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1. INTRODUCTION

The Computation Structures group is continuing its study and development of
computer systems based on data-driven program execution. Our major
accomplishments over the past year have been the development of a translator and
interpreter for the functional programming language VAL (Value-oriented
Algorithmic Language); continued study of the transformation of VAL programs into
data flow graphs; the design of a translator for a subset of the data flow language Id;
development of a scheme for decomposing programs for multiple processor
systems; the mapping of data flow programs onto the U-interpreter machine;
soecification of the design of the processing unit and communication module to be
used in evaluating prototype data flow computers; continued study of routmg
networks; and development of a MOS LSI logic simulator..

The Computation Structures group has also been active in bringing interested
scientists together for exchange of ideas and knowledge in areas closely refated to
our research. In July 1979, with support from the Department of Energy, we
sponsored a Workshop on Self-Timed Systems [7], which served to bring together
experts in the field of asynchronous logic design for a unique opportunity to review
and assess the state-of-the-art and to chart directions for future devetopment. With
the prospect of economical custom fabrication of LS devices, there appears to be a
new opportunity for profitable applications of self-timed principles. In particular, the
workshop left one with the strong feeling that self-timed design methodologies will
have an important, if not essential, role in the successful production of VLSI devices.
A one-week mini-course, Data Flow Concepts in Computer Language and
~ Architecture, was taught in June 1880, and the group is making preparations for the
Workshop on Applicative Languages and Parallel Computation which it is hosting at
the MIT Endicott House in July 6-9, 1980. |

2. DATA FLOW LANGUAGE IMPLEMENTATION AND
TRANSLATION

The programming language VAL [2, 13] is the product of cooperation between the
MIT Computation Structures group and the Lawrence Livermore Laboratory to
define a source language for expressing numerical computations for high
performance execution on data flow computers. The programming language Id [3]
was originally conceived by Professor Arvind and his colieagues at the University of
California, Irvine, and is being used to explore implementation of the “unraveling
interpreter” and applications of data fiow computation at MIT. Both languages are
functional programming languages and are free of non-function artifacts such as
side effects or aliasing of arguments. Current work is concerncd with
implementation schemes and the mapping of programs expressed in VAL and Id
onto data flow hardware architectures. '
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2.1. VAL Language implementation

An interpretive implementation of the VAL data flow language has been
constructed. This implementation consists of a translator and an interpreter written
in CLU for the MIT-XX TOPS-20 computer system. The translator performs complete
parsing and type checking of VAL programs; the interpreter is written to faithfully
reflect the intended semantics of VAL without attempting to achieve high
performance. Together, the translator and interpreter are a reference standard for
the syntax and semantics of VAL. Other implementations of VAL will be tested
against this standard. Also, the ftranslator will serve as the first phase of
transforming VAL programs into program graphs and thence to cata flow machine
code for execution on a prototype data flow machine.

The VAL interpreter has facilities to assist in debugging functior al programs. In a
VAL program, execution errors do not terminate execution, and ¢ perations are not
strictly ordered in a sequence. Hence, there is no concept of a “naxt" instruction in
the sequence, nor is there a concept of the “state” of the program. The common
debugging technique of stopping a program at a certain instruction and examining
" the state does not apply. Instead, certain function calls or operations may be
“traced.” When a traced function call or operation occurs, diagnostic information is
produced giving the operands of that operation. The VAL interpreter is capable of
tracing any particular function or operator, or all operators, or all operator
invocations that produce error values.

2.2. Data Flow Graph Generation

To be executed on a data flow computer, a VAL program must be transformed
from the source language into a data flow graph and then into instruction cell codes.
The existing VAL translator implements only the first step of this process. The
design of programs to convert the output of the VAL translator to data flow graphs is
underway. The best machine program structure depends on the capacity,
instruction repertoire, and other properties of the target machine. Among the
transformations to be considered in constructing data flow graphs are:

1) Direct expansion of function bodies wherever they are called, if the
target machine does not support dynamic function instantiation as is the
case for the prototype machines being evaluated. If a function is
recursive, the recursion may be converted into an iteration. The exact
nature of this conversion can be varied to achieve the desired execution

- time/space trade-off.

2) Explicit iterations can be partially converted into recursions to change
the time/space trade-off.
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3} Record and array data values can be expanded into sets of scalar values
to achieve better execution speed. This is especially important in the
case of arrays constructed by forall expressions.

Use of these transformations permits a trade-off between time and space
consumed during program execution. We expect they will be applied with advice
from the programmer or analyst {0 achieve the desired performance for a particular
application.

Work is proceeding on a very preliminary version of the graph generating program
for use in prototype evaluations. The goal is to be able to translatc small to medium-
size VAL programs for execution on a prototype machine.

In her graduate thesis [14], L. B. Montz explores the translation of a subset of VAL
t3 data flow graphs. The major problem in performing this translation for the target
riachine, the Dennis-Misunas data flow computer [10], stems from the requirement
that graph execution sequences place at most one value on a data flow arc at any
time. Placing more than one token on an arc leads to nondeterminacy or possible
deadlock as a result of values queueing up in the distribution network of the machiné
and blocking other values from reaching their destinations.

The data/acknowledge arc pair transformation is introduced as a means of
implementing the required operational behavior. The transformation replaces graph
arcs with initialized d/a arc pairs which hold either a data or acknowledge token
depending respectively on the full or empty state of its corresponding arc. A formal
argument in the thesis establishes that the safe operation resulting from the
transformation is guaranteed, and that the liveness and functionality of the graph is
not altered. :

The more interesting part of this research focused on an examination of the d/a
arc pair transformation to determine the cost of the scheme and the inefficiencies
introduced. The obvious increase in overhead along with a potentiai loss of some
concurrency inspired the development of two optimization techniques to be
performed on transformed graphs. :

An optimization to eliminate unneeded acknowledge arcs aims to decrease the
acknowledge scheme overhead. By identifying situations in which particular arcs do
not depend on an acknowledgment to prevent multiple token occurrences, the
number of acknowledge arcs can be reduced. This is accomplished by analyzing
the data flow graph implementation of each VAL construct to find arc pairs that may
be subject to acknowledge arc removal, and applying rules which enable these
situations to be recognized. The optimization to balance token flow aims to
eliminate potential bottlenecks within a graph by buffering arcs with identity
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operators so that all paths through the graph are of equal length. Analysis of
performance shows that this approach maximizes throughput, but at a potentially
high cost in terms of identity operations. Consequently, the possibility of decreasing
the severity of bottlenecks through a limited buffering scheme is explored.

2.3. Id Language Implementation

To permit the development anc testing of Id programs, a translator for a subset of
Id, called I1d0, has been developed. Id0 includes blocks, conditional and loop
expressions, procedure definiticns and applications, and structure operations.
Streams, data flow managers, non-determinate computation, and programmer
cefined data types are not yet supported. The translator is written in MACLISP and
translates 1d0 programs into MACLISP programs. It uses LALR(1) parsing and
syntax directed translation. Parsing tables for the translator were generated using
YACC {11]. Compiled MACLISP :ode for the translator takes about 10K of memory

on ITS (DEC-10).

A translator for the complete |d language is being developed by Keshav Pingali in
his graduate thesis. It involves the implementation of streams and the
nondeterministic merge operator. Id can also be looked upon as a language for
distributed computation on a network of sequential processors, communicating by
means of streams. The implementation of streams in this context is also being

looked into.

2.4. |-structures

I-structures [4] are array-like data structures with certain constraints on their
creation and use. Essentially, an element of an i-structure once generated can
never be modified. An I-structure can be implemented efficiently using a storage
system that permits writing into a celi only if it is empty and permits reading a cell
only if it contains data. Such a storage can be built by associating a presence bit
with every cell. An attempt to read an empty cell will cause the read operation to be

deferred.

I-structures offer as much asynchrony as streams [3, 16] and at the same time
preserve the ease of coding implicit in array manipuiation. Since elements of I-
structures are never modified, their decomposition and the mapping of programs
using them is far easier than that of programs using generalized structures.
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3. MAPPING OF ID PROGRAMS ONTO A DATA FLOW
MULTIPROCESSOR

A machine comprising many processing elements must have a highly distributed
and asynchronous control structure. We are designing a data flow computer in
which each processing element contains part of an Id program, and processors
communicate by sending information packets to each other. Our machine is a
hardware realization of a novel way of interpreting data flow languages known as the
U-interpreter.

3.1. Program Decomposition for a Multiple Processor System

We are studying a general scheme for decomposing prog-ams for multiple
processor systems. .In a multiple processor system, each processor can be viewed
as executing its own set of instructions and exchanging information with other
processors as needed. The success of such systems depends upon the ability to
decompose a program into small segments, each suitable for execution on one
processor. It has been shown in [3] that high-level data flow programs can be
- mapped dynamically onto a set of asynchronously cooperating processors. In many
cases, however, the cost and overhead of fully general dynamic mapping may be
unwarranted. A static mapping of programs may prove to be more efficient and cost
effective. Since programs written in applicative languages are based on the concept
of values, they are easier to decompose than programs written in languages based
on the concept of updating storage cells, e.g., FORTRAN.

Applicative programs that have loops as their primary control structure and that
operate on bounded size data structures can be decomposed in three steps:

1) The nested loop structures are unrolled into the network of computation
cells. A computation cell can be regarded as a virtual processor to
which a program and local data have been assigned.

2) Data structure elements are assigned to cells. This assignment should
be such that the distance between the PE (Processing Element) that
creates the structure and the PE that uses the structure is small.

3) The network of computation cells is mapped onto the actual processors

of the system according to the size and structure of both the network
and the computer system. )
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3.2. Mapping Programs onto the U-interpreter Machine

The problem of mapping programs onto the U-interpreter machine [3] is that of
assigning activities and data structures to PEs. A U-interpreter machine can be
viewed as a collection of PEs, each having its own local memory and communicating
~ith each other through a packet communication network. To reduce the
communication overhead, instructions corresponding to an enabled activity should
always be available in the local memory of a PE. This is achieved by statically
distributing the code onto PEs. The U-interpreter assigns unique activity names of
the form u.c.s.i to each activity. The set of tokens with the same u.c part can be
‘hought of as belonging to a logical domain. A logical domain is zssigned to a group
of PEs in which intragroup communication distances are as short as possible. Such
a group of PEs constitutes a physical domain. Severa! logical domains can be
mapped onto a physical domain. Activities within a physical domain are mapped
vased upon either s or i or both. A physical domain can be divided into several
shysical subdomains, which are characterized by the fact that code is never
duplicated inside a subdomain. A mapping based upon statement number s creates
exactly one subdomain, whereas a mapping based upon initiation count 7 creates as
many subdomains as the number of PEs in the physical domain. In a mapping based
on s and i both, a subdomain is chosen on the basis of / while the PE within a
subdomain is chosen on the basis of s. The distribution of code among processors
for any of these mappings can be done statically.

4. TOWARD PRACTICAL DATA FLOW MACHINES

We are building a system for evaluating proposed data flow computers 9] as a
basis for extrapolating the cost/performance of proposed architectures, and for
developing a methodology for data flow program preparation. A form of data flow
computer of particular interest is the cell block machine [8] which has evoived from
the ideas of Dennis and Misunas [10].

Proposed data flow machines will be emulated using two types of hardware
module: a processing unit (PU) and a communication module. The PU uses a
standard hardware unit containing a microprocessor, which can be (micro)-
programmed to emulate various units of data flow systems such as a cell block or a
processing element. The communication element will be a 2 x 2 router from which
routing networks as large as needed can be built. The 2 x 2 router performs such a
basic function that a direct realization of its function will be used. A variety of data
flow computer architectures may be realized by appropriate assembly of these
modules. Our first engineering model will be a cell block machine realized using four
PUs and four routing modules.
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4.1. Processing Unit

G. A. Boughton has completed a detailed logic design for the PU. The primary
data paths are 8 bits wide and are implemented using bit-sliced microprocessor
chips. The design includes two input packet ports and two output packet ports.
These asynchronous ports atlow the PU to be connected to a packet routing network
and to send and receive packets. The design has a writable control store and a
separate data memory.

The design also includes a bus interface which allows the PU to be connected to
the bus of an external supervisory minicomputer. The supervisor will be used to load
programs and data into the PU, to control the operation of the PU, and to perform
raaintenance tests on the PU. The interface gives the supervisor access to the data
memory and the control store of the PU, and gives the supervisor the capability to
halt and single step the PU as well as directly access all the registers of the PU. All
the PUs of a prototype machine can be interfaced to the same supervisor and be
selectively addressed by it.

W.B. Ackerman has designed a symbolic assembly language for the PU
microcode, and has also written a programming manua! [1] for the PU which
.. "scribes the operations of the machine at a level appropriate for assembly level
vogrammers. The assembly language permits programming in a manner similar to
assembly language programming on ordinary computers. S.V. Kwong has written
an assembler for the PU assembly language. A simulator of the PU has been written
by T.L. Tung. The assembler and simulator are written in CLU and run on the MIT.
XX DEC-20 computer.

4.2. 2 x 2 Router

A 2 x 2 router receives packets at its two input ports and delivers each received
packet at one of two output ports according to the destination address carried by the
packet. Each packet is transmitted byte-serially. Packet bytes are delivered and
received using an asynchronous packet communication protocol.

J.E. Lilienkamp has completed his undergraduate thesis [12] on the
implementation of a 2 x 2 router using SSI and MSI components, giving a complete
logic design for the router and developing tests for verifying the correct behavior of
the router. The design is based on the earlier work of T. L.. Tung and uses seven
component modules: two master modules, two FIFO modules, two arbiter modules,
and one multiplexer module. The FIFO moduies are sixteen word first-in first-out
buffers. Each master module is an input port controller which examines the first byte
of the packet and generates a request to the appropriate output buffer. Each arbiter
grants mutually exclusive use of an output port. The multiplexor module is
responsible for linking input ports to output ports.
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The router design sketched above is an asynchronous self-timed system and
requires verification procedures which are significantly different from those used in
synchronous systems. Lilienkamp’s thesis develops special verification procedures
tor each of the modules of the design. In addition, his thesis describes a verification

procedure for the router as whole.

4.3. Routing Networks

G. A. Boughton has continued the study of routing networks. One issue that has
been examined is the impact of anticipated advances in ‘ntegrated circuit
technologies on the design of routing networks. Two models of integrated circuit
lechnologies have been developed. These models correspond to the anticipated
state of available circuit technologies at two points in the future. The first model is
similar to the VLSI model of Thompson [15]. it assigns a cost 10 a wire which is
proportional to the wire’s length, but it assumes that the propagation delay of a wire
is independent of the wire’s length. This model corresponds to the anticipated
behavior of VLSI technologies of the near future. The second model uses the same
cost function for wires, but it assumes that the propagation delay of a wire is
proportional to the square of the wire's length. This model corresponds to the
anticipated behavior of extremely dense VLSI technologies where the propagation of
a signal down a wire is limited by a phenomenon similar to diffusion.

The characteristics of the models imply certain limits on the ~ost and performance
of routing networks. For example, the cost of wires in the models implies certain
minimal costs for networks. Present research indicates that there are particular
applications for N-input routing networks which cannot be supported in the models
by any network with less than O(N?) area. Similarly, the propagation delay of wires in
the second model implies certain constraints on the average delays of networks.
Present research indicates that there are particular applications for N-input networks
which cannot be supported in the second modei by any network with an average
delay for packets of less than O(N).

Further study of these topics will be done. In each of the two models, the relation
between the characteristics of an application and the cost and performance of a
network to support that application will be examined in more detail, The implication
of such relations on the design of routing networks for technologies which
correspond to the models and on the overall design of packet communication
systems for such technologies will be examined.
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5. LOGIC SIMULATION OF MOS LSI

A logic simulator, MOSSIM [6], has been developed for modeling metal-oxide
semiconductor, large-scale integrated circuit designs. In contrast to conventionat
logic simulators which model a system in terms of Boolean logic gates, this new
simulator directly models the network of field-effect transistors. This approach
provides a much more accurate and consistent simulation for those portions of a
system which do not follow the Boolean gate model, such as pass transistor logic,
dynamic memory, and bus structures. Furthermore, the logic network for this
simulator can be extracted directly from the layout specification by a relatively
ctraightforward computer program such as the one written by C. Baker [5]. Hence,
the simulator catches errors in the layout as well as in the logic design. With these
design tools debugging an LSI design becomes much like debugging a computer
program: the layout analyzer “compiles” the design into a transistor network, and
ihen the simulator allows an interactive testing and monitoring of the design.
110SSIM and its offspring have been tested on a variety of MOS designs including a
LISP microprocessor chip with over 10,000 transistors. Recent improvements will
allow even larger projects to be simulated quickly and efficiently as well as allow the
user to describe portions of the design at a more functional level. The algorithms
used in MOSSIM have been improved in generality, accuracy, and speed. In
addition, techniques for verifying the correctness of the algorithms in terms of an
abstract MOS logic model are being developed.
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