 bits for the fractional part of the
number's mantissa. A single precision floating point number requires 4 bytes of 8 bits each. A
nonzero foating point number is ordinarily stored in a normalized format, and the jeading bit is not
kept but is by implication 1. | have implemented floating point addition-subtraction in two ways:
according to Coonen's proposed standard, and using ihe first byte to indicate errors. The

representations used by the two implementations are:

high Tow
SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF ...... Coonen standard
RSEEEEEE EEFFFFFF FFFFFFFF FFFFFFFF ........ error-byte first

where S is the sign bit, the 8 E bits are for the biased exponent field, and the 23 F bits for the
mantissa's fraction field, for the Coonen standard. For the arror-byte first method, R is the error bit: if
on, the first byte identifies the error value (see Figure 4), and the other three bytes can be ignored; if R
is off, the S bit, the 8 E bits, and the 22 F bits represent the valid, in-range floating point number. The
value of a nonzero normalized number in these representations is:

NS 2E 127l Coonen standard

N8 2E1Be () L error-byte first
where, in the Coonen standard, 127 is the bias for the exponent, and "1." is the implicit leading bit;
Note that 1 < 1.F < 2. In the error-byte first implementation, 1/2 < .IF < 1, and 128 is the
exponent's bias. The effective range of non-error normalized floating point numbers is:

o126+ 1000, 102727 111 e Coonen standard

o127 ¢ 1000.. 10212 * AT Lo e error-byte first
where the error-byte first format can represent numbers 4 times smaller than the Coonen standard's

form, and 1/2 as large. The error-byte first format can therefore represent a slightly greater range of
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normalized floating point numbers. As described below, this difference is due to the inclusion of

denormalized numbers in the Coonen proposal.
2.3.1 Special Values for Floating Point Operands

In the Cooneﬁ standard, error and other special values are delected by testing a number's
exponent (for all zeroes or all ones), and for some, the fraction field as weli. In [Aoki-Instruction Set],
the first bit of the high order byte is used to indicate an error value, and if it is on, the rest of that byte
encodes the error value. The latter method of encoding error values requires fewer PU program steps
to detect some error values than would be required by adhering to the representation specilied by the
Coonen standard. It also reduces the precision of the fraction field by one bit. ', have implemented-

floating point addition-subtraction using both methods.
2.3.1.1 Overflows / Plus and Minus Infinity

In the Coonen standard, Infinity is represented by an exponent field equal to the maximum (all
ones), and the mantissa's fraction field as zero. The sign bit represents the sign of Infinity. When a
result overfiows the range of representable numbers, the default action to be taken, since exception
handling traps do not exist, is to cali the result infinity. _However. this reserved operand Infinity does
not act like VAL's pos_over or neg_over in a number of cases. For example, in VAL, pos_over * 1/2
produces unknown, whereas according to Coonen, +00 * 1/2 produces + 00; and pos_over * 0.0
produces 0.0, while in the Coonen standard, + 00 * 0.0 produces an Invalid-Operation. it is clear that
an overflow is not mathematically the same as Infinity. VAL's approach seems more mathematically

sound.
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2.3.1.2 Underflows / Denormalized numbers

in the Coonen standard, floating point numbers which cgnnot be normalized because they are
too small are represented by denormalized numbers, in which the exponent is equal to the minimum
{all zeroes) and the fraction field is nonzero; the implied leading bit in this case is 0 rather than 1 asin
normalized numbers. A denormalized number has the value:

1S +27128+ o).

The use of denormalized numbers is aimed at deferring an occurrence o.f an underflow at the sacrifice
of precision [Coonen-Computer], while slightly extending the range of representation. There is fairly
strong disagreement by proposers of other standards for floating point arithmetic that the use of
denormalized numbers is worth the effort to implement them [Signum-Oct 1979, pages 22 to 23, and
Signum-Mar 1979, pages 100 to 108]. |

For VAL's sake, either any denormalized number or the minimum denormalized number could
be considered an underflow for the error values pos_under and neg_under. Operations on "slightly"
denormalized numbers can still produce meaningful results, although care must be taken. |
denormalized numbers are to be implemented at all, then they should not be considered as
underflows, except for the minimum one, in which the least significant bit is 1, and all othér bits (other
than the sign bit) are 0. However, in denormalizing a preliminary result of an operation, the result may
turn into a Zero. (In the Payne proposal, underflows are also converted to Zero.) It is undoubtedly
unacceptable in VAL for an underflow result automatically to become Zero. If denormalized numbers
were not implemented, while other specifications of Coonen’s proposed standard were adhered to,
then either (a) the exponent range can be increased by 1, and the exponent bias incremented; or (b) a
zero exponent field would represent the number Zero, to reduce program steps in a test for Zero. In
the error-byte first implementation, each value must be normalized, zero, or an error value,

underflows are represented as error values.
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2.3.1.3 Other Error Values / Not-a-Number

Ih the Coonen standard, Not-a-Number (NaN) is used to represent default results of various
Invalid-Operations. It is to be represented by an exponent field equal to the maximum {all ones}, and
the fraction field as something other than zero. The fraction field is intended to be used for diagnostic
or other coded information indicating why NaN was produced as a result of a floating point operation.
NN could be used to indicate the error values zero_divide, miss_elt, unknown, and undef in VAL.
However, Coonen's specifications of results of operations on NaNs do not agree with VAL's
specifications of what to do with those error values. For example, NaN * <any non-NaN> produces the
same NaN, while in VAL, unknown * 0.0 produces 0.0, and miss_e/t * 0.0 produces Qndef. Also, the
result of Infinity divided by zero would be Infinity;, for VAL, any division by zero would result in
zero_divide. The NaN construct might be considered extensible, so that exceptions not covered in
the Coonen standard could be encoded in the fraction field, and be handled separately. However, the

error-byte first method handies all errors in a uniform way, and is likely to require fewer programming

steps to identify each error value.

2.3.1.4 Zeroes

In the Coonen standard, Zero is represented by an exponent field equal to the minimum (all
zeroes) and the fraction field all zeroes, with the implied leading bit taken to be 0. The sign bit is used
to indicate a signed Zero. In the error-byte first implementation, an exponent field which is zero
indicates Zerog; the fraction field is ignqred. In the Payne proposal, Zero is unsigned; if the sign bit is 1
for a zero exponent field, the number represents a reserved operand. Having the ability to test just

one byte to determine v\ghether a number is Zero certainly saves program steps.
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3. Implementation of Arithmetic

The implementations of the addition and multiplication operations, floating point and integer,
error byte and according to Coonen, are given in the appendices. The tack taken in implementing

each operation is described in the comments, for the most part. Points of interest are set forth below.
3.1 integer Operations
3.1.1 Integer Addition

The implementation of an addition-subtraction operation for single precision (4 byte) two's
complement operands is not complicated. The operands are first checked for the error values. If
either operand is undef, miss_elt, or zero_divide, the result is set to be Lmdef. If either is unknown, the
result is set to unknown. | either is pos_over, the result is set to pos_over only if the other operand is
greater than or equal tor zero; else it is set to unknown. If either is neg_over, the result is sei to
neg_over only if the other operand. is less than or equal to zero; else it is set to unknown. 1f both
operands are not error values, then the addition is performed byte-wise, starting with the least
significant bytes. The carry from each corresponding byte addition is added to the next most
significant bytes added. Since the leading bit of the most significant byte of the result is the error bit,
and the next bit is for the sign, a check is made to prevent the addition from overflowing into those
bits. !f an overflow is detected, the result is set to pos_over or neg_over. The implementation

corresponds exactly with VAL's prescribed behavior. See Appendix A for the PU integer addition

program.
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3.1.2 Integer Multiplication

in the implementation of integer multiplication, operation_s on error values are checked first. As
in VAL, if any operand is undef, miss_eit, or zero_divide, the result produced is undef. If either is
Zero, so is the result. If either is unknown, so is the result. If one operand is pos_over, the result is
the same if the other is positive; else neg_over. If one is neg_over, the results are similar, with the
signs opposite. If neither operand is zero, then the operands are converted to their magnitudes, and
multiplied as shown in Figure 5. The high 4 byles are tested to see if the resuit has overflowed; if so
the result becomes pos_over or neg_over, according to the original signs. Otherwise, the low 4 bytes
are retrieved from the external buffer and become the result (an overflow may still result). This result
is two's complemented if the original operand signs warrant, and the result is left in registers 7

through 4 for the caller to deliver.

3.2 Floating Point Operations

The Coonen standard refers to enabling traps when operations encounter error conditilons, and
also 10 checking user-settable choices among rounding methods and between infinity arithmetic
systems. However, traps cannot exist on the data flow machine, and the limitation .that the PU
program must fit in 4K words of program memory probably prohibits niceties such as allowing for
settable options. VAL has no provisions for setting such options, anyway.

The rounding method used in the implementation is round to nearest. Since a preliminary result
of an operation often has more nonzero significant bits than would fit in a single precision destination,
this rounding method chooses one of the two single precision numbers that bracket the preliminary
result. The number that is chosen is the one that is nearest the preliminary result; if they are equally
near, then the one with the least significant bit of 0 is selected. The other three rounding modes

mentioned by Coonen are: round toward zero, which truncates a nhumber, used when converting a
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Figure 5. Multiplication Algorithm

Each <cij> refers to the high byte of the result of multiplying <b> and <aj>; <dii> to the low byte. Each

byte is added into the preliminary result K bytes as produced. After each multiplication of all of A's
bytes by each multiplier <b;> (in subroutine IMABMuit), the pretiminary result is found in the bytes

<K;>, and the lowest K byte is shifted into the external buffer. After all bytes have been multiplied, the
4 low K bytes (r3 to r0) are retrieved from the external buffer, if necessary. '

| a3 a2 a1l a0
| b3 b2 bl bO

| c00 doo
| c01 d01
| c02 d02
c03 | d03
[KO4 | KO3 K02 KO1 KO0J
| c10 d10
| cil d11
c12 | d12
¢13 d13 |
[K14 K13 | K12 K11 K10]
| c20 d20
c21 | d21
c22 d22 |
c23 423 ] .
(K24 K23 K22 | K21 K20]
c¢30 | d30
c31 dat |
c32 da2 |
€33 d33 |
[K34 K33 K32 K31 | K30]

_—__—..__-—-_-_...—_.-_.-_-_..—---—_—--_

number to an integer a'la Fortran; round to -00, in which the lesser bracketing number is chosen; and
tound to + 90, in which the greater one is chosen. While these three rounding modes are not difficult
to implement {they are easier than round to nearest), they have been amitted here, as no method of
requesting a particular rounding mode exists.

The Coonen standard defines the use of Infinity in two infinity arithmetic systems, Projective and
mWCwmamwmmmmmmHmmmmmmmnmmmemmmmm

Infinity is ignored. For example, an addition of two Infinities results in an invalid operation; also,



Floating Point Operations -18- Section 3.2

Infinity cannot be compared to any value bther than itself. In Affine mode, Infinity can be compared to

all values except NaNs.
3.2.1 Floating Point Addilion
3.2.1.1 Floating Point Addition - Coonen

In the implementation of floating point addition, according to the Coonen proposal, operands
are first checked to see if they are NaNs. If so, the result is NaN. If either is Infinity, but not both, the
result is Infinity with the appropriate sign; if both are, assuming as default the Projective infinity
arithmetic mode, the result is NaN. |f just one operand is Zero, the result is the other operand; if both
are Zero, the appropriate sign is included. Otherwise, an addition is performed. First, the binary
points of the operands are aiigned, by shifting the lesser until its exponent equals the greater one
{with a shift limit equal to the precision). | The magnitudes are then added (or subtracted). If the
addition overflows, the carry is shifted right into the result, and the exponent is incremented. If the
operation was a subtraction, the result is tested for Zero. In any case, the result is normalized: the
magnitude is shifted left until the explicit first bit is 1, while the exponent is decremented. While
normalizing it may be obvious that the result cannot be normalized. The number would then be
denormalized, as described earlier, which in essence reflects an underflow. The number is then
rounded to fit the precision of the destination, which is single precision here, by the round to nearest
method, described earlier. For all resuits, the number is repacked in the stated representation, and

left in registers 7 through 4.



Floating Point Addition - Error Byte -19- Section 3.2.1.2

3.2.1.2 Floating Point Addition - Error Byte

In the implementation of floating point addition using the _error-byte first method, the first byte of
each operand is first checked to see if the error bit is on. As in VAL, if either is undef, miss_elt, or
zero_divide, the result in undef. If either is unknown, so is the result. If both are underflows or
overflows: if they have different signs, the result is unknown; else if one is an overflow so is the resulit,
else underflow. If just one is an underflow, it is the result if the other is Zero; else the other operand is
the result. If just one is an overfiow, it is the result if both cperands have the same signs, or if the
other is Zero, otherwise the result is unknown. Otherwise, the two operands are added or subtracted,
normalized, and rounded in the same manner as described in the previous section, except underflow

error values are produced instead of denormalized numbers.
3.2.2 Floating Point Multiplication

The implementation of floating point multiplication given in an appendix follows Coonen's
specifications. If either operand is NaN, so is the result. If either is Infinity, and the other not Zero, the
result is Infinity with appropriate sign. If one is Infinity and the other Zero, the result is NaN. If either
is Zero, the result is Zero with the appropriate sign. Otherwise, the numbers are muitiplied. The
exponents are added, and the magnitudes multiplied in a fashion similar to the way integer
multiplication was done, though with fewer significant bits. If the operands were both normalized, the
result is either normalized or needs one right shift to be normalized, since each operand would be
less than 2, as explained earlier. If the result exponent is an underfiow, the associated denormalized
value is left in registers 7 through 4. Otherwise, the result is rounded and left there, although it I8
checked for an overflow first. The behavior for multiplication involving error values in VAL is given in
Figure 6, for comparison.

if one of the operands was denormalized, matters are complicated. The implementation given in



" Floating Point Multiplication -20- Section 3.2.2

Appendix E does not handle denormalized numbers. What normally would be done would be to
normalize all denormalized numbers prior to multiplication. The inclusion of denormalized numbers

would complicate the program and add many more steps.

Figure 6. VAL’s specifications for real multiplication
[from Ackerman-VAL, pages 25-26]

When either operand is undef, miss_elt, or zero_divide, the resultis undef. For other error values, the
results are produced as follows:

X is any real number other than undef, miss_elt, or zero_divide.

neg_overif X <-1.0or X = neg_over,
pos_over it X > 1.0 or X = pos_over,
0.0if X = 0.0,
unknown otherwise

4a. X * pos_over

4b. X * neg_over = - (X * pos_over)

4c. X * pos_under = neg_under if -1.0 < X < 0.0 or X = neg_under,
pos_underif0.0 < X < 1.0or X = pos_under,
0.0if X = 0.0,
unknown otherwise

4d. X * neg_under = - (X * pos_under)

il

4e. X *unknown = 0.0i X = 0.0, _
unknown otherwise

4. Conclusions and Suggestions

While Coonen’s proposed standard may be approved by the IEEE Microprocessor Standards
Committee, it has a number of features which do not go well with the aims of the data flow machine
project and the language VAL. The use of denormalized numbers complicates the programming of

fioating point operations; it requires a fair number of extra programming steps in every operation that
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deals with them, which is undesirable due to the ultimate limitation that all programs in the Processing |
Unit fit within a 4K Program Memory. The reserved operands for special values and error values at
first appear to resemble the error values used in VAL, but in most cases they are used differently, The
Coonen standard takes into account the presence of traps to deal with exceptional results; and
actions to be takeﬁ when they are disabled or don’t exist. However, the actions taken can mean
turning an underflow into a Zero. The reserved operand Infinity does not act like VAL’'s pos_over or
neg_over. NaN corresponds roughly to undef, but there is no element corresponding to unknown,
although NaN could encode the meaning of any error value (even those not used or handled in the
standard, such as miss_eit and zero_divide, perhaps) and have each function act differently upon
different encodings. |

The error-byte first representation allows programs to detect errbr values mqre easily, and can
handle all those used in VAL. It is a simple format, with an error value encoded in one place, though
at the expense of one bit of significance. The implementations follow VAL's specifications of ihe
results of operations involving error values, since they seem more appropriate than Coonen's in some
cases. For example, pos_over * 1/2 produces unknown rather than pos_over. Coonen converts most
overfiows and divisions-by-zero into Infinity, and some underflows to Zeroes. However, an overflow is
not exactly analogous to a mathematical infinity, and probably should not be considered so unless a
program wishes to use it as such. The error byte couid encode a value lor Infinity, separately from an
Overflow, if desired. The error-byte method appears to be more extensible than the various proposals
to the IEEE, particularly for a machine which cannot have traps for exceptions, and which must take
good care of error results as they propagate.

The conversions of error values between floating point and integer formats would be quite diract
if the same error representation, error-byte first, were used. For integers, there is no alternative but to
reserve a bit somewhere to mark a number as a special value. For Hoating point numbers, using

cerain exponent values to mark reserved operands is an obvious choice, used by Coonen. The



Conclusions and Suggestions | -22- Section 4

error-byte method, however, uses a simpler, though mildly drastic, ploy for floating point numbers,
reserving ane bit to denote an error value.

The programming language for the Processing Unit is fairly rich in its expressiveness. There are
some common aclions requiring two or more program steps for which new instructions could be
added to the processor to be done in fewer instructions, such as for incrementing, decrementing, or
adding/subtracting from the memory address register. As suggested in [Feridun-Module], the use of
a 16 bit processor would be beneficial in reducing program steps and increasing program speed, or
doubling precision capabilities. In the 8 bit PU, the programming ol greater precision arithmetic
operations with the same sort of error handling care cannot be done without the cost of much greater

execution time due o accessing the external buffer in data memory.



Integer Add Program -23- Appendix A
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Appendix A - Integer Add Program

_s.py-*- 4-44am Saturday., 10 May 1980
integer Addition for the PU

Representation = .
RSAARAAA TTITITE IIITIIIT ILITITII
ifR=1
than # is an error value
SAAMAA encodes the error value; I's ignored.
glse # is a representable integer
S = sign
SAAAAAA TIITIIIT TIIIITII IITIITINN is number in two's complement.
end

Error values:
76543210 bit7? on if error; bité on if neg; bits on if over: bitd on if under;
(bit3 cor bit2) on if undef, miss_elt, or zero_divide.
10100000 pos_over
11100000 neg._ovar
10010000 pos_under (Not applicable to Integers)
11010000 neg_under (ditto)
10000000 unknown
10000100 undef
10001000 miss_elt
10001100 zero_divide
AL Behaviour (J = any int):
undef --> undef
miss.elt --> undef
zaro_divide --> undef
pos_over --> pos_over IFf J > 0o0rd
--> unknown otharwise
J + neg_over --> neg_over IF J <= 0 or J = neg_over
--» unknown otherwise
J + unknown --> Unknown

Lo
+ o+t

pos_over

adding a3a2alald and b3b2b1b0, af{i) & b(i) are bytes.
rasult is left in r7 {(high order) through r4.

assume packet ptr in rl4 (1ow} r15 {high)

assumas ri0, ril, r12, 13 are not to be clobbared.

; eguates
= 0 ; gots a0
= 1 H al
= 2 H a2
= 3 : a3
= 4 H b0 ; result 0 - low order byte
= 5 : b1l ; result 1
= 6 i b2 ; result 2
e 7 : b3 ; result 3 - high order byte
= B,
= 9,
0 = 10,
1 =11,
2 = 12.
3 =13. .
4 = 14, ; operation packet ptr - Tow
§ = 16. ; ditto - high
; bitstrings
L7 = 200 . 10000000
t6 = 100 : 01000000
t5 = 40 ; 00100000
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MiscErrs = 14 ; 00001100
Erundef = 204 ; 10000100
ijaimeTmmmmoTmssmoseesooo- debugging setuyp-------------<c-scecomooornno-
Starl: srci 7, r14 . setup packet pointer Yow
rero r1b ; & high
; to point just before 1st argument
Jjmp 1Add
PKLPLrMAR: ::: lncrement operation packel pointer (low byte) in rld4, and put
addi warr 1, rld ; result in r14 and MAR right
dstc war]l rtn rib ; carry propagate for high byte in r156 &
; pul in MAR left - return
geta210: ;;: read in a2, al, a0; packet pointer assumed to be potnting to ald
isr PktPLrMAR
dst nr r2 ; r2 <- a2
jsr PktPLrMAR
dst mr rl ; rl <- al
jsr PktPLrMAR
dst mr rtn r0 ; rd (- ad
getb210: ::: read in b2, bl, bD; packet pointer assumed to be pointing to b3
jsr PktPLrMAR
dst mr ré ; r6 <- b2
jsr PktPtrMAR
dst mr ré ; rb <~ bl
jsr PktPtrMAR
dst mr rtn 4 . ; rd <- b0
TIAdd:  jsr PktPLrMAR ; incr packel ptr, store in MAR
dst mr r3 i or3 <- a3
;:: Is A undef, miss_elt, or zero.divide?
andi n bit7, r3 ; is error bit on?
jmp eq IAAnotErr
andi n Miscérrs, r3 : is A undef, miss_elt, or zero_divide?
jmp eq IAAnotMiscErrs ; if not, go tesi for other conditfions

:;: result is Undef since A is one of (undef, miss_elt, zero_divide)}.
SetUnd: srci Erundef, r7

larest: zero ré
z8ro rb
zero r4 .
Jmp Deliver
IAAnotMiscErrs: ::; A is an error, not Undef, Niss_elt, or Zero_divide

; s0 A is unknown or pos/neg_over
; if B undef, miss_elt, or zero_divide, result <{-- undef
; elseif 8 unknown then result <-- unknown

; elseif A unknown then result ¢-- unknown ,

; ®else A is pos/neg_over and B is same or a number

i {get b2 - bO)

; if B = 0 then result <-- A

H elseif sign (A) = sign (B) then result <¢-- A

H else result <-- unknown

endall
;:: get b3
addi warr 4, ria i resuft in r14 and MAR right
dste warl rib ; carry propagate for high byte in rib &
dst me r? ; r7 <- b3
andi n bit?, r7 . is B's error bit on?

jmp eq I1ABnotErr
andi n MiscErrs, r7 ; is B undef, miss_elt, or zero_divide?

Appendix A
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jmp ne SetUnd . if s0, go set result to undef

::: B is unknown, pos_over, or neg.over; A is also
jmp IAABunkov

iABnotErr: ;;; B not an arror, but A is uaknown or pos/neg_over
::: Is A unknown?
xori n bit7, rd
jmp eq Setunk ; jump if A is Unknown, & set result Unknown

.;; A is pos/neg_over; do A & B have ths same sign?

eqv r3, r? : compare b3 & al

andi bit6, r? . ; for sign bit

jmp ne [IAAovDifSign . if differsnt signs, check if B is 0
src r3, rl : alse result <-- A

jmp Zarest

IARovDifSign: ;;; A is pos/meg_over; B is not anm error;
::: A & B have different signs; test it B is 0

dst nr? ; is b3 zero?
jmp ne SaetUnk . if not, set rosult unknown

:3; go get bz, bl, bo
:;; op packet pointer is pointing at b3

jsr get8210
dst nré ; is b2 zero?
jmp ne Setunk
dst nrb ; is bl zero?
jmp ne Setunk
dst n ré ; is b0 2ero?

jmp ne Seiunk

::; B is 0, so result <-- A

sre r3, r?
jmp lerest
IAAnotErr: ;:;: A is not an &rror value

.:.: Check for error values of b3
::: op packet pointer is pointing to a3

addi warr 4, ri4. . rgsult in ri1d4 and MAR right

dstc warl rlb . carry propagste for high byte in ris &
dst mr r? : r7 <- b3

andi n bit?, r? . is B's error bit on?

jmp eq 1AABnotErr

andi n MiscErrs, r7 ; 1s-B undef, miss_elt, or zero_divide?
jmp ne SatUnd . if so, go set result to undef

::: B is unknown, pos_over, Or neg_over; A is not an error

;i: Is B Unknown?

xori n bit?, r?

jmp eq Setunk ; jump if B is Unknown, & sot result Unknown

B is pos/neg_over; do A & B have the same sign?

aqv r3, r? . compare b3 & al
andi bit6, r? . for sign bit
jmp ne TABowDifSign . if different signs, check if A i3 0
jmp lerast ; else rasult ¢(-- B
1ABovD ifSign: ;;; B is pos/neg_over; A is nol an error;

.. A& I have different signs; lest it Ais O

dst nrl ; is bl zero?
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jmp ne

1

SetlUnk

go get a2, al, a0

if not, sel result unknown

::: op packet pointer is pointing at b3

addi
rsublici
jsr

dst
jmp ne
dst
jmp ne
dst
jmp ne

warr -4, rta
warl rtn 0, ri15
getA210

n r2
Setunk
nri
Setunk
nr@
Setunk

decremant packet ptr
borrow propagate

is a2 zero?

is a1l zerof?

is a0 zero?

;i A is 0, so result ¢-- B

Jmp

1AABunkov: ;;;

::: Is A unknown?

xori n bit?, r3

jmp eq Setunk

;o; Well, is B unknown?

xori n bit?7, r7

jmp eq Setunk

;i A& B are pos/neg_over

eqv r3, r?

andi bité, r7?

jmp eq Zerest
Setunk: srci bit?7, r?7

jmp lorest
FAABnotErr: ;;:

addi warr -4, ri14

rsubici warl rtn 0, rib

Jsr golA2iD

addi 1, ri4

dstc ri1b

Jsr getB210
faabadd: ;i Neither A nor

dst 1s r?

dst is rd

z8ro0 r8

add r0, ré

addc ri, rb

addc r2, ré

dstc 1s rB

add r3, r?

jmp vc  NoOver

add ra, r7

jmp vc  NoOver

1. addition overflowed

andi ng bit7, r3

qreg rs o r?

ori bit? & bits, r?

larest

A {is unknown or pos/neg_over; and so is B

1
’
»
]

jump if A is Unknown, & set result Unknown

jump if B is Unknown, & set result Unknown

compare b3 & a3

for sign bit

if same signs, result ¢(-- B (= A)
else ...

; Set result to be Unksnown

A & B are not error values
::; op packet pointer is pointing at b3

; decrement packet pir
; borrow propagate
; get a2, al, a0 in r2, r1, rb

increment pointer to point at b3
carry propagate for high byte in rib

: get b2, b1, b0 in r6, r5, rd

B are error valuas, so add them.

: left shift so can check for overflow in add

- since bit7 is error bit

put carry bit in bitl of r8

put sign bit in Q
shift sign bit back to proper place {bit8)
turn oa error bit (redundant) & overflow bit

Appendix A
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jmp lerest ; then zero r6 to ré

NoOver: dst rs r7 . shift back r7 - bit7 (error bit) gets 0

Deliver: ;;; then Deliver result

Should invoke delivery routine, or just return to caller
who will deliver.

rin
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Appendix B

Appendix B - Integer Multiply Program

-®-PU-*- Thursday 22 May 1980 6:35:39 am
Intaglr Multiptication for the PU

A number of labels in IMULT are identical to labels ia
1ADD, FADD, FMULT. They perform idaentical functions in each.

Representation =
ASAAAAAA TIITTII IXIIIXINED IXNERNII
ifR =
then # is an error value
SAAAAAA encodes the error valua; I's ignored.
else # is a representable integer
$ = sign
SAAAAAA FTI1IX1E1 IXIJINTINL ITIIRINIL 35 number in two's complament.
ond

Error values:
76543210 bit? on if error; bit6 on if neg; bith on if over; bitd on if under;

{bit3 cor bit2) on if undef, miss_elt, or zero_divide.
10100000 pos_over

11100000 neg_over

10010000 pos_under {Not applicable to Integers)

11010000 neg_under {ditto)

10000000 unknown

10000100 undef

10001000 miss_elt

10001100 2ero_divide

Adding a3a2ata0 and b3b2b1b0, a(i} & b{i) are bytes.
Result 1s left in r7 (high order) through rd,

Assuma packet ptr in rid4 (low) ri15 (kigh);

Assumes r10, ri1i, r12, r1d are not to be clobbered.

AL Behaviour {J = any int):
* undef --> vndef
* miss_alt --> undef
* zero_divide --> undef
* pos_over --> neg_over IF J <= -1 or J = neg_over
pos_over IF J >= 1 or J = pos_over
0 IFJ =0
neg_over --> - (J * pos_over)

[ 3 IS

»

; J * unknown --> 0 IF J = 0

unknown otherwise

vi: equates
ro =0

rl1 « 1

r2 = 2

r3d =3

rq = 4

r6 = 6

ré = 6

r7 =17

rg = 8.

rg =9,

r10 = 10.

ri1l = 11,

ri2 = 12,

rid = 13,

ri4 = 14,

ri5 = 16.

Bit7 = 200 ; 10000000

Coit7 = 177 _ ; 01111111
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Bité = 100 ; 01000000
Bits = 40 - . ; 00100000
MiscErrs = 14 ; 00001100
ErUndef = 204 ; 10000100
IncPktPLrMAR: ;:; Incremenil operation packet pointer (low byte) in rl14, and put
addi warr 1, rl4 ; rasult in r14 and MAR right
dstc warl rtan ri1b . carry propagate for high byte in r16 &
DecPktPLrMAR: ;;; Decrement
addi warr -1, ri4 . decrement packet ptr
rsublci war? rtn 0, r15 ; borrow propagate
DecExtBufMAR: ;;; ditto for External Buffer pointer
addi warr -1, ri2 : decrement external buffer pointer
rsublci warl rtn 0, r13 ; borrow propagate & set MAR
getaz10: ;:; read in a2, al, al; packet pointer assumed to be pointing to al
jsr IncPkLPLIrMAR
dst mr r2 ; r2 <- a2
Jsr IncPkiPLrMAR
dst mr rl ; r1 - al
jsr IncPktPLrMAR ’
dst mr rin r ; r0 <- al
getb210: ;;; read in b2, b1, bO; packetl pointer assumed to be pointing to b3
jsr IncPktPLrMAR
dst mr r6 ; r6 <- b2
jsr TncPktPtrMAR
dst mr 5 ; ré <- bl
jsr IncPktPLrMAR
dst me rtn ré ; rd <~ bo
IMGeiB: ;;: Reads in a byte; if r11 says B was negative, then propagate
::: the two's complement, and save C bit for next GetB.
dst mr ré ; rg <- bl
dst noril : was 8 negative?
rtn eq ; return if it wasn't .
tdc rii : alse set C bit from bit 0 of ril
cdstc ré ; two's complement propagate
ori recc rtn bit?, rii ; put condition codes in ri1l & return
Savel011: ;;; Save registers 10 & 11 in external buffer

external buffer pointer is assumed to be pointing to last item
stored in extbuf: if none there, is 1 less than avaitable spot

11

addi warr 1, rilz : increment axternal buffer ptr
dstc warl rl3 i ... & set MAR
dst n wm ri0 ; r10 -> extbuf
addi warr 1, ri12 : increment external buffer ptr
dstc warl ri3 ; ... & set MAR
dst nwn rtn ril ; r11 -> extbuf

Restore1011: ;;; restore registers 10 & 11 from exthuf
.:: External buffer points to last entry put there; if none there,
i1: is 1 less than available spot.

dst mr ri1 , retrisve rli

jsr DecExtBufMAR

dst mr rtn r10 ; retrieve r1d
IMult: jsr IncPktPLrMAR

dast mr r3 ; r3 <- a3

::; Is A undef, miss_elt, or zero_divide?
andi n bit7, rd : is A's error bit is on?
jmp eq IMAnotErr



Integer Multiply Program -30-
andi n MiscErrs, r3 ; is A undef, miss._elt, or zero_divide?
jmp eq 1MAnotMiscirrs if not, go test fTor other conditions

result is Undef since A is one of (undef, miss_elt, zero_divide}.

L

SetUnd: srci trUndef, r?
+:; What is in ré-ré is ignored when number is an error value.
jmp Deliver
IMAnotMiscErrs: :;; A is an error, not Undef, Miss_elt, or lero_divide
. so A is Unknown, Pos_over, or Neg_over
. if B undef, miss_elt, or zero_divide, result <-- undef
. else{get b2 - bO}if B = 0 then result <-- 0
. elseif B unknown then result <-- unkaown
. elseif A unknown then result <-- unknown
else result <-- over with xor of signs
H endall
1:; get b3
addi warr 4, rld ; result in r14 and MAR right
dste warl rib . carry propagate for high byte imn rib &
dst mr 7 i r7 <~ b3
andi n bit7, r7 ; is B's error bit on?
jmp eq IMBnotkrr
andi n MiscErers, r7 ; is B undef, miss_elt, or zero_divide?
jmp ne SetUnd . if so, go set result to undef
::: B is unknown, pos_over, or nég_over; A is also
jmp IMABunkov
IMBnotErr: ::; A is unknown, pos_over, or neg_over, B is not an error
Jsr getB2i0 ; get b2, b1, b0 in r6, rb, r4
dst nr? ; is b3 zero?
jmp ne IMBnotEZ
dst n ré ; is b2 zero? .
jmp ne IMBnotEZ
dst nrb ;: is b1 zero?
jmp ne IMBnotEZ
dst nrd ; is b0 zaro?
jmp ne IMBnotEZ
::; B is 0, so result <-- 0
jmp Deliver ; zero already im r7 - rd
IMBnotEZ: ;:: A is unknown, pos_over, Or neg_over, B is not an error, is ~= 0
.1; exchange A & B high order bytes and have tests made elsewhere
dst ng r7 ; /// this exchange also
Sre r3, r7 ; 47 is inm
qreg r3 3 /77 TADD
jmp IMAnotEZ2Berr
IMAnoOtErr:
jsr getAzld ; get a2, al, a0 in r2, ri, ¢0
::; Check for error values of bl
jsr IncPktPtrMAR
gst mr r7 ; rT <- b3
.:: Is B undef, miss_elt, or zero_divide?
andi n bit?, r? : is B's error bit on?
jmp eg IMABrotErr
andi n MiscErrs. r7 : is B undef, miss_elt, or zero_divide?
jmp ne SetUnd ; if so, go set result to undef

::; B is an error value, but not undef, miss_elt, zero_divide

;:: B is unknown, pos_over, or neg_over; test if A is 0

dast nrl ; ts a3 zero?

jmp ne IMAnotEZlBerr ; [A is not an error or zero; B is an error]
dst nr2 ; ts a2 zero?

Appendix B
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jmp ne IMAnotEZBerr

dst nril ; i1s al zero?
jmp ne IMAnotEZBerr
dst n ro ; is al zero?

jmp ne IMAnotElBerr

i3 A is 0, so is result

zero r7
jmp Deliver ; zero r6, r5, r4 and return
Sgtunk: srci bit?, r? ; Set result to be Unknown
jmp Deliver
IMABunkov: ;;; A is unknown or pos/neg_over; and so is B
;33 Is A unknown?
Xori n bit?, rd
jmp eq Setunk ; jump if A is Unknown, & ser rasult Unknown
IMAnotEZBerr: ;;; A is either {not an error, and is not zero] or [pos/neg_over]
i;; B is unknown, pos_over, Or neg_over
;i1 Well, is B unknown?
xori n bit?, r7
jmp eq Setunk : jump if B is Unknown, & set resuli Unknown
::; B is pos/nag_over, and A is either [pos/neg_over] or [number ~= 0]
;1: so result <-- an overflow with xor of the sigas of A & 8
xor r3, r? .
andi hite, r7 ; put sign bit in r7
ori bit7 & bits, r?7 ; put in error bit & overflow bit
jmp Deliver
IMABnotErr: ;:; A & B are not error values
::: To simp1ify the multiplication, the magnitudes
..: will be multiplied rather than the two's complement values.
;:; b3 is in r7.
jsr Savel0Oll ; Save r10 & r11 in the external buffer
i3 Save signs of A& B
sre 1s r7, r1l° ; put b3 left-shifted into rli
andi bit?, rll ; extract sign
STC Is r3, r10 . ; ditto for ad
andi bit7, ri10
jmp eq Apos
:;: A was nagative, so make positive
ndst ro ; two's complement
cdstc ri ; propagate
cdstc r2 HE
cdstc r3 Hl
andi chit7?, r3 ; remove top bit
Apos:
:;; operation pkt pointer is pointing to b3
addi warr 3, r14 ; -- get low order B byte, b0 --
dstc warl rib
dst mr rB ; r8 <- b0
dst n rii ; was B negative?
jmp eq Bpos0
ndst ] ; bagin lwo's complement
ori rec bit?7, rli : put condition codes in r11 (C 4n bit 0)
BPos0:
jsr IMABMult
jsr DacPkiPLrMAR ; move pointer from b0 to b1
jsr IMGetB : read in bl; if was negative, propagate

two's complement.

jsr IMABMulL
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jsr DecPktPLrMAR

jsr IMGotB : read in b2; if was negative, propagate
; two's complement.

jsr IMABMuTt

Jsr DecPktPtrMAR

jsr IMGetB . read in b3; if was negative, propagate
. two's complement, If-C bit still set,
. 1s not relevant.

andi cbit?, r8 . remove top bit

Jsr IMABMUTL

ree

leaves 4 MSBs in r7 to rd
and 4 LSBs in <ExtBuf - 3> to C(ExtBuf>

If any of r7 to r4 are nonzero, result is an overflow.

dst nr?
jmp ne  IMResOv
dst n ré
jmp ne IMResOv
dst n rb
jmp ne IMResOv
dst n ré4
jmp ne IMResOv
::: So rasult isn't an overflow {yet), so retrieve low 4 bytes.
dst ware r12 ; move external buffer ptr to MAR
dst warl rl3
dst mr r? ; get nexat byte of result from external buffer
andi n bit7, r? ; is high bit on?
jmp na 1MResOv2 ; then overflow (this test precludes the
‘ . inclusion of -2130; range of result
; is -2130 + 1 to 2t30 - 1)
jsr DecfxtBufMAR .
dst mr ré
Isr DecExtBufMAR
dst mr 6
jsr DecExLBufMAR
dst mr rd -
. Need to reset the external buffer pointer to initial state
addi -1, ri2 : decremgnt external buffer pointsr
rsubici 0, ri3 ; borrow propagate & set MAR
andi rig, ril ; AND saved sign bits of A & B
andi n bit7, riil ; just want the sign bit, no carry bits

jmp eq PreDeliver

if result is positive, done

1T

else have to two's complement the result.

ndst r4
cdstc rb
cdstc ré
cdstc r7
jwop PreDeliver
IMResOv2: ;;: Overflow after retrieving some from external buffer.
;:. Reset external buffer pointer
addi -3, ri1z ; decrement external buffer pointer
jmp IMResCont : .
IMResOv: ::: The result of the actuva) multiplication overflowsd. Set
;3. FT - rdA for an overflow, with sign
i;: Reset external buffer pointer
addi -4, r12 ; decrement external buffer pointer
I1MResCont:
rsublct 0, ri3 ; borrow propagate
and rs r10, ri1 ; AND saved sign bits of AR B



Integer Multiply Program ~-33-
andi hit6, rll ; just want the sign bit, no condition bits
ori bit? & bits, ri1 . OR in the error & overflow bits
sre ril, r7 ; put in the conventional place
.:: For now, the valuss of r6-r4 are ignored for error values.
jmp Deliver

IMABMUTL: :
dst nq ro ; q <- r0 (a0}
zero rg
1setup 7
umpy d.lpct r8, r9 ; bfi] * a0 [8 times]; .MSB to r8; LSB to g

: MSB (c[i0] -> rD), LSB (d[10] -> q)

addi warr 1, ri2 . increament external buffer ptr
dstc warl ri13 : . & set MAR
addq nwm rd, i q {LSB} + prev. low byte -> ext but
sree r5, r4 ;. rb + carry -> réd
sTCC ré, rb ; F6 + carry -> rad
srcc ri, rb6 y r7 o+ carry <> r2
srcci o, r? ; carry => r?
add 9, rd ;r9 + rd > r4 [r9 = MSB]
dstc rb ; carry propagate
dstc ré HE
dstc ri T
dst nq rt ; q <- r1 {al)
zaro r9
1setup 7
umpy d 1pct r8, r9 ; MSB -> r9, LSB -> ¢
addq rd, ré ; d[i1] + r4 -> rd
dstc ré . ; carry propagate
dstc ré
dstc r?
add rg, rb ; ¢[i1] + 6 -> rb
dstc rb ; carry propagate
dstc r?
gst ng r2 i q - r2 (a2)
28ro r9
1setup 7 -
umpy d lpct r8, r9 ; MSB -> r9, LSB -> q
addqg r6, rb ; dfi2] + r6 -2 rb
dstc ré ; carry propagate
dstc r?
add rg, ré ;s c[12] + r6 -> rb
gstc r7 ; carry
dst nq r3 ;g <~ r3 {(a3)
zaro rg9
I1setup 7
umpy d 1pct r8, r9 ; MSB -> r0, LSB -> q
addq r6, rb ; d[13] + 6 -> rB
dstc r7 ; carry
add rtn r8, r? ; ¢[13) + r7 <> 17
+:: carry should = @ for unsigned multiplication.

PraDeliver: ;;;

-Restore saved registers

jsr Restorel011
Delivar: ;:: then Deliver result
::: Should invoke delivery routine, or just return to caller

;v who
rtn

will deliver.
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Appendix C - Floating Point Add Program / Coonen

: ~*-PU-*- Thursday 22 May 1980 1:38 pm
: Yloaling point Add

As per Coonen's proposed IEEL floating point standard

Described in Stgnum Newslietter special issue, October 1978; and
Computer (1EEE), January 1880

- single precision only

- without exception traps or signals

- with denormalized numbers

- using round to nearest

- using projective infinity arithmetic (+Infinity = -Infinity)

; Floating point numbers should arrive in the following format:
i SEEEEEEC EFFFFFFF FFFFEFFF FFFFFFFF
i S0 they are unpacked to be as:
i a3 - Exponent --- first
i a2 - sign bit, Fract MSB 7 bits
i a1 - Fract 8 bits
; a0 - Fract LSB 8 bits
7 b3 - Yike al

i b2 - 1ike a2

i bl - 1ike al

¢ b0 - like a0 --- last

r13 = 13.
rid4 =
ri6 =
cbit? = 177
allbits = -1

iii Subroutines

IncPktPtrMAR: ;:: Increment operation packet pointer (low byte) in r1d4, and put
addi warr 1, rl4 ; result in r14 and MAR right
dstc warl rtn rib ; carry propagate for high byte in rib &
: pul in MAR left - return

Restore10111416: ,;; restore registers 10, 11, 14, and 156 from extbuf
;i3 Externgl buffer points te last entry put there; if none there,
7vi s 1 less than available spot.
dst mr ris : retrieve rifb
addi warr -1, ri12
rsublci warl 0, ri3

dst mr rid ; retrieve ri4
addi warr -1, ri2

rsublci war? 0, ri3

dst mr rit ; retrieve rii

addi warr -1, ri2
rsubici warl 0, r13
dst mr rin ri0 ; retrieve rlo
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Floating
Savel0111415: .:: Save registers 10, 11, 14, 15 in external buffer

.:: external buffer pointer is assumed to be pointing to tast item

::: stored in extbuf; if none there, is 1 less than available spot

addi warr 1, ri2 ; increment external buffer ptr

dstc warl r13 i ... & set MAR

dst n wa r10 ; r10 -> extbuf

addi warr 1, ri2 ; increment external buffer ptr

dstc warl ril ;... & set MAR

dst n owm ril : ri1 -> extbuf

addi warr 1, ri2 . increment external buffer ptr

dstc warl ri3 i ... & set MAR

dst n wm rié ; rid4 -> extbuf

addi warr 1, riz ; increment external buffer ptr

dstc warl ri3 ; ... & sat MAR

dst n wm rtn ri1b : r16 -> extbuf
NaNfr: ;;: Produce NaN by setting fraction field to something diagnostic.

::: Actually, the caller should indicate what sort of problem

.:: there was so NaNfr can produce something meaninpgful.

¢:: But (for FAdd at least) Nak is produced for only

;17 improper infinily arithmetic, and even so there are no plans

:;: for using any encoded information, so it doesn't matter what the

... fract field is as long as it is nonzero.

srci rtn allbits, r9 : r@ is the first fraction byta, which

. when repacked, is put in r6, without 1st bit.
:;::;:;;::;:;:::;;:::::::;;;::::::::::::::::;;::::::;;;;;:::::;:;::::;:::::;;;;
FAdd:  jsr IncPkiPtrMAR ; incr packet ptr, store in MAR
- dst mr rd ; r3 <- ald

jsr IncPktPLrMAR

dst mr r2 ; r2 (- a2

dst 1s ¢ r2 ; take off low order exp bit

dst s rcrd ; put on r3, take off sign

dst rs rc r2 . pur sign on r2

.:: At this point, could test for error values of A rather than

:3; reading in the rest of A

jsr IncPkitPtrMAfR

dst mr rl :r1 ¢- al

Jsr IncPktPtrMAR

dst mr r0 i r0 <- a0

sre  r2, rB

andi CBIT7, r8 : get rid of sign bit

nandi n ALLBITS, rd ; test if A = NaN part 1 - is Max ET

jmp ne AisN

dst n ré

jmp ne ANaN ; jump if A is NaN

dst nril

jmp ne ANaN

dst n ro

jmp eq AisN ; {A] = Infinity but ased to test if B is NaN
ANaN: i3: A is NaN, so result <- A

Src r3, r7

src r2, rb

sre rl, rb

src r0, ré

Jmp FARepackX
AfsN:  jsr IncPktPtrMAR

dst mr r7 ; r7 <- b3

jsr IncPktPtrMAR

dst mr r& ; r6 <- b2

dst 1s ¢ ré : take off low order axp bit

dst 1s rc 7 ; put on r7, take off sign

dst rs rc ré ; put sign on ré

At this point, could test for error values of B rather than

R
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;i: reading in the rest of B
Jsr IncPktPLrMAR
dst mr rb ; rHh <~ bl
jsr IncPktPLrMAR
ast mr ré ; r4 <- bD
$rc ré, r9
andi CBIT?, rg ; get rid of sign bit
nandi n ALLBITS, r7 ; test if B = NaN part 1
jmp ne Bish
dst nrg
jmp ne BNal : test if Nal
dst nr5
Jmp ne  BNaN
dst nré
jmp eq BisInf : |IB] = Infinity so bypass Zerc test
BNaN: ;s B is NaWN, so result <- B
jmp FARepackX
BisN: i:: Test for {A]=0=]B|
73: Actually, this test is unneeded, although specified by
i:: Coonen to allow "parrow rounding precision™ to occur
ii: (Computer p76).
dst nrl
Jmp ne IsAlnf ; test if Exp[A] = 0 (Min E)
dst nr?
jmp ne ABAdd ; test if Exp[B) = O
dst n ré
Jmp ne ABAdd ; test if M3Bytef[A] = 0O
dst nro -
jmp ne ABAdd ; test if MSByte[B]) = 0O
dst n el
jmp ne ABAdd : [A]
dst nrb
jmp ne ABAdd : [B]
dst n ro :
jmp ne ABAdd ; [A]
dst nré
jmp ne ABAdd . [B]
io AL = 0 = |B]
and ré, ré ; AND sign bits; assume Round to Nearest
jmp FARepackX
;:i Test for JA|] = Infinity = |B|
Bisinf: nandi n allbits, r3 ; know |B] = Infinity via NaN test
jmp ne FARepackX v $¢ test if [A] = Infinity; if not, prelim
i result already in r7 to ré
: already tested for A NaN, so JA| = Infinity
iis 1A = Infinity = |Bj
i1y If Affine ...
eqv nr2, ré ; if r2 & r6 have same sign
Jmp ne ProjTest + then valid for Affine
Jsr NaNfr ; e@lse not, so produce NaN [by fi1ling Fract
; Tield with (non-)diagnostic info of some
; sort]
jmp FARepackX
ProjTest: ;;; Coonen's standard suggests the projective infinity arithmetic
;i system as default, so it is used here:
jsr NaNFr ; so make NaN (set fract ~= 0)
jmp FARepackX
IsAInf: :;; |B| ~= Infinity; test if JA| = Infinity
nandi n alibits, r3
jmp ne ABAdd ; I JA} ~= Infinity go add A & B
src r3, r? i |A] = Infinity so put it in r7 to rd
src r2, ré
src ri, rb

sSrc r0, rd
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jmp FARepackX

ABAdd: :;; 0 =< [A], |B] < Infinity; but if JA] = 0 then |B] ~= 0
.:: Cases b, d, e on page 7% of Computer January 1980
13 Put (preu1ously implicit) leadTng bit in p]ace of sign,
HHH put A & B MSBs in r8 & r

src s r2, rB
dst nr3
jmp eq AleadBit ; check if lead bit should = 0
sec
AteadBit:
dst rs rc r8 ; shift in lead bit for A
src s r6, t9 . move B's MSByte to r9, shift out sign
dst nr?
jmp eq BleadBit : ; check if lead bit should = 0
sac
BleadBit:
dst rs rc r9 ; shift in lead bit for B o
jsr Savel0111415 ; save registers 10, 11, 14, 16 in ExtBuf
2ero rig
zero ril

::;: Align binary points by coercing exponents to whichever is larger,
;. and shifting mantissas.

sre rd, rl4 ; r14 <- ExpfA]
rsub r7, ria ; r14 <~ Exp[A] - Exp{B]
;:: subtraction of unsigned numbers
jmp eg Aligned ; jump if exponents same
jmp hi ExpAgtB : jump if Exp[A] > Exp{B]
subi 0, ri4 ; r14 ¢- Exp[B] - €xp[A] ... positive
src r7, r3 ; Exp[A] <- Exp[B]
ExtFrL = 37 ::: 37 (octal) for extended format

;:: don't want to shift forever, so maximum shift = length of
;:: fraction field {extended)

rsubi n ExtFrL, ri4 ; subtract length of extended fract field

jmp los ARSSeiup ; jump if exponent difference =< Fract length

srci ExtFrL, ril4 ; r14 <- max fract length
ARSSetup:

dst n ri4

1det reg " : 7oad addr/count reg with what's 1in rid
ARSLoop:

dst rs un r8 ; shift right A's MSByte

dst rs rcorl ., propagate shift to A's 2nd byte

dst rs rc r0 ; to least {(non-extended) byte
dst rs rc ri10 : to least-extended byte
11 don't use sticky bit
count ARSLoop . decrement, loop if count ~= 0
Jjmp Aligned

ExpAgtB:
src r3, r? Exp[B] <- Exp[A]

rsubi n ExtFrl, ril4
jmp los BRSSetup

subtract leagth of Fract field
jump if Exp difference =< Fract Tength

srci ExtFrL, rl4 r14 <- max fract length
BRSSetup:

dst nria

ldct reg : load addr/count reg with what's in rid
BRSLoop:

dst rs un r9 ; shift right B MSByte

dst rs rc r4 ; least (non-extended) byte
dst rs re ril ; least-extended byte

;:: don't use sticky bit

count BRSLoop ; decrement, loop if -= 0

dst rs rc rj ; propagate shift B 2nd byte
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Aligned:

DifSign:

::: Binary points are aligned
i A B
iirord o7 exponant
;.. rid4 rib exponent-extended (not used for Add}
ii. rBro MSByte
asoorl b Znd
vis r0 ra teast
iis 10 ril least-extended
iis r2 ré ist bit = sign
aqv necr2, ré ; find same bits, set c bit = sign
jmp cc  DifSign ; jump if Sign[A} -= Sign[B]

;i Same sign for Add
add ri0, ri1 ; &dd least-extended bytes

adde rQ, ra least
addc ri, rb Znd
addc rg, r9 most

jmp ce HNormalize jump if no carry

#a pe s me ve ws ome ows ow

dst rs rc rg9 shift result to put carry (lead bit) in

dst rs rc rb propagate

dst rs rc ré "

dst rs rc ri11 "

zero I1s v r3 ; put right-shift carry-out bit im bit 0 of rd
or 3, rit ; OR shifted out bit into rl11 (sticky bit}

inc r? ; incremeat result exponent since lead bit

; shifted into MSB. Should not set C, since
Max E = all ones is reserved for.

Infinity & WaN previously caught.

; However, if exponant now = the max,

; there is an overflow, caught later

;i: The explicit leading bit (now in r9) will be thrown away
;:: when normalizing the numhser

imp Normalize
:;: A& B have different signs
i.; subtract B from A
sub rio, ri1i . € is 0 if r10 < ri1
sublc r0, rd  C is 0 if r0 < ré

sublc rl, rb
subic rg, r9

jmp ¢s SignofA ; jump if A} »>= |B}
i:; [A} < |B] -~ de-negate result

ndst ri1 ; two's complement
cdstc ri . propagate

cdste  rb .

cdstc r9 "

;;: a carry from here is not relevant

result gets sign of B, which is already in rb

jmp Zorolheck
SignofA: ;.; result gets sign of A

src r2, ré ; move rZz to r6 for sign only
ZaroCheck:

dst nrg . is msbyte 2erof

jmp ne Normalize ; no - jump

dst n r

jmp ne  Normalize

dst n ré§

jmp ne Normalize

dst n rii ; is least-extended byte zero?

jop ne  Normelize : po - jump

i:y result 1s zero '

zero r? ; set exp for minimum

zero r6 ; sign + (assuming Round to Nearest)
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i1y result now in r7 to rd
Jmp FARepackX

Mormalize: ;;; Convert result to the normal form
:1; which here means that r9 (high order mantissa byte) gets
:1: the 1st 7 bits of mantissa fraction field, and
;. msb(r3)=leading bit;
;i; rb6 and rd4 get 8 bits each. Note that the explicit leading
;7 bit will become implicit when repacked.

Normalloop: .
dst ncro ; is msbit of mantissa's mshyte 17
jmp ne Round ; yes - time to round
rsubli 0, r7 : decrement exponent; is exp < zero?
jmp 1o Denorm ; yes - go denormalize result
dst s ¢ ril ; 1eft shift 1sbyte extanded of result
dst s rc réd ; propagate
dst 1s rc rb HE
dst Is rc rg ; " to msbyte
jmp Normallioop i loop
Denorm: ;:; Can't fit as normalized, shifted left as far as can
zero r7
::1: Result in r7 (exponent); r9 (msbyte), rd (lsbyte)

.i; and lower significant bits in ril; sign in ré
;3 so round the resuit to fit.

Round: ;::; There s no need to check for underflow as long as the
;1 destination is single precision for single precision operands.

ii; Assume Round to Mearest {(RMN)
;5. r11 contains the extra bits
ii: rd bit 0 is LSBit

;3; Cases:

ivs ré bit 0 ri1 Do this

is: O ¢ same [oxact] case 1
pis 1 " " case 2
FEI | < 100,., same [truncate] case 3
i 1 " " case 4
N 100.. same {LSB 0] case b
S | * add 1 [LSB 0] case 6
e O > 100.. add 1 [Round up]case 7
HS I | case 8
;i3 So to get desired rasults,

HE add MSB(ri1) to r4 except when L5B(r4) = 0 = Left_Shift(ril)

dst noril : is lpast-extended byte 07

jmp eq Exact ; yes - no need to round (cases 1, 2}

zero ng

dst 1s rd rit MSB{ri1) -> LSB{q): ril shifted left

dst un ré LSB(rd4) -> C bit

dst rs rde ril shift that C bit iato MSB(ri1); LSB{q) -> C

[los = ~C | I]

[Z bit on:] if original 1sb{rd) &
left_shift(original ri11}) = 0, them
jump, as rd etc. stays same. (case B)

{C bit off:] if original msb{ril)
zero, no need to add (cases 3, 4)

jmp los Inexact

dstc ] gelsa add C bit to low byte (cases 6,
1, 8)

dstc rb propagato

dstc rg

jmp cc  Inexact jump if no carry
i:: If carry here, than have to increment exponent, and shift
iis r9, r5, and r4 right.

inc r? ; increment exponant {overflow caught later)
sec

dst rs rc r9 ; shift in carry-out which required the
: ; exponent incremented
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dst
dst
zero
or

Inexact:
Exact:

rs rc rb -
rs rc rd
s ur3
r3. rd

i3: Tall through

+5: Check for overflow

xori
jmp ne
zero
zero
zero

FARepack:
dst
dst
dst
sre

n allbits, r?

FARepack
r9

rb

rd

is r§
necrb
rs rc rl

rs rc r9, ré

v

’
[
.
.
+

& propagate

; put right-shift carry-out bit in bit 0 of r3
; OR shifted out bit into rd (sticky bit)

is exp a1l ones?

no - jump
fract field all zeroes indicates infinity
" (stgn field retained, from r6)

throw away explicit leading bit

get sign bit

put sign bit on r7, take off exp low bit
put Tow exp bit in top bit of 2nd highest
byte, put result in r6, so

i+ entire single precision result is in r7 through r4.

PreDeliver:
jsr
Deliver:
rtn

FARepackX:
dst
dst
dst

Jjmp

restorel0111415
ii: Results are 1aft in r7-rd4 {(msbyte - 1sbyte)

1s ¢ r6
rs rc rJ
rs rc rb
Deliver

restore saves registers from external buf

take off sign bit

i put on r7, take off low order exp bit
; put on ré
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Appendix D - Floating Point Add Program / Error-Byte

-s_py-*- Friday 16 May 1980 1:41:41 am
Errors encoded in first byte - Floating point Add

flpating peint numbers should arrive in the following format:
RSEEEEEE EEFFFFFF FFEFFFFF FFFFFFFEF
ifR =1
then # is an error value
1st byte encodes the error valuve; other bytes ignored.
else # is a representable integer
S = sign
8 E bits = exponent
22 F bits = fractional part of mantissa
it exponent = minimum (all zoroes)
then number is zero (i.e. no denormalized numbars)
else biased exponent can range from 1 to maximum (all ones)
(i.e. from 1 to 2t8-1 = 265): bias is 128, so true
exponent ranges from -127 to +127.
endall

Error values:

76543210 bit7 on if arror; bit6 on if neg: bits on if over; bit4 on if under;
(bitd cor bit2) on if undef, miss_elt, or zero_divide.

10100000 pos_over

11100000 neg_over:

10010000 pos_under (Not applicable to Integers)

11010000 neg_under (ditto)

10000000 unknown

10000100 undef

10001000 miss_elt

10001108 zero_divide

Non-arror valued numbers are unpacked to be as:
ald - Exponent --- first

a2 - sign bit, Fract M5B 6 bits

al - Fract 8 bits

a0l - Fract LSB 8 bits

b3 - 1ike a3

b2 - like a2

b1 - like al

b0 - V1ike a0 --- last

= 0

=1

=2

= 3

= 4

=5

=6

= 7

= 8.

=9,
0= 10.

1= 11.

2= 12,

a =13,

4 = 14,

6 = 16.

t7 = 200 ; 10000000
t6 = 100 : 01000000
15 = 40 ; 00100000
t4 = 20 , 00010000
jt? = 177 ; 01111111
scErrs = 14 ; 00001100
Undef = 204 ; 10000100
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Allbits = -1 7 11111111

IR N N N R N R R R R R R R R ]

:+: Subroutines

IntPkiPLIMAR: ;:: Increment operation packet pointer {Jow byte) in ri14, and put
addi warr 1, rid : result in r14 and MAR right
dstc warl rtn rib ; carry propagate for high byte in rib &
: put in MAR left - returnm

Restorel0111415: ;;; restore registers 10, 11, 14, and 156 from extbuf
External buffar points to last entry put there; if none there,
is 1 less than available spot.

Ty

e

dst mr r15 ; retrieve rib
addi warr -1, rl2

rsubici warl 0, ri3

dst mr ri4 ; retrieve ri14

addi warr -1, ri2
rsublci warl O, rl3
dst mr ril

addi warr -1, ri2
rsubici warl 0, ri3
gst mr rtn rl0 ; retrieve ril

; retrieve ril

Savel0211415: ;3 Save registers 10, 11, 14, 15 in external buffer
;i external buffer pointer is assumed to be pointing to last item
ii; stored in extbuf; if none there, is 1 less than available spot
addi warr 1, ri12 increment external buffer ptr
dstc warl ri3 ... & set MAR

; ri0o -> extobuf

dst n wa rid H
addi warr 1, rl2 ; incroment external buffer ptr
dstc warl ri13 s ... & set MAR
dst nwn rii ; r11 <> axtbuf
add 1 warr 1, riz : increment external buffer ptir
dstc warl ri13 ; ... & set MAR
dst nwm riq ; r14 -> extbuf
addi warr 1, ri2 ; increment external buffer ptr
dstc warl ri1d i ... & sat MAR
dst n wm rtn ri1b ; r15 <> extbuf
getazi0: ;;; read in a2, al, a0; packet pointer assumad to be pointing to a3
jsr IncPktPtrMAR
dst mr r2 ; r2 <- a2
jsr IncPktPtrMAR
gst mr rl porl <~ al
jsr IncPkiPtrMAR
dst mr rtn r0 ; r0 <- a0
getb210: ;;; read in b2, b1, bD; packet peinter assumed to be pointing to b3
jsr IncPktPtrMAR
dst mr rb ; r6 <- b2
jsr IncPiktPtrMAR
dst mr rb ; M <- b1
Jisr IncPktPtrMAR
dst mr rtn ré4 ; rd4-<- b0

R S Y aa N S r N Ty NS by e e A A A S A e S e b b ey e e R SR v AN ks T 4 L ]

i+: UnpackA B UnpackB unpack from

;s RSEEECEE EEFFFFFF FFFFFFFF FFFFFFFF to
ii; r? [exponent]

;3: rB [sign; 7 bits]

ii: 5 [8 bits]

15 rd I7 bits}

UnpackA:
dst s cro i shift fraction left 1 bit through r2
dst 1s rc 1 T
dst s rc r2 i put fract bit in r2; remove exp bit {(el)
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dst 1s u r3 ; put el on r3; remove error bit (& throw away)
dst 1s ¢ r2 : take off low order exponent bit

dst 15 rc r3 ; put it on r3; take off sign bit

dst rs rc rin r2 ; put sign on r2

dst s ¢ r4 ; shift fraction left 1 bit through r6

dst Is rc rb "

dst 1s rc r6 ; put fract bit in r6; remove exp bit (el)
dst 1s u r? : put el on r7; remove error bit (& throw away)

dst 1s ¢ ré : take off exponent sk (e0)
dst 1s rc r7 ; put it on r7; take off sign bit
dst rs rc rtn ré ; put sign on ré

EFRepack: ;;; repacks from

L]

EFadd:

EFAerr:

i3 r7 [exponent byte)

i5; rB [sign bit; 6 high fract bits]

i;; rb [B fr bits]

ii: r4 [B low fr bits]

:;; to RSEEEEEE EEFFFFFF FFFFFFFF FFFFFFFF

:3: {Note that the format repacked from is different from the

.;: format unpacked to. This is because there is a conversion from
:.: one to the other for the rounding routine.)

dst 1s ¢ t6 ; take off sign bit .

dst rs dc r? ; put on r7; take off exp isb (e0) (-> msb(q))
dst 1siq r rb6 . rotate unused bit of r6; e0 of g to 1sb(q}
dst rs rd r6 ; put e0 on ré

dst rs un r7 . take off exponent bit (el)

dst rs rc ré : put on ré

imp Deltver

%11X%Z%%%%%%%%%1%%%%%1%Z%1%11%%!1IZX%!ZX%IZ%211111111%1XX%%ZZ%%%I!ZI%%%%I!

......................................................................

isr IncPktPtrMAR
ast mr r3 ; r3 <~ ald
andi n bit?, rd ; Is A an error value?
jmp ne EFAarr ; yes - jump
; no - get B
addi warr 4, ri14
dstc warl rlb
dst mr r7 . ;o r7 <~ b3
andi a bit7, r7 ; Is B an error value?
jmp ne EFBerrAnerr ; y8s - jump
.:: neither A nor B are error values, so get b2, b1, bo
Jsr getb21d
addi -7, rl4 ; decrement packet ptr
rsublci 0, r1d ; borrow propagate
jsr geta2ld ; - & get az, al, a0

::: A & B are not error values; could be zeroes

;:; unpack exponent, move sign .

jsr unpackA

;. Mow r3 = exponent; r2 has sign bit, unused bit, and 7 fract bits;
i1: r1 has B fract bits; r0 has 7 fract bits

jsr unpackB

jmp [FABAdd

;:: A is an error value

andi n miscerrs, r3 ; §s A undef, miss_elt, zero_divide?
jmp ne FSetundef ; yas - rasult <-- undef

andi n chit?, r3 ; well, is A unknown?

jmp eq FSetunk ; yes - result <-- unknown

:3; 50 A is an under or overflow - go get B
addi warr 4, ri4
dstc warl r1b
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dst mr r? i r7T <- b3

andi n bit7, r? ; Is B an error value?

jmp eg AovundBnerr i no - jump

indi n miscerrs, r? is B undef, miss_elt, zero_divide?

jmp ne FSetundef . yes - result {-- undef
andi n chbit?, r7 ; well, is B unknown?
Jmp eq FSetunk ; yes - result <{-- unknown

;:; S0 A & B are both underflows or overflows

i.. 3fF A & B have different signs

then result <-- unknown

elsaif A is an overflow
then result <-- A
else result <-- B

e
T
s

1

agv nq r3, r?
andqi n bité,
jmp eq ¥FSetunk
andi n bits, r3
Jop ne EFErresA
Jmwp Deliver

are sign bits (bit 6) same?
no. - result <(-- unknown

is A an overflow?

yes - result <-- A

else rasult <-- B

AovundBnerr:
::: A is an overflow or underflow, B is not an error
jsr getb210

if A is an underflow

then if B ~= 0.0
then rasuwlt <-- B
else result <(-- A
else if A & B have same signs {A is overflow)
then result ¢-- A
elseif B = 0.0
then rpsult <(-- A
else result <-~ unknown

HEH endall

andt n bitd, r3 ; is A an underflow?

Jmp eq EFAov ; o - jump

1
-
HE
P
Vi
I
1
HH

dst nr? is b3 (exponent) zero? [if yes, then B = 0]
jmp ne Deliver o -
well B is 0, so result (-- A

EFresA: src rl, r?7 . result is A, so move to r7-r4,.
src rZ, ré
sre ri, rb
sSrc rg, r4
Jmp Deliver
EFAov: ;,; A is an overflow, B is not an error.
vi: If same sign, result <-- A
eqv ng r2, r6
andqi n bité, ; are sign bits (bit 6) same?
Jmp ne EFErresA i yes - jump: result <-- A

viy well, if B is zero, then result <-- A

dst nr? ; is b3 {exponent) zero? [if yes, then B = 0]
jmp na  FSetunk

13 SO result <--A

EFErresA:
Src r3, r?7
;ii ré throwgh rd4 can be left with whatever they contain, since
iii with the error bit on, all bytes other than the error
;i: byte are ignored.
jmp Deliver

EfBerrAnerr: ;;; B is an error value, A is not.
andi n miscerrs, r?7 ; is B undef, miss_slt, zero_divide?
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jmp ne FSetundef : yas - sot result undef
andi n cbit?, r? ; well, is B unknown?
jmp eq fSetunk ; yes - set result unknown

;:; so B is {pos or neg} _ {under or ovar} flow

andi n bitd, r7 ; is B an undarflow?
jmp eq EFBov ; no - jump
dst nr3 ; is a3 (exponent) zero? [if so, them A=0]
jmp ne EFresA ;o no -
:;: so rasult <-- B
jmp Deliver
EFBov: ::; B is an overflow, A is not an error.
i:: if same sign, result {-- B
eqv nq r2, ré .
andqi a bité ; are sign bits (bit 6) same?
jmp ne Daliver ; yes - jump: result <-- B

.;: wall, if A is zero, them result ¢-- B

dst nr3 ; is a3 (exponent) zero? [if so, then A=0]
jmp ne  FSetunk

ii: 50 result {--B

jmp Deliver

FSetunk: ;;; Set result to be Unknown
srci bit?, r7
jmp Deliver

FSetUndef: ;;: Set result to be undefined
srci Erundef, r?
jmp Dol iver

EFABAdd: ;;; 0 =< {A], {B]| < Pos_over

;13 A & B might both be 0.
::: Put (previously implicit) leading bit in place of sign,
I put A & B MSBs in rB & r9

src 1s r2, r8
dst nr3
jmp eq AleadBit . chack if lead bit should = 0
sec
ALeadBit:
dst rs rc r8 : shift in lead bit for A
src 1s r6, r9 . move B's NSByta to r9, shift out sign
dst nr?
jmp eg BleadBit . chack if 1ead bit should = 0
sec
BlLeadBit:
dst rs re r9 : shift in lead bit for B
isr Savel0111416 : save ragisters 10, 11, 14, 15 im ExtBuf
zero rio
zaro r11

;i: Align binary points by coercing exponenis to whichever 1is larger,
;1; and shifting mantissas.

src r3, ri4 ; rid <- Exp[A]

rsub r7., ri4 : r14 <- Exp[A] - Exp[B]

.:: subtraction of unsigned numbers

jmp, eq Aligned ; jump if exponents samé

jmp hi  ExpAgtB ; jump if Exp{A] > Exp[B])

subi 0, ri4 ; r14 ¢~ Exp[B) - ExpfA] ... positive
src r?, rd : Exp[A] ¢<- Exp[B]

EFExtfrlL = 36 ..: 36 (octal) for extended format
.+: don't want to shift forever. so maximum shift = length of
.. fraction field {extended)
rsubi n EFExtFrL, r14 ; subtract lengih of extended fract Tield
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imp los ARSSetup i jump if exponent difference ={ Fract length
srci EFExtfrL, r14 ; r14 <- max fract length
ARSSetup:
dst n ri4
1det reg ; load addr/count reg with what's in r14
ARSLoop:
dst rs un r8 ; shift right A's MSByte
dst rs rc ril ; propagate shift to A's 2nd byte
dst rs rec ro ; to least (non-extended) byte
dst rs rc riQ ; to least-extended byte
;3: don't use sticky bit
count  ARSLoop ; decrement, loop if -= 0
jmp Aligned
ExpAgtB:
src ra, r? ; Exp[B] <- Exp[A]
rsubi n EFExtfrl, ri4 ; subtract length of Fract field
jmp los BRSSetup ; jump if Exp difference =< Fract length
srci EFExifrL, ril4 ; r14 <- max fract length
BRSSatup:
dst n ril4 .
ldect reg ; load addr/count reg with what's in rl4
BRSLoop:
dst rs un rg ; shift right B MSByte
dst rs rc rb : propagale shift B 2nd byte
dst rs rcord ; least {non-exiended) byte
dst rs rc ril ; least-extended byte
;i don't use sticky bit
count BRSLoop ; decrement, loop if ~= 0
Aligned: ;:. Binary points are aligned
s A B
v 3 r7? axponent
iii o rld ris axponent-extended (not used for Add)
ii; rB 19 MSBEyte
iis rtorh 2nd
;30 FD ra least
;i rl0 r1d teast-extendad
v 2 b 1st bit = sige
eqv ncr2, ré ; find same bits, set ¢ bit = sign
jmp cc DifSign . i jump if SignfA] ~= Sign[B]
ii: Same sign for Add
add rip, rit ; add isast-extended bytes
addc ro, ré ; least
adde r1, rb ; 2nd
adde v8, ro : most
jmp cc Normalize ; jump if ao carry
dst rs rc r9 ; shift result to put carry (lead bit) in
dst rs rc ré ; propagste
dst rs rcrd il
dst rs rc rit ;"
zero 1s u r3 ; put right-shift carry-out b4t in bit 0 of ra
or r3, rit ; OR shifted out bit into r11 (sticky bit)
inc r? ; increment result exponent since lead dit
; shifted into MSB.
jmp cc MNormalize ; if increment didn't have a carry-out, then
; normalize
Setover: ;i Tesult has ovarflowed,
srci bit? & bith, r7 ; put error and overflow hits in r?
ovund: dst rs ré
andi bit6, ré ; get sign bit in r6 as 05000000

or r6, r7 ; put sign bit in r7
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Jmp Deliver ; r7 has error byte; ré - r4 has mantissa of
; number whose exponeant overflowed {unrounded).
DifSign: ;;; A & B have different signs
;3. subtract B from A
sub ri0, ri1 : C is 0 if r10 < r11 (unsigned); otherwise 1
sublc r0, r4 i C is 0 if r0 < r4
subic rl, rb
sublc rB8, r8
jmp cs SignofA ; Jump if |A] >= |B|
;v IA] € |Bl -~ de-negate result
ndst rii ; two's complement
cdstc  ré ; propagate
cdstc  rb i
cdstc  rd T
i:; a carry from here is not relevant (only occurs if number is zero)
i;: result gets sign of B, which is already im ré
jmp ZaroChack
SignofA: ;;; result gets sign of A
src r2, ré ; move r2 to r6 for sign only
ZeroCheck:
dst nrg ; is msbyte zero?
jmp ne Rormalize ; ne - jump
dst n rbé
jmp ne Normalize
dst n ré
jmp ne Normalize
dst nrii ; is least-extended byte zero?
jmp ne Normalize ; e - Jump
;i3 result is zero
zero r7 ; set exp for minimum
zZero ré ; sign + (assuming Round to Nearest)
;o3 result pow in r7 to r4
jmp Deliver ; (for +0, repacking is unnecessary)
Normalize: ;;; Convert result to the normal form
;;: which here means that r9 (high order mantissa byte) gets
1:; the ist 7 bits of mantissa fraction field, and
;3 msb(r9)=1sading bit;
;i: r5 and r4 get 8 bits each. Note that the explicit leading
;i bit will become implicit when repacked.
Normalloop:
dst ncrd ; is msbit of mantissa's mshbyte 17
jmp ne EFRound ; yas - time to round
rsubli 0, r? ; decrement exponent; is exp < 2ero?
jmp 1o Setunder ; yes - rasult is an underflow
dst 1s ¢ rit ; left shift 1sbyie extended of result
dst 1s rc ré . propagate
dst 1s rc rb Hl
dst 1s re r9 i " to msbyte
jmp NormalLoop ; loop
Setunder: ;;; result has underflowed (no denormalized numbers used)
srci bit7 & bit4, r7 ; put error and underflow bits in r?
jmp ovund
fFRound: ;;; Since in £FAdd there are 22 fraction bits as compared with 23
::; in TAdd, and rounding must work the same in boih, EFAdd has to
;:: shift Lhe fraction registers right Lo permit proper (and
;37 easier) rounding.
dst rs un r9 ; top bit now zero
dst rs rc rb
dast rs rc r4 ; since want to round relative to 22nd bit
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dst rs rc rll ; 23rd bit to 30th
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Round:

Inexact:

Exact:

Deliver:

- - ".'

There is no need to check for underflow as long as the
destination 1is single precision for single pracision operands.

; Assume Hound Lo Nearasl {RN)

rit contains the extra bits
rd bit 0 is LSBItL

s

i+ Cases:

iy ré bit O rit Do this

iis O 0 same [exact] case 1
i 1 " " case 2
;i O < 100.. samg [truncate] case 3
ST | " " case 4
HIE 100.. same [LSB 0] case b
A | " add 1 [LSB 0] case 6
S > 100.. add 1 [Round vpJcase 7
T | " case &

ii: So to get desired results,
- add M38(rt1) to rd except when LSB(rd) = 0 = Left_Shift(ri11)

dst n ril ; is least-exiended byte 07

Jmp eq Exact i yes - no need to round (cases 1, 2)

zero ng

dst is rd ri11 MSB(r11} -> LSB(q): ril1 shifted left

dst un rd LSB(r4} -> C bit

dast rs rdc ril shift that C bit into MSB(ri11); LSB(q)} -> ¢

[los = ~C | Z]

[Z bit on:] if original Ish(rd) &
teft_shift{original ril) = 0, then
jump, as rd4 etc. stays same. {(cese 6)

[C bit off: | tF original msb{rit)
zero, no need to add (casss 3, 4)

jmp Tos Inexact

dstc rd else add C bit Lo Yow byte (cases 6,
7. 8)

dstc rb & propagate

dstc r9

Jmp cc  Inexact ;i jump if no carry
ivi IF carry hers, then have to increment aexponent, and shift
i3 r9, r5, and rd4 right.

inc r? ; increment exponent (overflow caught later)
jop cs  Setover ; if increment set carry-out bit, exponent has
; overflowed, so result is overflow
sec
dst rs rc r9 ; shift in carry-out which required the
. exponent incremented
dst rs rc rb ; & propagate
dst rs rc ré 7 '
zero 1s v rd : put right-shift carry-out bit in bit 0 of r3
or r3, r4 i OR shifted out bit into rd4 (sticky bit)
jmp EFRapack ; fract bytes of 6 bits, 8, 8 --> EF format

;i: entire single precision result is in r7 through rd4.

i Results are left in r7-r4 (msbyte - lsbyte)

Jsr restorel0111415 ; restore saves registers from external buf
rtn
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Appendix E - Floating Point Multiply Program’

. -*-pU-*- Fhursday 22 May 1980 11:15 am
: Floating Point Multiptication - Coonen proposal

. Denormalized operands are not handled.

As per Coonen's proposed IEEE floating point standard

Described in Signum Newsletter special issue, October 1979; and
Computer (TEEE), January 1980

- single precision only

- without exception traps or signals

- with denormalized numbers

- using round to nearest

- using projective infinity arithmetic (+Infinity = -Infinity)

; Floating point numbers should arrive in the following format:
. SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF

. so they are unpacked to be as:

. a3 - Exponent --- Tirst

: a2 - sign bit, Fract MSB 7 bits

; al - fract 8 bits

; a0 - Fract LSB 8 bits

b3 - 1ike a3
b2 - 1ike a2
b1 - 1ike al
b0 - 1ike ad --- last
ro = 0
rl =1
r2 = 2
r3 =3
rd = 4
r5 =5
rGg = 6
ri =17
rg = 8.
r9 = 9,
rig = 10,
ri1 = 1%,
riz = 12,
ri3 = 13.
ri4 = 14,
ris = 15.
cbit? = 177 ; 01111111
allbits = -1 ; 11111111
bit7 = 200 ; 10000000
bias = 177 ; 01111111
SRR N T R R A E R E R R R R R R R R R R A AR R R
;3 Subroutines
DecExtBufMAR: ;:: Decrement external buffer pointar and write into MAR
addi warr -1, ri2 ; decrement
rsublci warl rtn 0, r1” ; borrow propagate
IncPEtPtrMAR: ::; Increment operation packet pointer (low byte) in rid4, and put
addi warr 1, ri4 . result in r14 and MAR right
dstc warl rtn ri5 . carry propagate for high byte in r16 &
; put in MAR left - return
Restorei0111415: restore registers 10, 11, 14, and 16 from extbuf

;.: External buffer points to lasti entry put there; if none there,
is 1 less than available spot.

dst mr ri6 ; retrieve rib

addi warr -1, ri12
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rsubict warl 0, ri13
dgst mr ri4

addi warr -1, ri2
rsublci warl 0, ri3
dst mr rll

add i warr -1, rl2
rsublci wart 0, ri3
dst mr rtn ri1o0

Savel0111415: H

‘e

addi warer 1, ri2 : increment external buffer ptr

dstc warl ri3 i ... & set MAR

dst n wm ri0 i r10 -> extbuf

addi warr 1, ri2 ; increment external buffar ptr

dste wart ri13 ;... B set MAR

dst nownril ; r1t -)> extbuf

addi warr 1, ri12 : increment external buffer ptr

dstc warl r13 i+ ... & set MAR

dst nwm rld ; F14 -> extbuf

addi warr 1, ri12 ;i increment external buffer ptr

dstc warl ri3 i ... & set MAR

dst nowm rtn rib i r15 -> extbuf
NaNFr: :;: Produce NaN by setting fraction field to something diagnostic.

i:: Actually, the caller should indicate what sert of problem

ii: there was so NaNir can produce something meaningful.

i But {for FAdd at least) NaN is preduced for only

i improper infimity arithmetic, and even so there are no plans

iy for using any encoded information, so it doesn't matter what the

;s Fract field is as long as it is nonzero.

srci rtn allbits, 9 : r9 is the first fraction byte, which

; when repacked, is put in r6, without 1st bit.

FMult:  jsr IncPktPtrMAR

dst mror3 i rd <= a3

Jsr IncPktPtrMAR

dst mr r2 ; r2 <= a2

dst 1s ¢ r2, r2 i take off el {low exponent bit)

dst s re r3, r3 ; put 80 into r3, take off sign

dst s rcr2, r2 ; put sigm on r2

iii At this point, could test for error velues of A rather than

1i: reading in the rest of A

jsr IncPktPtrMAR

dst mr ri ; rl (= al

jsr IncPkiPLrMAR

dst mr r0 ; r0 <= &0

src r2, ré

andi cbit7, r8 ; get rid of sign bit

nandi n atibits, r3 ; test if A = NaW (part 1) - is Max E?

jmp ne AisN ; no - jump

dst nra

jmp ne ANaN i significand field non-zero, so NsN, jump

dst nri

jmp ne ANaN

dst n ro

Jmp eq Aisinf i [A]l = Infinity but need to test if B s NaN
ANaN - ;i A is NalN so resuvlt (= A

src rd, r?

src r2, ré

src rl, rb

sre rl, rd

jmp FMrepackX

v

retrieve rl4

ratriove ri1i

retrieve ri0

; Save registers 10, 11, 14, 15 in external buffer
: external buffer pointer is assumed to be pointing to last ftem
stored in extbuf; if none there, is 1 less than available spot
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AislInf:
AisN: ;3; A is not NaM, so get B and see if B is NaN
jsr IncPktPLrMAR
dst mr 7 ; r7 <= bd
jsr IncPktPtrMAR
dst mr ré ; r6 <= b2
dst s ¢ r6, t6 ; take off e0 (low exponent bit)
dst s rc 77, r] ; put &0 in r7, take off sign
dst Is rc r6, ré ; put sign on ré
;i At this point, could test for error values of B rather than
i3 reading in the rest of B
jsr IncPktPLtrMAR
dst mr r5  rb (= b1
jsr IncPktPtrMAR
dst mr ré i T4 <= bO
src rb, ro
andi cbit7, r9 ; get rid of sign bit
nandi n alltbits, r7 ; test if B is NaN (part 1): is aexp = max exp?
jmp ne BisN ; no - jump
dst nr9
jmp ne BNaN ; MS significand byte ~= 0, so result is NaN
dst n rs
jmp ne BNaM ; 2nd *
dst nré4 i if ai fraction bytes are zero, then
jmp eq BislIaf i Jump - (8] = Infinity)
BNaN: ;i3 B is NaN so result <= B
jmp fMRgpack
BisInf: :;: |B| = Infinity so test if |A}] = O
dst nr3
jmp ne BInfAnotZ i Jump if A's exp is non-zero
dst nr8
jmp ne BInfAnotl ; jump if A's MSByte non-zero
dst nrl
jmp ne BInfAnotZ
dst nro
jmp ne BlInfAnotZ
;57 |Bl = Infinity & |A] = 0 so Invalid Operation results.
i3+ Assuming no ability to handle traps, so
;i1 produce some Nal.
;;: NOTE that in VAL, D.0 * Pos_Over produces 0.0, so if pos_over
;.. corresponds to + Infinity, the Coonen result specif. is different.
::; There are other cases in which the results of operations
;s involving Infinity operands do not concur with VAL's specs for
i1 pos_over or neg_over; see below.
isr NaNFr » produce some NaMN
jmp FMRepack
BInfAnot?Z:
+i: NOTE that in VAL,
:y: Pos_Over * f [where 0.0 < |f}{ < 1,0] produces Unknown,
:i: In Coonen standard, +Infinity * f produces Infinity with sign
;i of ¥,
ii: Result <= B with signs XORed.
XOr necre, ré
Sre rs rc r8, ré ;: sign shifted in [r9 was 0]
jmp FMitepackX
BisN: ;i. B is not Infinity, but check if A is.
nandi n altbits, rd ;: Since already checked 1if A is NaN,
jmp ne ABisN ; jump if |A] ~= Infinity (if exp ~= max exp)
dst nri
jmp ne AlnfBnotZ ; jJump if B's exp is non-zero

dst nrd
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jmp ne AlnfBnotl . jump if B's MSByte non-zero
dst nrd
jmp ne AlInfBnotl
dst nrd
jmp na AlnfBnotZ

jsr NaNFr ; produce soma NaW
Jjmp FMRepack
AlnfBnotl:
;+4 NOTE that in VAL,
;i Pos_Over * f [where 0.0 < |f] < 1.0} produces Unknown.
;2 [see similar comment above]
ii+: Result <= A with signs XORed.
xor ncr2, ré
sre rs rc r8, ré ; sign shifted in [r8 was 0)
src rd. r? .
sre rl, rb
src ro, rd
Jmp FMRepackX
ABisM: :.; Both JA] & {B]| are not NaNs, not Infinity,
13 50 let's see if they are zero.
dst nrl
Jmp ne IsB? ; A's exp not zero, so go test B
dst n r8 : [ir here, |A| is either 0 or denormalized]
Jmp ne  1sB2 .
dst n el
Jmp ne IsBIZ
dst nro
Jmp ne IsBZ
v3: |A] 1s zero so Result <= Zero
xor nher2, ré ; xor signs
src rs re r8, ré : put sign in high byte {r8 is 0]
zero r? , exp
zZero r5 ; middle byte
zaro r4 ; low byte
Jjmp FMRepackX
IsBZ: +i: A not zero, so test if B is.
dst n r?
jmp ne ABFMult ; B's exp not zero, so go multiply
dst nré ; [if here, |B| is either 0 or denormaiized]
jmp ne ABFMult
dst n rb
jmp ne ABfMuTt
dst n rd
jmp ne ABFMult
;i1 IB| is zero so Result <= Zero
xor ncr2, rb ; xor siges
src rs rc r9, r6 i put sign in high byte [r8 s D]
; r7, r5, & rd are already zero
jmp FMRepackX
ABFMuIL:

Ve
1
e
HHN

|A} = Infinity & [Bf = 0 so lnvalid Operation
assuming no ability to handle traps, so
produce some appropriate NaN

NOTE that in VAL, 0.0 * Pos_Over produces 0.0
[see similar comment above]

A& B are both representable non-zero numbers, multiply them.

r7 - B exponent

r9 - 8 most signif. byte with msbit 0

ré6 - B most signif. byte with msbit = sign
r5 - B middle byte
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33 r4 - B teast signif. byte

;33 r3 - A exponent

ii: r8 - A most signif. byte with msbit 0

i3 r2 - A most sigaif. byte with msbit = sign
i3 rl - A middle byte

i:: rb - A least signif. byte

iis put Jeading bits in A & B's msbytes (r8 & r9)
dst nr’ ; if B denormalized,

jmp eq TryA ; then jump since lead bit is 0
ori hit7, r9 ; else put in lead bit of 1
TryA: dst nr3 ; if A denormalized
- jmp eq LeadBitsIn ; then jump since lead bit is 0
ori bit7, r8 ; else put in lsad bit of 1
LeadBitsIn:

vis multiplicand significand A in r8, rl1, roO
;v multiplier significand B in r9, r65, ré

jsr savel0111415 ; save registers 10, 11, 14, 16 in axt buffer

735 add exponents

Src r7, ri4

add r3, ri4 ; new exponant in ri4 (with double bias)

srcci 0, ris i & r156 for carry [we'll worry about
; overflow neg or pos later]

dst 1s ri15 : {1s for sign to be put in in the next
; faw 1ines)

ii: produce sign of result

xor necr2, ré ; msbit <= new sign

dst rs rc ris ; put sign in msbit of rlb

i+ registers now unneeded: r2, r3, r6, r7, r10, rit

src r8, r2 ; s0 A significand is in r2, r1, ro

src "9, r10

Sre r5, r¢ -

src rd, r8 ; so B significand is in r10, rd, rB

iis registers now unneeded: r3, rd, rb, r8, r7, r8, rii
zaro r?

zero r6
zaro rb
zaero r4

7i: OB Denormalized numbers complicate matters. Not handled.

jsr FMABNMu1t ; B's LSByte * A

src r9, r8

jsr FMABnMul1t ; B's middle byte * A + previous result
src r10, r8

jsr FMABnMult ; B's M5Byte * A + previous result

i+ result should be in rér5rd & <ExtBuf> to <ExtBuf - 2>
i+1 so retrieve what is in ExtBuf

dst warr r12

dst warl ri3

dst mr r3 .

jsr DecExtBufMAR

dst mr r2

jsr DecExtBufMAR

dst mr ri

jsr DacExtBufMAR

i+i Reset ext buf ptr to initial
addi -1, r12 ; decremant
rsublci 0, rl12 ; borrow propagate

;3: Result of multiply is in r6rbrdr3r2rl (most to least signif. bytes)
;:: Result sign bit is in r15 Lop bit. Take off and put im

S

zero r0
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dst
dst
dst

dst
dst
dst
dst
dsi
dst
Jmp
inc
dste

is ¢ r15
rs rc r0
rs rib

"Normatlize”

: get sign bit
; put on rd
; put 0 in r1b

Now thal the significands have been multiplied, the result
needs to be made to fit.

Exponent with double bias +s in ri4 (low) & ri15 (bitd - high

bit of exp)

It the two operands were normalized, each was >« 1 and < 2,
s0 the result of the multiplication is >= 1 and < 4.

If the top bit of r6 is 1, then the interim result is >=2, so
shift that bit out and increment exponent.

ré now isn't 1, then one of the operands was denormal ized,
so the result must be specially handled.

1s ¢ ri

Is re r2
18 rc rd
I1s rc rd
1s rc tb

¢ normalch

rib

; shift
: and progagate

i jump if carry out not on
; increment axponent
i and propagate

Normalch: ;;; If top bit of r6 is 1, number is normalized.

dst
Jmp

add

Jmp
or

Underfich: ;
rsub
rsub

Jmp

FMDenorm:

+ii So lo denormalize, we shifi the result right jridj+1 times, to

ncré
cc Unnorma?i

; Uh-oh, an operand was denormaltzed

; Don't need lowest 2 bytes since destination is single

prectsion, in which there are 23 significant bits.

; However, the Coonen standard specifies the use of a sticky

bit into which al) right shifts are ORed, to allow for

. more exact rounding, so ...

The sticky bit is not necessarily the last bit of r3, but
it is easier to use that bit and later OR all bits up to
the appropriate sticky bit.

nrl, r2

eq Underfich

1, r3

; are the last 2 bytes zaro?
i yes - jump
: OR 1 into last bit of r3 (sticky bit)

i: Now the result must be checked for underflow

first convert the double-bias in the exponent to a single-bias

i bias, ri4
1c 0, ri5
pl1 FMRound

: borrow propagate
i if r15 is pos, then 0 < expoment, so round
i if negative, then exponent underflowed

ii; S0 we have to denormalize the number.

r14 contains ihe negative (biased) exponent.

ii: get the biased exponent to 1. [The exponent will actuaily
be set to zero, though]

sub

1, ri4

FMSigbits = 23.

rsubi

srci

n FMSigbits, ri4
jmp los FMDeSetup
FMSigbits, ri14

i 1+]rid] => r14, the # of shifts required
; but if rid is > # of signiticant bits

; r14 <- max # of shifts

i1: You see how expensive denormalized numbers can be: the
i3 maximum number of shifts possible is 23,

FMDeSetup:
dst

n ri4

If the top bit of
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FMDeloop:

FMRound:

ldct reg ; load addr/count reg with what's in ri14

dst rs un rb ; shift right result's MSByte

dst rs re b ; propagate shift '

dst rs rc ré4

dst rs re rd

2810 1s u ro ; put right-shift carry-out bit in bit 0 of rO
or - r0, 3 ; OR shifted out bit into r3 (sticky bit)

1pct fMDeloop ; keep on shifting

;i 50 now we have a denormalized numbsr in ré to r3

;i Set exponent to 0, which marks that the number 1is
.:; denormalized or zero.

i+; (also, a demormalized number may round to zero).

zaro rl4
;+3 Round the result
;:: rérbrd and r3 have bits of interest; r3 previously had its
;35 low bit ORed with 1 if (r2 + r1 > 0)
;37 Assume Round to Nearest (AN)
775 r3 contains the extra bits
13y rd biv 0 is LSBit
i1 Cases:
iiy rd bit O r Do this
ivs 0O ] same [exact] case 1
s 1 " " case 2
ivr O < 160.. same [truncate] case 3
s 1 " » case 4
S 100.. same [LSB 0] case b
HHFS | " add 1 [LSB 0] case ©
HEHE > 1060.. add 1 [Round up]case 7
ri 1 " . case 8
;i So to get desired resuvlts,
;s - add MSB{r3) to r4 except when LSB(r4) = 0 = Left_Shift(r3)
dst nrl ; is least-extended byte 07
jmp eq FMExact ; vyes - no naed to round (cases 1, 2)
zero nq
dst is rd rd ; MSB(r3) -> LSB(q}; rl11 shifted left
dst un r4 ; LSB(rd4) -> € bit
dst rs rdc r3 . ; shift that C bit into MSB({r3); LSB(q} -> C
jmp los FMInexact ; [los = ~C | 2]
; [Z bit en:} if original 1sb(r4) &
; left_shift{original r3) = 0, then
i Jump, as r4 etc. stays sama. {case b)
; [€C bit off:] if original msb(r3)
; zero, n¢ need to add (cases 3, &)
dstc ré ; @1se add C bit to low byte (cases 6,
i 7, 8)
dstc rb ; & propagate
dstc ré A

jmp cc  FMInexact jump if no carry

;s If carry here, then have tc increment exponent, and shift

;i B, r5, and r4 right,

inc ri4 ; increment exponent (overflow caught later)

dstc r1b , carry propagate
sac
dst rs rc ré i shift in carry-out which required the
, exponent incremented
dst rs rc r5 ; & propagate
dst rs rcord i
i+s no longer need r3, so ...
zero 1s v r3 : put right-shift carry-out bit in bit 0 of rd
or r3, rd ; OR shifted oul bit into rd (sticky bit)

FMInexagt: ;;; fall through
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FHExact:

ii: Check Tor overflow

dst
jmp ne
xori
Jmp eq
src
andi
or

Jmp

FMSetov:

n ris

FMSetov

n allbits, ri4
fMSetov

rta, r7

cbit7?7, rb6

r0, rb
Restpack
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is high byte of exponent nonzero?
; yes,. - an overflow

; is exp a1l ones?

; movae exponant

put sign bit in r8

;i exponent has overflowed, so...

xff
src

zero
zero

r7
rd, r6

r&
r4

i+: Pack & Deliver

i exponent fie¥d all ones
i put sign (all other bits are zeroes} in r6
fract field zero indicates infinity

jmp Restpack : restore save registers, then repack
Unnormal: ;;; Hack the result of multiplying with a denormalized
v:: operand, /// Not handled ///

FMABAMUIL: ;;; Multiplies r2rir0 by rB. Assumes rér5r4 contains previous
;i: results of multipiies, which will be shifted into <ExtBuf>.
ii: clobbars ri11.

dst ng ro 7 Q <- r0 (a0)

zaro r11

Isetup 7

umpy d Ipct r8, r11  ; b[i] * aC [B times]; MSB to ri1; ESB to q
i MSB (c[i0] -> r11), (5B (d[i0] -> q)

addi warr 1. 12 ; increment external buffer ptr

dstc warl ri13 ;7 -.. & set MAR

addq n wm réd, i q {LEB} + prev. low byte -> ext bof

srce ra, rd . 5 + carry -> rd

srce ré, rb ; ré + carry -> r§

srcci 0, r6 i carry -> ré

add ril, r4 i ril 4+ rd -> rd [ri11 = MSB]

dstc r5 ; carty propagate

dstc r6 HE

dst ng ri i 9 <-r1 (ai)

z8r0 rit

tsetup 7

umpy d lpct r8, ril ; MSB -> ri11, LSB -> g

addq rd, r4 i d[i1] + rd4 -> ra

dstc rb . carry propagate

dstc r6

add ri1, rb ; c[11] + r6 -> rB

dstc ré ; carry propagate

dst ng r2 i g <= r2 ({a2)

2aro rii

Isetup 7

umpy d lpct r8. r11 ; MS8 -> rii, LSB -» q

addq rb6, rb : d[i2]) + r6 <> rb

dstc ré ; carry propagate

add ritn rit, ré ; c[i2] + r6 -> b

Restpack:

Jsr restorel0111415 ; restore saved registers from external buf

FMRepackX: ;;: repack but use r6 instead of r9, don't restore registers,

dst s ¢ r6 take off sign bit
dst rs rcor? i put on r7, take off low order exp bit
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dst rs rc rB ; put on ré
Deliver: ;;; Results are left in r7-rd4 {(msbyte - 1sbyte)
rtn
FMRepack: :;; repack with fraction high byte r9, sign in ré; don't
;43 restore registers
dst 1s r8 ; throw away explicit leading bit
dst ne¢rbé ; get sign bit
dst rs rc r7 i put sign bit on r7, take off exp low bit
src rs rc r9, ré ; put low exp bit in top bit of 2nd highest

; byte, put result in ré, so
jmp Deliver
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