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Abstract

A dynamic redundancy scheme for masking hardware failures in a multiprocessor architecture
designed to execute parallel programs organized by data flow principles is presented. Hardware in
this architecture is organized as an interconnection of self-timed packet communication modules.
Novel features include use of packet networks to support communication among processing elements
and dynamic allocation of a homogeneous set of specialized functional units to service requests.
Program organization and hardware module designs to support the dynamic redundancy scheme are

described.
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fiow computer architecture.



1. Introduction

Computer systems which are significantly more powerful than those presently available are
needed in weather forecasting and aeronautical design for soiving differential equations numerically.
Data flow concepts provide an attractive approach to build high performance systems for these
applications. Current projects on data-driven computations and highly concurrent systems based on
these concepts are surveyed in [21], [22] A graphical data flow language with procedures and data

structure operations has been presented in [10).

Unlike process control and interplanetary spaceflight, there are no stringent reliability
requirements inherent in physics simulation applications. It is nonetheless important to design for
availability and maintainability. System throughput is improved if hardware failures can be
masked, especially since it is not unusual for a numerical computation in physics simulation to
execute for many hours. Methodologies for incorporating fault folerance into high performance
coﬁ:lputing systems and the associated technical problems have been discussed in [2], [3], but most
computer systems (1], [14], [24], [28] designed to tolerate hardware failures are intended for high
reliability or long life applications with modest computational requirements. In this paper we study
fault tolerance techniques to cope with hardware failures in a multiprocessor designed to execute
programs expressed in a subset of the data flow language presented in [10). We shall refer to this
multiprocessor system as a data flow processor (DFP) for convenience. This DFP has several novel

features:

1. High performance and fault tolerance are achieved by using pools of identical hardware units

Fault-tolerant muitiprocessor systems [4], [14] have been designed using multiple, identical,

hardware units. A program running on the DFP is partitioned and stored on a set of identical



processing elements. The DFP also has a homogeneous set of specialized functional units for
performing complex operations. These functional units are allocated dynamically to service requests
from the processing elements. The dynamic allocation scheme provides direct support for graceful
degradation with respect to these functional units. Programs prepared for exrecution on the fault-free

DFP can run without modification if only a subset of functional units has failed.

2. Communication between processing elements and functional units is supported by packet networks

In the DFP modules serve two distinct functions - processing and communication. Processing
elements in a DFP execute subcomputations concurrently. Communication between the processing
elements is supported by packet networks, to be constructed out of a few basic LSI cell types. This
architecture is quite different from most fault-tolerant computer architectures reported in the
literature, which are bus-oriented von Neumann architectures {I, 25, 24] or bus-oriented
multiprocessors (14, 28] Store-and-forward packet network designs which can handle a large
nuﬁ ber of packets concurrently have been analyzed in [5]. In some of these networks the number of
basic modules and the length of connections between them both exhibit faster than linear growth as
the number of. processing elements being serviced increases. [t thus appears that a substantial
amount of hardware in a practical data flow processor will be used to implement packet networks.
The reliability of these networks will be an important factor in assessing system reliability and
availability and it is important to minimize the amount of redundant hardware invested in them to

achieve a desired level of fault tolerance.

3. Hardware in the DFP is organized as a packet communication architecture

The DFP hardware is organized by a packet communication discipline to support concurrency

and modularity. Computer architectures are commonly implemented as synchronous digital systems

in which events in all modules are synchronized with reference to a common timing signal. Many



fundamental fault tolerance techniques have been developed in this context. In contrast, a packet
communication computer architecture is implemented as an interconnection of self-timed modules
whose activities are synchronized through localized signal exchange, in accordance with the adopted
packet communication protocol. Fault tolerance techniques for asynchronous systems have previously
been demonstrated in a fault-tolerant clock design [8) and reported in a paper on synchronization
voting by Daniels and Wakerly [7). We have generalized these techniques to show that modular
redundancy and coding techniques can be used to mask and detect failures in self-timed systems
under a random wave train fault model. The basic concepts and techniques of this work are

reported in a doctoral thesis [17).

In this paper we present a dynamic redundancy scheme for masking hardware failures in a
DFP. In this scheme hardware failures are detected and diagnosed, the DFP is repaired, and then
afflicted subcomputations are reexecuted on the repaired, possibly degraded, DFP. We assume that
programs for the DFP are prepared on a host machine, loaded into the DFP, and then executed.
This host machine is also assigned the tasks of configuration control, and of coordinating diagnosis,
repair and recovery activities with program execution. We will explain the strategy to be
implemented on this host machine, and present hardware redundancy and packet encoding
techniques for implementing hardware modules to support this strategy. A fault-tolerant

implementation of this strategy on the host machine can be constructed using conventional techniques,

and will not be considered in this paper.

The hardware organization of the DFP and its operation are explained in Section 2, where we
will focus on those aspects of its operation relevant to fault tolerance considerations. The dynamic
redundancy scheme is explained in Section 3. Hardware module designs to satisfy fault tolerance
requirements imposed on them by the dynamic redundancy scheme are presented in Section 4.

Strategies for incorporating additional hardware into a network to support rapid repair are discussed



in Section 5. Concluding remarks are given in Section 6.

2. A Packet Communication Computer Architecture

Hardware Organization

Hardware in a packet communication computer architecture is organized as an interconnection
of seif-timed modules which communicate by sending packets to each other. Each packet is
transmitted byte-serially between modules. Packet bytes are delivered and received by hardware
modules using an asynchronous protocol. Each module port consists of a bundie of data wires and a
pair of control wires (Figure 1a). Packet communication is synchronized by sending control signals
over the control wires. Availability of a new packet at a connection is signaled by sending a ready
signal over the ready wire, its receipt by returning an acknowledge signal over the acknowledge
wire. Ready and acknowledge signals are represented by signal transitions (Figure 1b) on the

__ respective wires.

The major modules in the DFP (Fig. 2) are processing elements (PEs), specialized functional
units (SFUs), a routing network and an allocation network. Scalar operations are processed in the

PEs and SFUs. The networks support packet traffic among the PEs and SFUs.

Operating Principles

A machine level program for the DFP is stored in the PEs as a set of activity templates [9].
An activity template A contains an operation code and the addresses of one or more activity
templates, called A's target templates, which should receive the result generated by processing A.

The address of an activity template uniquely identifies the activity template; it has two components:
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Fig. 1. Packet transmission protocol

a destination tag which specifies the PE in which the template resides, and the location of the

template within that PE.

Operations are divided into two classes, according to whether they are executed by a PE or by
a SFU. When activity template A is enabled (See below for a discussion of the enabling conditions)

and the operation it specifies is executable on a PE, the operation is applied to the operands A has
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received and the result of the application is dispatched to A's target templates. If a target template

B resides on another PE, a copy of the result is tagged with B's address and a byte count to form a
result packet, and delivered to B via the routing network. For an operation executed on a SFU, an
operation packet consisting of the operation code, operands and the target template addresses is
formed and delivered to a SFU via the routing network and the allocation network. At a SFU the
operation specified in an operation packet is applied to the operands and result packets are generated

and dispatched to the target templates via the routing network.



An activity template A is enabled when two conditions are met. First of all the operands
required for the operation must have arrived. The second condition is a consequence of organizing
machine level programs in the DFP to support pipelining and iteration. Suppose that in such a
program activity template A sends results to activity template B residing in another PE. To avoid
deadlock [I19). an operand sent from A to B must be processed before A can send B a second
operand. The execution of A and B are synchronized by conditioning each activation of A on
receiving an acknowledge packet from B. This acknowledge packet is transmitted when B is
processed with the previous operand received from A. Thus before an activity template can be
executed, it must have received the necessary acknowledgments from its target templates. A
detailed explanation of this synchronization scheme is given in {131 Under this scheme every result
packet transmitted through the networks is acknowledged by an acknowledge packet returned by the
target template. We will also make the assumption that eack operation packet contains exactly one
target template address. This assumption results in no loss of generality since the result obtained by
processing an operation packet can be further distributed through its target template. In fault-free
operation under the above synchronization scheme and this assumption on operation packets, a PE
will receive exactly one acknowledge packet for every result packet or operation packet it delivers to
the routing network. This property will be used to incorporate fault tolerance in the DFP in later

sections.

A PE provides storage for activity templates, executes simple operations, sends packets to and
receives packets from the routing network. A SFU is designed to execute complex operations, such
as floating point arithmetic, efficiently, with additional capabilities to receive operation packets from
the allocation network and send result packets to the routing network. Implementation of these
hardware modules will be examined after their fault tolerance requirements have been determined.

In the remainder of this section we take a closer look at the structure of the routing network and the



allocation network.

Packet Networks

An N x N routing network, with N input ports and N output ports, supports packet
communication among N PEs. It accepts packets at its input ports and transmits each packet at the
output port specified by a bit field comprising a header or destination tag of the packet. The
destination tag and a byte count specifying the length of the packet are contained in the first few
bytes of a packet. Routing metworks can be constructed using 2 x 2 routers. A 2 x 2 router
receives packets at its two input ports and delivers each received packet at one of two cutput ports
according to the destination tag carried by the packet. The 2 x 2 router is designed so that packets

to be forwarded at different output ports can be processed concurrently.

Methods and technigues for fault tolerance wili be illustrated using rectamgular routing
“networks. An N x N rectangular network is built from 2 x 2 routers by the recursive construction
illustrated in Fig. 3. An N x N network so constructed has logg N stages each of which contains
N/2 routers. All packets sent to an output port of the routing network, regardless of their source,
have identical destination tags. Routers in succeeding stages in the network examine successive bits
in a destination tag to forward the packet along the proper path. Path control in a routing network
is distributed among the routers. There is no centralized control mechanism whose complexity must
grow with network size and which may become a performance bottleneck. Many packets can be
forwarded concurrently to provide a high throughput rate. One of the design objectives for a
fauli-tolerant routing network is to retain all these characteristics during fault-free operation:

decentralized path control, parallel processing, and asynchronous byte-serial communication.
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In the DFP the allocation network receives operation packets from the routing network and

distributes them among the SFUs. Each of its input ports has its own routing network address. In
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this paper we use a rectangular allocation network which also has the topology shown in Fig. 3,
constructed out of 2 x 2 allocators. An allocator receives operation packets from its two input ports
and forwards them at its output ports as these output ports become free. Arbitration is performed
whenever it receives two operation packets simultaneousty (within a short time interval), and
whenever both output ports become free simultaneously with operation packets pending for output. It
is possible for operation packets to be temporarily “trapped” in a section of the Allocation Network
waiting for service even though SFUs not reachable from this subnetwork are free. Such trapping
has the pleasing property of automatically diverting other operation packets from the congested

subnetwork.

3. A Fault Tolerance Strategy Based on Dynamic Redundancy

It is possible to apply static redundancy techniques uniformly in the DFP to implement a fauit
masking capability in hardware. The main disadvantages are the prices to be paid in additional
mpower consumption and in redundant hardware packages and connections, especially in the packet
networks. We have examined two fault masking network designs and a fault detecting network
design [17). The latter scheme has the lowest hardware redundancy requirement. It is thus
attractive to derive a fault masking strategy based on this fault-detecting network design. Such a
strategy leads to a dynemic redundancy scheme. In a dynamic redundancy scheme, failures are
masked through hardware-implemented fault detection, diagnosis, repair, followed by reexecution of
the afflicted subcomputations. To support the dynamic redundancy scheme, each PE must store
additional information that is not used in a non-redundant data flow processor. A copy of every
result and operation packet delivered to the packer transport and processing (PTP) subsystem
consisting of the packet networks and the SFUs must be kept until the packet is acknowledged. At

each PE the sender of every received packet must be known. This information can be maintained
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by associating each operand position in an activity template with a template address for returning
acknowledgments. The sender of each acknowiedgment packet and retransmission request (See

below) must also be identifiable.

The dynamic redundancy scheme assumes that the hardware implementation of the DFP has

the following properties, even in the presence of hardware failures.

(1) Each packet received by the routing network is delivered at the output port specified by its
destination tag, either to a PE or the allocation network. Each packet received by the
allocation network is delivered to a SFU. Specifically, neither packets nor packet bytes wili

be lost in the networks.
(2) Each packet delivered to a network output port is either error-free or flagged as erroneous.
(3) Target template addresses carried in an operation packet are always delivered free of error.

(4) For every operation packet received, a SFU will deliver either an error-free result packet or

one tagged as erroneous to the target template specified.

{5) Every acknowledge packet and retransmission request (See below) is delivered free of error

to its destination.

Techniques to design redundant routers, atlocators, PEs and SFUs that can be used to implement a
DFP with these properties, even when up to one hardware package in each module has failed, wili

be presented in Section 4. The fault tolerance strategy is as follows.

Any packet which has encountered a fauity router or allocator in its journey through the

networks will be marked as such upon delivery to the destination PE or SFU. When a SFU
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receives an operation packet tagged as erroneous, it will generate a result packet, tag it as erroneous,
and forward it to the target template specified in the operation packet. If a PE receives a result
packet tagged as erroneous, it signals the host machine, which in turn signals the other PEs to stop
sending packets to the routing network. All packets in transit will arrive at their destinations after a
finite time period, which can be determined from hardware parameters specified for the PTP
subsystem. After this time period the PTP subsystem can be repaired under the direction of error
signals generated by fault detectors in this subsystem. After repair the processing elements are
restarted. A PE which has received a contaminated packet will issue a retransmission 'requesr

instead of an acknowledgment to the sender. Program execution can otherwise proceed normatly.

Activity templates representing a machine level program, and a complete intermediate state of
the computation in progress, are stored in the PEs. If only routers, allocators or SFUs have failed,
the computation can always be restarted from the intermediate state stored in the PEs and run to

completion after the networks have been repaired. If failures occur in the storage components of a

PE, it may be necessary to abort the computation in progress, since the intermediate state may
become inconsistent. Storage failures thus must be masked to achieve complete fault masking.
Failure iﬁ other components of a PE need not be masked in hardware, but the activity tempiates and
partial intermediate state stored in it must be relocated before processing can resume. If an activity
template A is relocated, the entire activity template set must be relinked so that other templates
having A as a target will contain the new address of A. It thus seems desirable to mask all failures
in PEs locaily in hardware. Communication between PEs and the host machine to coordinate repair
can be implemented with an interprocessor bus. Fault-tolerant bussing structures have been

presented in {14] and (28]

The dynamic redundancy scheme we have described is built directly on the execution control

mechanism in a DFP. It has the merit that extensions to the execution control mechanism are
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incorporated in low level hardware functions and require no extra programming effort to achieve

fault tolerance.

The PTP subsystem must be repaired after failures are detected. A failed module can be
replaced or repaired in place manually. Availability is improved by reconfiguring around the failed
module automatically and then repairing the failed module off-line. For a computation in progress to
proceed successfully, the full functionality of the routing network must be retained, ie., packet
communication between any input port and any output port must be maintained. Two strategies for
incorporating spare routers and ;ma paths into a routing network are discussed in Section 5. Under
these strategies the full capability of a routing network is retained so long as spares are not
exhausted. These strategies are also applicable to allocation networks. A SFU failure can be
repaired by simply taking it off-ine. An allocator will not forward operation packets to any SFU
which has stopped acknowledging inputs. The machine. architecture is gracefully degradable with

respect to SFU failures in this sense. SFU failures have no effect other than degraded performance

across the PTP subsystem boundary.

4. Module Design

Our basic unit for fault tolerance considerations is a package, which receives input signals and
delivers output signals through its ferminals. Hardware modules are constructed using packages.
We also assume that the mean time to repair is much shorter than the mean time to failure.
Modules described in this section are hence designed to tolerate up to one package failure per
module. Logic design for error control often assumes a stuck-at fault model for hardware failures.
We are interested in a fault model that reflects the sensitivity of seif-timed modules to runt pulses
and output hazards, as well as being applicable to most common hardware failure modes. We have

adopted a random wave train fault model for hardware package failures: if a package has failed,
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its output signals can wander arbitrarily in the region bounded by the signal values 0 and 1. When
a signal takes on an intermediate value between 0 and 1, it may be interpreted by different receiving
modules differently. A random pulse train fauit model has been used in a fault-tolerant clock design
in [8]. Daniels and Wakerly [7] have also presented a synchronization voting technigue for
implementing synchronization reliably without using a common timing signal for reference. We have
generalized these results and shown that modular redundancy and coding can be used to mask and
detect hardware failures in self-timed modules under the random wave train fault model. This
work is reported in a doctoral thesis and will be assumed in this paper. The interested reader is
referred to [I7] for details. Failure mechanisms in MOS LSI technology that cannot be modeled by

classical stuck-at fault models have been reported in {16}, {27].

In this section we present hardware redundancy and packet encoding techniques to support the

five fault tolerance properties stated in Section 3. We first describe the encoding techniques:
~-- Control signals are generated in quadruplicate, from four failure-independent paz:lr.ages.l

-~ Each data byte is protected by a parity bit. The nine bits of a parity-encoded byte are

generated from nine failure-independent packages.

--  Each packet byte whose error-free transmission must be guaranteed is expanded into three bytes.
The second and third bytes in each triplet are obtained by rotating bits in the given byte one

and two positions to the right, respectively:

given byte: bob]b2b3b1_b5b6b7b8,

1. Quadruplication is necessary for masking control signal faults under the random wave train
model using the techniques given in [I7). Triplication is sufficient if the classical stuck-at fault
model 15 assumed.
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3" byte. b7b8b0b|b2b3b‘!b5b6

This encoding scheme can be regarded as an implementation of triple modular redundancy in
time instead of in space. Bytes in byte count fields and rempla:e'addren fields, and
identification tags in acknowledgment packets and retransmission requests are protected using

this technique.

An all 0's data byte is appended to the 1ail of each packet. This byte is used to flag packets
which contain erroneous bytes. 1t is set to all I's by the first module which detects the parity
violation, and is otherwise retransmitted as received. The packet is accepted as error-free only

if its flag consists of all 0's.

Using the hardware redundancy techniques explained in (7] and the above encoding techniques

routers, allocators and SFUs can be implemented with the following fault tolerance properties:

If at most one of the four control signals delivered on each quadruple is faulty, its pathological

effects can be masked.

If at most one data wire in each parity-checked data link carries faulty signals, the byte counts
and addressing information in each packet can be retrieved. The last byte in the corresponding
output packet will be flagged, i will not be all 0's, if any packet byte has violated the parity

check.

If at most one package in the module has failed, the above capabilities are not impaired and
random wave trains are delivered on at most one output control wire and one output data wire

at any module port.
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We note that it is in fact possible to mask all single package failures in routers, aliocators and
SFUs with these fault tolerance capabilities if every packet byte is triplicated using the
rotate-and-repeat encoding scheme given above. This approach to fault masking leads to lower
performance during fault-free operation, as compared with the dynamic redundancy scheme
explained in the last section, and hence is preferable only when the network hardware is quite

unreliable.

Router Module Design

We illustrate the design techniques using the router module. A redundant router module (Fig.
4) receives packets at its two input ports, and delivers each received packet at the output port
specified by a destination tag carried in the packet. Packet receipt and forwarding are synchronized
by control signals delivered in quadruplicate. Packet bytes are parity encoded. The redundant
~ router is implemented using four checker packages and nine voter packages (Fig. 4). Each checker
(Fig 4.a) has two input ports and two output ports. Control signals generated at the corresponding
ports of the four checkers are grouped together at each port of the redundant router module. Thus,
for example, the acknowledge signals generated by the four checkers at their T input ports (Fig. 4b)
are grouped together at input port Ij of the redundant router. Data byte outputs from the
corresponding output ports of the four checkers are collected together and voted upon at the voters to
derive outputs for an output port of the redundant router. in Fig. 4, the number of wires
represented by each arrow is given in its label in parentheses. This number is omitted if the arrow

represents a single wire.

A checker receives all input control and data signals delivered to the router, and implements

several fault tolerance capabilities in addition to packet routing:
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Fig. 4. Hardware structure of a redundant 2 x 2 router.
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-~ mask control signal failures when at most one control signal in each quadruple is fauity.

- deduce the error-free byte for every data byte encoded in triplicate using the rotate-and-repeat

scheme given above.

-~ set the last packet byte to all I's if the last packet byte it has received is not ail 0's or if parity

violation has been detected.

In the redundant router shown in Fig 4. data faults due to single checker failures will be masked at
the voter packages. Control faults due to single checker failures and data faults due to single voter
failures are detected and dealt with in hardware modules receiving packets from this redundant

router module.

Conflicting requests must be resolved at a router module. In an asynchronous hardware system

there is no guarantee that the same packet will arrive at all three checkers in a redundant router
~simultaneously. Conflicting requests may arrive in different order at two checkers. If the conflicts
" are resolved differently, bytes belonging to different packets may be paired up with each other at the
voters. To handle this problem the checkers must make unanimous decisions in conflict resolutions.
Algorithms and circuit design techniques for reaching agreement in the presence of hardware failures

are detailed in [17], [23], but will be omitted in this paper.
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Processing Element Design

A PE provides storage for activity templates and their operands, as well as functional
capabilities for activity template processing, and input/output capabilities for packet communication
and error report. A detailed logic design for a non-redundant PE using commercially available
components is given in [26), {lll To support the dynamic redundancy scheme, 2 PE in a
fault-toierant DFP can be constructed using a fault masking bit-sliced memory [6], a redundant

control unit, and a redundant functional unit (Fig. 5).

A partial state of the computation in execution is stored in the bit-sliced memory. For the
computation to be recoverable after single package failures, all such failures must be masked along
the data path used to retrieve this information from the memory to the host machine. This is
achieved by using a bit-siiced memory protected by an error-correcting code to store this

information, and a control unit with the same structure and operating principle, and hence the same

Host Machine
Redundant Routing
Redundant| . | Control e r—
Memory Unit Network

|

Redundant Functional Unit

Fig 6. Fauit-tolerant processing element design.
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fault tolerance capabilities, as the redundant router module shown in Fig. 4. The control unit
consists of four failure-independent packages each of which receives all input signals delivered to the
control unit. The outputs of these four packages are grouped together or voted upon to form outputs

of the redundant control unit.

Addresses and data transmitted between the redundant control unit and the bit-sliced memory
system, and those transmitted between the control unit and the host machine, are encoded using an
error-correcting code. Each bit-slice in the memory system stores one bit of a data word and has its
own address decoder. Any.hardware failure confined to within one bit-slice thus affects at most one
bit of a data word and consequent errors can be corrected. Packet bytes transmitted between the
redundant control unit and the routing network are parity-encoded. Since the redundant control unit
has the same fault-tolerance capabilities as the redundant router, single package failures in the

control unit cannot cause undetected erroneous packets to be delivered to another PE.

The functional unit is the only subunit in a PE that need not be completely fault-tolerant.
Package failures in it must nonetheless be detectable. Many redundancy techniques are available for
detecting failures in functional units. For a commercially available LSI functional unit chip, it is cost
effective to detect single chip failures through duplication and mask these failures through triple
modular redundancy, as desired. Communication between the redundant control unit and the
redundant functional unit can also be protected using either an error-correcting code or an

error-detecting code, depending on whether failures in the functional unit are to be masked or

detected.
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5. Network Repair Strategies

When a network hardware failure is detected in the dynamic redundancy scheme, all PEs will
stop sending packets to each other and after a predetermined time period the networks wiil be
dormant. Before normal processing can resume the failed unit must be located and the networks

must be repaired. In this section we will illustrate two repair strategies using routing networks.

The first step in any repair procedure is to locate the failed router. Each checker package can
generate an error signal upon detecting a parity violation. Failures in the last network stage are
detected directly by parity checkers in the PEs and SFUs. Since checkers are quadruplicated in
each router, PE and SFU, two or more error signals will be generated for each legitimate complaint
under the single package failure assumption. These error signals can be used to locate the failed

router. Further diagnosis will be necessary to locate the failed package(s).

The most straightforward repair procedure is to make use of error signais generated by
checker packages to locate the failed unit and then replace it manually with a spare. This procedure
requires no additional hardware, but system availability is directly related to the availability of
maintainence personnel. The personnel requirement can be reduced by incorporating self-repair
features into a network. The error signals will be monitored by the host machine which will direct
repair activities. Additional modules or data paths must be incorporated directly into the routing

network to support self-repair.

In the self-repair scheme illustrated in Fig. 6, 2 number of spare modules are appended to each
routing network stage, switched in electrically to replace failed modules. Switching arrangements are
incorporated systematically using switch packages, which have been introduced in [I8), to support

system reconfiguration. A switch can be set in one of two modes, either “crossing” or "bending” (Fig.
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Fig. 6. A reconfiguration scheme for seif-repair
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6a) the pair of input leads to the pair of output leads. Spare routers are interspersed with active
routers. The reconfiguration capability of this switching arrangement is illustrated in Fig. 6b where
the it0 router is assumed faulty. Note that in this scheme a spare router cannot replace any fauity
router below it in the column. Control signals for setting the switches can also be carried in the
interswitch connections. T his repair scheme requires many additional data paths and packages, and
must be further enhanced to tolerate switch failures. It is thus practical only when the additional
hardware costs are acceptable and the switches are much more reliable than the router modules.
One technique to tolerate switch failures is to connect each switch to more than one neighboring
switch so that an immediate neighbor which has failed can be bypassed. These switches are cailed

ripplers in [24]

The additional data paths introduced can also be used for off-line diagnosis, testing out the
routers systematically with pregenerated test patterns. In the configuration shown in Fig. 6, the ith
router can be tgsted by the host machine while the remaining routers carry the packet traffic. The
t‘a:llt detection mechanism in the dynamic redundancy scheme assumed single package failures in
each router. Multiple package failures or lurking failures which have not yet manifested themselves

are not detected. Network reliability can be further improved by testing the routers for these

failures periodically or after detecting a fault in software.

In the above strategy the topological and operation characteristics of a rectangular routing
network are retained after reconfiguration. In a rectangular network any router, except for those in
the last stage, can be paired together with a neighbor in the same stage such that the two can be
used interchangeably in packet routing. If one router in a pair fails, its duty can be taken over by its
partner. The network can continue to operate, possibly under degraded performance, if at most one
router in each pair has failed. This scheme can be implemented by adding two input ports and two

output poris to each redundant router. If there is a path in the nonredundant network from router A
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to router B, a new path between A and B's partner is added. The redundant paths incorporated
into an 8 x 8 network (Fig. 3b) are shown in Fig. 7. The last stage can be repaired by using the
previous scheme. A packet can be forwarded to its destination along two different paths at each
enhanced router. Both of these paths can be used during normal operation when ail routers are
fault-free, or one of them may be designated a spare to be used only when the other path is blocked
by a failed router. Information on the location of failed routers can be distributed by the host

machine during repair, to disable connections to failed routers.

The host machine can keep a count of the number of failures reported for each router and take
it off-line only when a predetermined maximum failure rate is exceeded. Spare moduies can then be
better utilized when transient failures dominate. We also note that neither of these repair schemes

require recomputing destination addresses in a partially executed data flow program to complete its

QE@EEO®OE
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Fig. 7. Redundant data paths in a fault-tolerant 8 x 8 network.
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execution after being interrupted by a network failure.

6. Concluding Remarks

The STAR computer (1] and the FTSC computer {I5) are two examples of fault-tolerant
computing systems based on dynamic redundancy. Both of them have a bus-oriented architecture
designed for executing sequential programs. In this paper we have presented a dynamic redundancy
scheme for masking hardware failures in a multiprocessor system designed to execute parallel
programs organized by data flow concepts. These programming concepts and the quest for high
performance also distinguishes our work from other fault-tolerant multiprocessor projects such as the

FTMP system [14] and the SIFT system [28).

The dynamic redundancy scheme is explained by giving strategies for program organization
and execution, and for co-ordinating fault-related activities such as fault detection, diagnosis and
repair with normal execution. We have also described hardware redundancy and packet encoding

teéhniques for implementing hardware modules and subsystems to support these strategies.

We have assumed that hardware packages fail under normal use, and that failures are readily
repaired. The redundancy schemes have thus been presented assuming at most one package failure
in each hardware module. As long as there is at most one failed package in any module, the
computation in progress can always be completed. If the PEs are not designed to mask all single
package failures, it may be necessary to relocate the activity templates and the partial state of the
computation stored in a failed PE, and relink the activity templates, before program execution can
be resumed. The redundancy techniques can be extended to accommodate multiple package failures
by using more packages in each router and more elaborate coding techniques. In a physical

realization several packages can share a physical unit as long as the physical system is partitioned so
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that under the most common failure modes at most one package in each module can fail.

We have demonsirated how to methodically deal with hardware failures in a practical
implementation of a highly parallel data flow processor, with no impact on its programmability. We
have explained how hardware failures can be masked when the architecture is programmed in a
restricted data flow language. Another operational restriction is that every packet transmitted over
the packet transport and processing subsystem is acknowledged by another packet. The fault
tolerance techn.iques proposed in this paper are directly applicable whenever the hardware
architecture is programmed under these restrictions. It is expected that more sophisticated system
strategies must be developed to incorporate fault tolerance cost-effectively.into more advanced data

flow architectures.

When detailed logic designs and hardware failure rates are available for a hardware
implementation, alternative schemes should be carefully evaluated with reliability models [20] to

' determine their cost-effectiveness.
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