MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Project MAC

Mechine Structures Group Memorandum MAC-M- 14§
B No. 2 March 6,1964

RESE__ARCH PROGRAM IN
MACHINE STRUCTURE

J. B. Dennis

: ghg-machine structures group is concerned with deveiopins;an

dequate theoretical basis for the design, analysis, and evaluation
.;j?iaﬁéqbéd compﬁtef structures that can meet the needs of Project
jﬂﬁ&_ The concept of a computer utility depends on two fundamental

i3

1 The pOWer'of'a'large computer is a better match to

the union of mary tasks than to any particular one,

2. There is a wealth of knowledge- procedures and data -

of interest to many users.

iﬁgyccessful computer utility must, therefore, possess certain

F‘ﬂ?ert fes:

1. -ﬂﬁ@@gﬁmﬂst be able to create, test, correct and run
arbitrary procedures through appropriate use of their

terminals.

2. 1t must be impossible for one program to interferg: with

‘the correct execution of another.

3. The users must have access to a large file of public

informatijion.,

L

4.

The capacity of the syétem must be readily and

appropriately divisible among the users,

Amulti-access computer contains five major structural elements:

13]

2)

2

&y

5)

main directly addressable memory -- contains data
and programs at a time of program execution.
processing units -- intérpret programs as sequences
of actions on data.

auxiliar& storage -~ contains programs and data
that are active but not in execution.

file memory -- provides long term storage of
program and data files.

teriinal devices -~ provide comminication between
the system's environment and active procedures

within the machine.

Whilk theré can never be a precise definition of machine capacity,

ﬂbgﬁausé it has many aspects and different users make widely differing

yges of them, we may identify the more important aspects as:

3288

€)

amount of main memory;

amount of processing capacity;

rate of-interaction with environment;

the channel capacity for information transmissicon to and
from auxiliary storage;

amount of file memory.

The demands for these aspects of capacity will vary from program

ﬁ?fygagram, and also will fluctuate with time for any single program;

ffﬁﬁstﬁvériations will occur at least as fast as the interactions of

‘the 'programs with their input-output environments, that is on the time

#¢ale of human reactions. Thus it is essential that these aspects of

ﬁﬁﬁdhine‘capacity be promptly and effectively allocatable among many users.

wa

Multi-Processor Systems A large memory is necessary in a

ﬁ@%tihatcess system for two reasons. First of all, there are some

'gﬁﬁividual'programs that could easily take advantage of a great

'ﬂ@ﬁt'ﬁpre memory. Secondly, it is clearly desirable to keep in

If this can be done, there

'ﬁiiiﬂggnerally be many tasks in the main memory in various states:
ﬁ&ﬁg-té@dy'for execution, some ready for responses from input/output
‘ﬁﬁiﬁb,_some ﬁaiting for access to secondary storage, and so on.
fﬁﬁsfthe’inclusion in the system of a number of processors should
pgtmit the parallel execution of many programs. A multi-processor
‘ﬂ:ém is particularly attractive for several reasons.

1) Improved balance of processing capacity in relation

7 to main memory is realized.
A single processing unit cannot make effective use of a large main
@gﬁdry eicepf for certain classes of procedures, and for these, the
.;ﬁétagefdemand is likely to be considerably less than peak demand.
2) Larger absolute computation capacity can be attained.

z; lppears that the creation of faster computing structures in the

.

'fﬁture will depend more on the use of parallelism than on the use of

faster components,
'3)' Better utilization of memory through the possibility of
sévefal processors executing the same procedure in parallel.
A yracedure may be represented only once in main memory, yet be interpreted
slmnltaneously by several processing units.
&) Less switching of processors among tasks is required,
ﬂbge processing tasks can run to cbmpletion without interruption, thus

teducing executive overhead.

The foregoing factors are concerned with better utilization of machine

c¢apacity., Other reasons for interest in multi-processor systems rélate
kpﬁbpéfntional characteristics.
;5) The system offers reliability.

The modular structure of a multi-processor system ensures that a fault

%- The system is adaptable to changing requirements,
iﬁdulés of processing capacity or memory can be added or deleted to
lﬂhpt a° multl-processor system to changing needs.

[X Processors may be assigned to individual users if desired.
_Zﬁ'séme applications -- for example, real-time computation in connection
-iiih'ah Oniiine experiment -- a user must have access to the full

_ zapﬂhility of a processing unit on very short notice. A processor
nﬂg be asgigned to such a user for the duration of his experiment,
_{## -may be made available for his immediate preemption as required.

A clear limitation on a multi-processor system is placed by the

lﬂitching arrangement used to connect processing units with memory

lﬂﬂnles. If all possible direct paths are included in hardware, systems

" th more than several dozen processing units become impractical. Machine

'itructures that avoid this limitation are under study.

.

The design of a multi-access computer system suitable té6 the
Ghjectives of Project MAC raises a number of questions which are at
gxegent-not_adequately answered., These questions may be divided into
fﬁﬁiéeﬁbrdad classes:
1) How can a computing structure be organized so that its
resources are dynamically re-assignable among a large
‘number of tasks?
iiﬁc evolution of the interrupt feature has made the processing unit of
a camputer readily re-assignable. With regard to assignment of mMEemMOTy

ity and 1nput/output devices, however, little progress has been

from the earliest machines.

-'2) What are the apprepriate p011c1es for governing the
'a881gnment of machine capac1ty to insure its effective
utillzatlon? By what mechanism are p011c1es determined,
ahd'bf what techniques should they be implemented?

!!esent alldcatlon policies for multi-programmed systems are not keyed
to the time scale of human reactions, and deal with small numbers of

9rqgram and data objects in main memory,

3) How can machines be organized to improve their program-
mability?
Certain features of modern algebraic compilers are cumbersome and waste-
'fﬁl“tigimplement in existing machine structures. 'Examples are push-down
tﬁp;aée for nested and recursively applied procedures, organization of

pregram and data overlays, and retrieving file sectors from mass memory.

Theoretical Studies For the realization of important advances

in the structure of multi-access computers, theoretical studies are
#8rely needed in two areas. The foremost is the development of models
of program structure that are valid for the study of machine structure
‘7P§églgms. Several elements of such a theory are already available: One
-giﬁheﬁt is the concept of push-down storage allocation for nested
'ificédures as implied by the Algol programming language. Another is
tﬁt-view'of a program as a collection of procedure and data objects
éﬁ!ied segments. References within a segment are by the usual linear
_ﬁd%feasing technique. References among segments are by segment name.
iejﬁgnts are considered as the allocatable entities with regard to

‘Mewory assignment.

The second area of theoretical study is the development of an
.sdequate model for consideration of the allocation and scheduling problem
in multi-programmed computer systems. Most previous work in this area
Kas assumed knowledge of memory requirements and running times prior to
the scheduling process. This assumption is totally unjustified in a

d@itiple-access computer system: Not only is it unreasonable to expect
tsers to supply the assumed data, but the requirements will fluctuate

ﬁa.fiequently unpredictable ways during a typical computation. A theory
ﬁ!,Seheduling is needed that assumes ready reassignability of system
'stboﬁrces and takes advantage of the large number of tasks that will
nké;gimultaneously active in the system. The theory must define
étiaciples for establishing scheduling policies based on averages

of the aséects of user demand, The statistical law of large numbers

should be applied so that the details of task execution do not enter

inte policy formulation.

There #re two areas in which contemporary means of representing

.itbpedutEB (é.g., Algol, LISP) give no clue to the machine designers

of an elegant hardware solution. One is the parallel execution (by

ii§§§§1 pfocéssing units) of program sequences that operate on a

.#Pmnon ~data object. The other is the interaction of procedures

‘iﬂﬁh ﬂutside environment (the human users and external systems in

&ﬂﬁmunication with the machine). These problems need to be attacked
frui the" level of source language through the level of hardware to

#ghieve elegant solutions consistent with the principles of mult-

‘programming, and the view of a machine as an allocatable computation

;jttggtﬁ:é; Any complete model of program structure for pufposes of

:j@éﬁiﬁa design must acknowledge these problems.

Machine structures and design features are required that permit
iiit'rédiétribution of the aspects of machine capacity among active
tilkl. AB an example a memory structure has been proposed1 that
CJ}:HH main memory to be readily reallocated among the various

"”muts of users' programs. Extensions of this philosophy to

Bther situat1ons are being investigated.'

Ag components become progressively more reliable and as greater
,ﬂehaﬁ#i are made on the performance of computers, machine desiégﬁ
have become more complex and this trend will undoubtedly -continue
techniques for producing complex logical structures are continually
iﬁﬁt&ﬁed, One can readily foresee the need for new tools for the
1pgical designer to cope with the problem of evolving the organization
Qf_ghgse systems. A language for describing machine structures is
needed in‘which the designer may specify a logical design, test it
fbr'consiStency, simulate its operation, and readily modify the

description to include changes and additions.

1. J. B. Dennis, A Machipe Structure for Dymanic Storage Allocation
Memorandum MAC-M-137, January 31, 1964, '

