

A MULTIPLE PROCESSOR DATA FLOW MACHINE THAT SUPPORTS
GENERALIZED PROCEDURES

ARVIND, and VINOD KATHAIL

Laboratory of Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts

ABSTRACT

Programs for data flow machines are written in functional
languages, some of which require efficient support for dynamic
procedure invocation to achieve high performance and
programming flexibility. Among the proposed data flow
machines, few support procedures in any generality. Our
machine, which is a hardware realization of the U-interpreter
for data flow languages, provides support for a variety of
procedure calling conventions. Because the U-interpreter
assigns a unique activity name to each instance of a
computation (activity), an activity name may become arbitrarily
large in the case of nested or recursive procedure calls.
Hardware considerations, however, require that an activity
name be represented by a fixed-size tag. We describe a
mechanism that uses fixed-size, reusable tags in hardware.
Like processor and memory resources, a group of tags is
allocated and deallocated for each procedure activation. The
proposed mechanism passes procedure arguments and results
efficiently, given the distributed environment of our machine.

INTRODUCTION

The data f low model of computation is one basis for
exploiting massive amounts of parallelism present in
many important computer applications. Prototype
computers based on data f low principles are in various
stages of development at several laboratories in the
United States, ~-5 in Europe, 6,7 and in Japan. 8,9
Architectures of these machines use "arrival of
operands" as the main mechanism for controlling
instruction execution and rely on functional languages
(such as Lisp, Id, 1° and Va111) to express programs for
these machines. These projects also show a remarkable
diversity in actual hardware structures that are used (or
proposed). The diversity stems primarily from the
essential features of data f low machines:

1. The mechanism for detecting enabled instructions

2. The mechanism for scheduling instructions on
processors

3. The mechanisms for handling data structures

The machine that we are designing 1 consists of N
identical processing elements (PEs) communicating by a
bit-serial packet communication network (Figure 1).
(The reader should not confuse our machine with the
data f low machine of J. Dennis, which is also being
designed and constructed at the M. I. T. Laboratory of
Computer Science.) Each PE is essentially a complete
computer that includes a private program and data
storage of up to 128K bytes, and a f loating-point
arithmetic and logic unit (ALU). A prototype of this
machine that will have a minimum of 64 PEs is being
designed; however, two important design goals are (1)
to incorporate up to several thousand PEs simply by
, v " in" plugging a group of PEs and (2) to show
improvements in performance proportional to the
number of PEs in the machine. (The performance goal is
meaningful only for those applications that have an
inherent parallelism greater than the number of PEs in
the machine. Many applications in the areas of partial
differential equation simulation, scene and vision
analysis, and simulation of VLSI designs satisfy this
criterion.)

THE U-INTERPRETER, A N D ACTIV ITY N A M E S

Our machine is a hardware implementation of the
U-interpreter for a graphic data f low base language. 1°
Programs written in any functional language that can be
compiled into this base language may be executed on
our machine. Such a compiler for the high-level data
f low language Id 1° is already in use. The U-interpreter
uncovers parallelism in programs during execution by
uniquely labeling independent activities as they are
generated. Each instance of execution of an operator is
called an activity and is given a unique activity name.
Activities that have all their input values available can
execute provided a processor is available. An activity
name contains four fields:

U: The context field, which uniquely identifies the
context in which a code block is invoked, The

291
0149-7111/81/0000/0291500.75 © 19811EEE

context itself is specified by an activity name, thus
making the definition of u recursive:

C; The code block name. Each procedure and each
loop has a unique code block name.

S: The statement (instruction) number within the code
block.

i: The initiation number, which identifies the loop
iteration in which this activity occurs. This field is
1 if the activity occurs outside a loop.

Within a U-interpreter machine, each value v is
combined with its destination activity name into a packet
called a token, denoted by <u.c.s.i, V>port in which the
term port identifies the input port to an operator. The
basic operation of the machine is to bring together
tokens with identical names, to execute the desired
operation, and to generate output token(s) holding the
result value(s) along with their destination activity
names. For example, two data values x and y with the
destination activity name u.c.s.i are intended for the ith
execution of instruction s of code block c, which was
invoked in some context u. When these two tokens get
together, the code (instruction s of code block c) is
fetched, the operation indicated by the instruction is
performed, and result data values with new destination
activity names are generated. In most cases, these new
names are derived simply by changing the statement
number part of an input token's activity name: In the
previous example, if c,s refers to +, and the output of s
is connected to an input of t, then the result data token
will have the value x + y and the destination activity
name u.c.t. i . Base language operators for implementing
procedures (A, A -1, BEGIN, and END) and loops (L, L -1,
D, and D-l), however, manipulate activity names in such
a way that these names may become arbitrarily large.
The operators related to procedure application are briefly
described below.

According to the semantics of Id language, all
arguments for a procedure are combined together into a
structure, and the structure is passed as a single
argument to the procedure. Similarly, all results are
returned within a single structure. The first instruction of
every procedure is the operator BEGIN, which is given
the statement number begin; the last instruction is
always operator END, with the statement number being
end. A, the operator to activate a procedure, expects
two inputs: Q, a procedure definition, and x, a structure
of arguments (Figure 2). A passes x to the BEGIN
operator of Q, and BEGIN distributes x within a new
activation of O. The END operator of a ultimately

returns the structure containing results to A -1, the
procedure terminate operator. A -~ distributes these
results within the environment that invoked Q.

Suppose A receives tokens <u.c.s A . i Q>proc and
<U.C.SA.i, X>arg. (C.S A refers to an A operator; c.s T refers
to the companion A-I.) The output tokens of A will refer
to cQ, the code block corresponding to procedure Q.
Because data f low languages are purely applicative
languages, Q is like a mathematical function: it has no
internal memory, and it cannot affect or be affected by
any other procedure in the machine. Hence, we create a
new context to execute Q and execute all activities
belonging to this invocation of Q independently of all
other activities. The A operator does this by sending x
to the first operator of Q by assigning it the activity
name u'.cg.begin.1 in which u' equals U.C.ST.i. When the
END operator of Q is ready with the result structure, it
sends the result structure A -~ in the old context u. The
proper activity name for A -1 is U.C.ST.i, which iS easily
extracted from u'.Q.end.l.

For a thorough understanding of the U-interpreter, the
reader is encouraged to read section 3 of Arvind et al. 1°
The behavior of L and L -1 is similar to A and END. The
D operator is used to increment the i field, which also
may become arbitrarily large. In our machine, we use
the same basic mechanism for implementing both
procedures and loops. Before this mechanism is
explained, however, (1) the way programs are mapped
onto the machine and (2) the special type of storage
used for passing arguments and results are reviewed in
the fol lowing two sections, respectively.

SCHEMES FOR DISTRIBUTING ACTIVITIES ON
PROCESSING ELEMENTS

For the purpose of distributing activities on the machine,
assume that separate operators that produce activity
names with a new context part (for example, A, END, L,
and L -1) are separated from the ones that do not. A
group of PEs, known as a physical domain, is allocated
whenever a procedure or a loop is invoked (A or L is
executed). All activities of the invoked procedure (or
loop) take place within the physical domain, except
those activities that are caused by an operator that
changes the context part. The activities of a procedure
(loop) can be distributed within a physical domain on the
basis of the instruction number or the iteration number
of an activity name. Suppose a physical domain
includes PEs with numbers from PEbase tO PEbase +
dom-size - 1 in which dom-size is the size of the
physical domain. If the activities are being distributed on

292

the basis of the s part to activity names, the destination
PE number of an activity can be either PEbase + S mod
dora-size or PEbase + (s/J) in which j is greater than or
equal to the number of instructions in the code body
divided by dom-size. Either scheme can distribute the
code uniformly over the physical domain. Parallelism,
however, could be severely limited, because all
initiations of an instruction will take place on one PE. If
a similar mapping is done based on the i part of activity
names, each PE in the domain will need a copy of the
code, but as many as dom-size number of initiations
can execute in parallel. It is also possible to combine
the two schemes.

Once a physical domain and a mapping scheme have
been selected, the code needed by PE is fixed and can
be reloaded into the program memory of PE. Further, if
we assume that program graphs are stored using
forward link pointers, static relocation will eliminate the
need for evaluating the mapping function dynamically.
Our implementation minimizes the number of addresses
to be relocated statically by providing base registers for
relocating code. If only one procedure or loop is
permitted to be active in a physical domain, there is no
need for the tokens to carry the u and c parts of activity
names. In fact, if the code is being preloaded, the c
part is absorbed by the forward link pointers. In case an
implementation permits more than one invocation (but a
fixed maximum number of invocations) in a physical
domain, the tokens wil l have to carry extra bits to
signify to which invocation they belong.

The scheme for mapping programs discussed in this
section needs a scheduler to allocate domains. The
scheduler is called when a procedure (loop) is invoked,
and it selects a domain by taking into account such
factors as how many activities are expected to be
generated, the size of the code block, if the code block
is already present in some other physical domain, and
most important, how much data has to be moved
between the invoking physical domain and the new
physical domain. It appears at this stage that the
scheduler would need hints from the user to perform its
task optimally. The scheduler could be either a program
(executed by predesignated PE or PEs) or a
special-purpose processor.

differ only in the value on selector i. The copying
semantics for data structures in functional languages has
to be preserved, or the advantage of these languages
for parallel processing is lost. I-structures have recently
been proposed to avoid excessive copying) 3

An I-structure is an array-like data structure with certain
constraints on its creation. An element of an I-structure
can be written into (defined) only once. Besides
ensuring functionality, this restriction also makes it
possible to do several concurrent writes on a single
I-structure. We plan to implement all data structures as
I-structures and provide special hardware storage for
them in our machine. A cell in the I-structure storage
can be read only after the cell has been written, and a
cell can be written only if it is empty. A bit is associated
with every cell to indicate the empty/ fu l l condition.

In our machine, an I-structure may be distributed over
several PEs, but all I-structure storage forms a single
address space. Thus, an I-structure pointer can be
decomposed into two parts: APE number and a local
memory pointer. An attempt to read or write I-structure
storage can result in tokens going from one PE to
another PE, Consider the select operation x[k] that
requires x o, the address of the first element of x, and
integer k. (The scheme actually used in the machine is
more general: x o is treated as an array descriptor with
enough information to determine what PE has the x[k]
element, given k.) As shown in Figure 3, the processor
executing x [k] sends a read request to I-structure
memory location x o + k - 1 along with the activity name
where the result should be sent. Note that PE in which
xo [k] is executed can be different from PE that has the
memory location x o + k - 1 as well as PE that executes
the destination activity of x[k] .

An append operation (append (x, k, v)) is similarly
broken in two steps: one to form an address from x 0
and k; the other to send value v to the address
calculated. An append operation has no destination,
because several appends together create one I-structure
whose descriptor is forwarded separately to select
instructions. I-structures are allocated by a memory
manager, which does reclamation of storage by
maintaining reference of I-structure descriptors.

I-STRUCTURES

In functional languages, modification of even one
element of a data structure results conceptually in a new
data structure. 12 Hence, the meaning of a statement like
x[i]+v is new x+append(x.i,v) in which x and new x

PROGRAM REPRESENTATION

Each loop and each procedure of an Id program is
compiled as a separate code block. An individual
instruction is uniquely identified by a code block number
and an offset within the code block. The format for a

293

typical instruction is shown in Figure 4 in which the
operation code is an 8-b i t operation code. Each
instruction provides space for constants and the
destination where result values are to be sent. The c bit
is used to chain the destination list; a 0 flag indicates an
empty destination list. Each destination consists of s, p,
nt, and a f fields:

s: The relative address of the destination instruction

p: A one-bi t number indicating the port of the
destination operator (An operator can have at most
two inputs.)

nt: A one-bi t number indicating the number of tokens
to enable the destination instruction

af: The mapping scheme to be used in calculating the
destination PE number

Fields wc and pc specify the addressing mode and the
port number for the constant values, respectively. A
constant may be stored in the instruction itself or in a
block (called an activation record) associated with each
invocation of a code block. An activation record has
space for input arguments and output results and is
allocated at the time of procedure invocation.

THE PROCESSING ELEMENT

Activity names are represented by f ixed-size tags in the
machine. The manipulation of tags by the machine is
isomorphic to the manipulation of activity names by the
U-interpreter; however, the exact correspondence
between an activity name and a tag is not easily
described, because the correspondence involves the
architecture of the machine and the schemes for
mapping programs on the machine simultaneously.

We assume that the local program memories of all PEs
(like the I-structure storage) constitute a single address
space. A complete memory address, therefore, has two
parts: a PE number and a local memory address within
PE. A tag must contain the address of the instruction to
be executed. A processing element assumes that the
instruction indicated by the tag of an incoming token
has been loaded into local memory before its arrival.
This permits using physical addresses as parts of tags
and, consequently, a part of a tag to determine the
destination PE number.

Two kinds of tokens that are transmitted between PEs
are tokens corresponding to values in data f low graphs
and tokens generated by the system.

Tokens Corresponding to Values in Data Flow
Graphs

The first kind of tokens are those tokens that
correspond one to one with the tokens in data f low
graphs. These tokens are referred to as d = 0 type and
contain the fol lowing fields:

< PE number, d = 0, tag, nt, port, data>

in which the tag can be further subdivided into three
fields: color, local instruction address, and iteration
number. Note that the PE number is logically a part of
the complete tag. It is used by the communications
system to route tokens and is deleted when a token
enters PE. When a token arrives at the input of PE
(Figure 5) the token's d and nt fields are examined.
Tokens with d = 0 that need a partner (nt = 1) have their
tags matched associatively against the tags of tokens in
the wait ing-matching buffer. In case a match is found,
both tokens are moved to the instruction-fetch buffer;
otherwise, the incoming token is put into the
wait ing-matching buffer. In case the wait ing-matching
buffer is full, local memory is used to handle the
overflow of tokens. If an incoming token does not need
a partner (nt = 0, which means a single-operand
instruction), it is directly moved to the instruction-fetch
buffer. Using the instruction address bits of the tag, an
instruction is fetched, and then a packet containing the
operation code, operands, and destinations is passed on
to the service section. The arithmetic and logic unit in
the service section executes the operation code, and
new tags are generated as dictated by the U-interpreter
and the program mapping scheme being used. The
result tokens are sent to the output buffer, which in turn
sends them to other PEs through the communications
network. If the destination PE on a token is the same as
the source PE, a local path from the output buffer to the
input register of a processing element is used to reduce
external communications traffic. (The U-interpreter was
developed at the University of California at Irvine, and
consequently, the architecture of our PE is related to PE
of the simulated machine of Gostelow and Thomas. 14)

294

System-Generated Tokens Color Registers

There is a class of instructions (for example, a request
to read I-structure memory or to reset ALU and other
registers in PE) whose behavior does not f i t the pattern
described previously. The operation codes for these
instructions are carried within system-generated tokens
(d = 1); such tokens are routed directly to the service
section because no instruction fetch is needed. A d = 1
type of token contains the fol lowing fields:

<PE number, d = 1, opcode, data>

To understand how these tokens come about, consider
again the high-level operation, append (x 0, i, v). The
FORM-ADDRESS instruction calculates
<PEnu m, local-pointer>, an I-structure pointer, and
forwards it to the I-STORE instruction on a d = 0 type
of token. Upon receiving a value v and <PEnum,
local-pointer>, the I-STORE instruction produces the
fol lowing token:

<PE number = PEnu m, d = 1, opcode = I-WRITE,
data = <local-pointer, v>>

The PE with number PEnu m performs the write operation,
and no further tokens are generated. The select
operation similarly forms an address
<PEnt m, local-pointer> passes it to an I-FETCH
instruction, which produces the fol lowing token:

<PE number = PE,u m, d = 1, opcode = I-READ,
data = <local-pointer, destination-info >>

in which destination-info is the tag, nt, and port of the
token to be sent to the destination of the select. The
contents of the I-structure location addressed by
local-pointer is read by PEnu m, which produces a d = O
type of token using the destination-info and the value
read. Note that a separate section to hold deferred
reads (requests to read an absent element of an
I-structure) is provided to avoid blocking the service
section (Figure 5). A generalization of the I-FETCH
instruction is the IN-FETCH (indexed fetch) instruction.
The IN-FETCH instruction has n destinations and
generates n (d = 1) type of tokens for reading n
successive locations starting with the input I-structure
pointer. Each value read is sent to a different
destination.

We want to include the possibility of activating several
code blocks (not necessarily distinct from each other)
within the physical domain. This is achieved by
assigning a different color to each activation. (The color,
along with a completely logical entity called the physical
domain name, represents the u part of an activity name.)
Only a finite number of colors are allowed within a
physical domain, and if all colors of a physical domain
are being used, no new loop or procedure activation can
be scheduled on it. Colors are released when a loop or
procedure terminates. Sharing of code blocks within a
physical domain is feasible, because all invocations carry
different colors.

There are several color registers in each PE. Each color
register contains two sets of base-and-l imit pointers:
one set of pointers points to the base and limit of the
code block associated with a color; the other set points
to the activation record in local memory. Color registers
are not necessary, but provide several benefits:

1. They allow the instruction address in a tag to be
shorter, because it is made relative to the program
base pointer. (The program base pointer also
reduces the number of forward pointers that have
to be statically relocated.)

2. The activation record pointer, together with the
special addressing mode, avoids the need to
circulate values that remain constant during a loop
invocation. This reduces the token traffic as well
as the number of tokens in the wait ing-matching
buffer.

IMPLEMENTATION OF PROCEDURES

Whenever a procedure is invoked, memory for the
activation record has to be allocated (conventional
languages often use stack allocation for this purpose). It
is preferable to allocate storage for an activation record
in the physical domain of the invoked procedure to take
full advantage of color registers. Id semantics require all
input arguments to be present before a procedure can
be invoked while Id loops, and many other languages
relax this restriction. 1° The fol lowing scheme allows the
compiler to implement either argument passing
convention. Assume the compiler designates an input to
a procedure as a trigger to call the scheduler, which in
turn calls a memory manager. Let this trigger be known
as t=. The scheduler will return a newly allocated
activation record pointer, which can be used by the

295

invoking domain to store the arguments. It makes sense
to distinguish between the allocation of a domain, and
the startup of the associated procedure, which is done
by having the compiler generate another trigger called t b
to start procedure execution; however, it is not
necessary for t , and t b to be different from each other
or from a procedure input or a code block name. A
trigger similar to t b, called t r, is also required by the
invoked procedure to inform the invoking domain about
the availability of results.

The steps involved in a procedure call and return (Figure
6) for the case when the size of the activation record
can be determined at compile time are as fol lows:

1. The INVOKE instruction is executed whenever the
code block name and the trigger t become
available. The INVOKE instruction sends the code
block name, the size of the activation record, and
the destination tag for the fol lowing DISTRIBUTE
operator to the scheduler. The DISTRIBUTE
instruction merely sends copies of its input to
various destinations.

2. The scheduler, either on its own or with some
advice from the programmer/compiler, assigns a
physical domain to the invoked procedure and
performs four steps:
a. It asks a manager to allocate an I-structure

area in the new physical domain for the
activation record of the called procedure and
sends the resulting I-structure pointer to the
DISTRIBUTE operator in the calling domain.

b. It loads the code block on all PEs of the
physical domain. The destination fields within
the code block being loaded depend on the
mapping scheme to be used for this invocation.
If a copy of the code block is already present in
the physical domain, this step is not performed.
In general, code blocks reside permanently in
secondary storage, and loading one of them can
take significant time.

c. It assigns a color and stores the pointers for the
loaded code block and the allocated local
memory area in the appropriate color register of
each PE in the physical domain.

d. It sends a token to read the first location of the
activation record; this read will be delayed until
the first location is actually written, because the
activation record is an I-structure. The
destination for the result of the read instruction
is the IN-FETCH-CR (indexed fetch through
color register) operator. (IN-FETCH-CR is the
same as IN-FETCH, except that it uses the

I-structure pointer from the color register.) By
convention, trigger I b is written into the first
location of the activation record; therefore, no
new tokens in the activated procedure are
generated until t b is written by the calling
domain.

3. As soon as the activation record pointer is
received by the DISTRIBUTE instruction, it makes
n + 2 copies of it: one for writ ing t b, n for writ ing
n arguments in the activation record, and one for
reading t r from the activation record.

4. When indirectly triggered by lb, the IN-FETCH-CR
instruction reads n values from the activation
record and sends them to various instructions as
dictated by code block Q.

5. The invoked procedure write m results in an
I-structure area (not necessarily different from a
separate part of the activation record) and passes
a pointer to this area to the calling domain through
the t r location of the activation record.

6. Since the writ ing of t controls when the results
are actually available to the calling procedure, the
generation of trigger t must be according to some
policy. For example, if the results should be
returned only after all are available, the compiler
has to put in code to detect that all m writes have
been completed. In general, the condition that
results have been stored has to be detected to
release a color. Releasing a color does not
deallocate the activation record.

7. In the invoking domain, a read request for t r is
made as soon as the pointer for the activation
record becomes available (step 3). This request is
satisfied only after t r is actually produced. The
destination for the t read results in the IN-FETCH
instruction.

. The IN-FETCH instruction in the invoking domain
reads m results and sends them to operators as
dictated by the invoking code. After all results
have been read, the activation record is released.

To store parameters in an activation record to be
accessed as constants, it is possible that a copy of a
part of the activation record may be needed by each PE
in the physical domain. This copying wil l depend upon
the mapping scheme used, and it can be initiated by the
scheduler.

2 9 6

FURTHER CONSIDERATIONS-PROCEDURES AND
LOOPS

There are two additional problems related with
procedure (loop) implementation. Allocation of storage
for data structures implemented as I-structures is often
coupled with procedure (loop) invocation; deallocation of
I-structures is associated with procedure (loop)
termination. In general, an I-structure can be distributed
across several PEs; hence, an additional memory
manager with a global view of the machine is needed
for efficient storage management. Because the
scheduler must interact with this memory manager to
minimize data movement between the invoking and
invoked physical domains, the scheduler's response in
returning an activation record pointer may be slow;
however, the compiler has the flexibil ity of executing the
INVOKE instruction early by using trigger t .

The mechanism described works for the case in which
there is no mismatch in the number of parameters
passed by the calling expression and expected by the
called procedure. The Id language permits such a
mismatch in case of procedures (but not loops) and
gives precise rules for dealing with the situation. The
basic rule is to neglect extra parameters and to produce
error values for those required but not supplied. A
protocol for implementing such procedures forms first a
structure of the arguments in the calling domain. Then,
the scheduler in response to the INVOKE operation
sends the number of expected parameters along with
the activation record pointer. Some compiler-generated
code can use this information to copy the appropriate
number of arguments from the original argument
structure into the activation record and store error values
for missing arguments. A similar strategy is possible for
returning results.

The mechanisms described in this paper are sufficient
for implementing procedure and loop invocations
correctly without sacrificing any generality. An additional
operator called D is used inside loops to increment the i
field, which can cause problems if there is more than a
fixed maximum number of iterations. Setting i to 0 after
a fixed maximum number of iterations can produce
duplicate activity names and incorrect results. One way
to solve this problem is to allocate a new color if D
needs to increment i beyond the maximum. The new
color register will have exactly the same setting as the
old color register. When no tokens with the old color
remain (all tokens with i less than or equal to the fixed
maximum iterations have been produced and
consumed), the old color can be released. This

allocation of a new color can be done quickly, because
no resources besides a color register are needed.

It is possible to have more than one scheduler in the
machine by using a static allocation rule for dividing
procedure activations among various schedulers. This
has no impact on the hardware structure of our
machine. For large numeric applications, however,
scheduling to minimize data movement remains a
significant research issue.

CURRENT STATUS OF THE MACHINE

We are in the process of designing the processing
element that will be implemented using one or two
custom VLSI MOS chips and commercially available
memory boards and ALUs. We are planning to use a
32-token wait ing-matching buffer for each PE and
36-b i t tags: 10 bits for the PE number, 3 bits for color,
16 bits for an instruction address, and 7 bits for the
iteration field. The validity of these sizes is to be
determined by hardware and software simulation
experiments. There are still design details to be worked
out, regarding especially the interface with commercial
chips. We expect to fabricate a processor element by
December 1982.

A compiler to translate Id language into Lisp language is
currently in use. A compiler to translate Id language to
data f low machine language is being written and should
be in use by May 1981.

ACKNOWLEDGMENTS

This research was supported by NSF grant No. MCS 7902782
and by the Advanced Research Project Agency of the
Department of Defense, Office of Naval Research contract No.
N00014-75-0661. The authors thank Keshav Pingali, for his
partipation in this project, and Bill Ackermann and Bob
Thomas, for their valuable suggestions.

297

REFERENCES

1Arvind, V. Kathail, and K. Pingali. A data flow architecture
with tagged tokens (TM 174, Laboratory for Computer
Science), Massachusetts Institute of Technology, 1980.

2A. L. Davis. The architecture and system methodology of
DDMh A recursively structured data driven machine.
Proceedings of the 5th Symposium on Computer Architecture
(1978), 210-215.

3j. B. Dennis, G. A. Boughton, and C. K. C. Leung. Building
blocks for dataflow prototypes. Proceedings of the 1980
Symposium on Computer Architecture (May 1980).

4D. Johnson et al. Automatic partitioning of programs in
multiprocessor system. Proceedings of COMPCON /80 (Feb.
1980).

5R. M. Keller, G. Lindstrom, and S. Patil. A loosely-coupled
applicative multi-processing system. AFIPS Conference
Proceedings, 48 (June 1979), 613-622.

6j. C. Syre, D. Comte, and N. Hifdi. Pipelining, parallelism, and
asynchronism in the LAU system. Proceedings of the 1977
International Conference on Parallel Processing (Aug. 1977),
87-92.

71. Watson and J. Gurd. A prototype data flow computer with
token labeling. AFIPS Conference Proceedings, 48 (June
1979), 623-628.

8M. Amamiya et al. Data flow machine architecture (Internal
notes 1 and 2, Musashino Electrical Communication
Laboratory), Nippon Telephone and Telegraph, 1980.

9T. Suzuki, and Moto-oka. Control structure of TOPSTAR and
its evaluation. Proceedings of the Annual Conference of
Japan Information Processing Society (May 1980), 85-86.

l°Arvind, K. P. Gostelow, and W. E. Plouffe. An asynchronous
programming language and computing machine (TR 114a,
Department of Information and Computer Science), University
of California, Irvine, 1978.

11W. B. Ackerman and J. B. Dennis. VAI-A value oriented
algorithmic language (TR 218, Laboratory for Computer
Science), Massachusetts Institute of Technology, 1979.

12W. B. Ackerman. Dataflow languages, AFIPS Conference
Proceedings, 48 (June 1979), 1087-1095.

13Arvind and R. E. Thomas. I-structures: An efficient data type
for functional languages (TM 178, Laboratory for Computer
Science), Massachusetts Institute of Technology, 1980.

14K.p. Gostelow and R. E. Thomas. Performance of a
simulated dataflow computer, IEEE Transactions on
Computers, C-29 (1980), 905-919.

• 2 9 8

<
<

-F- l - , 1>

[- ~ _ N-I >

Figure 1. Block Diagram of Machine

NXN

NETWORK

I

t. j

ST: \

//

• end: END

N-1

domain u

Figure 2. Procedure Application

domain u'

299

S:

t I

clect

V

S:

FORM- [
AI)I)RESS

- J - -

I
I
I
I
J

> To memory
location
x o + k - I

PE
u.c.s.i

activity of
x[il

tokcn carrying

Xo+ k- 1 and
u.c.t.i

PE'

~0+ k-1
location
is read

Figure 3. Implementation of Select Operation

token carrying

the value x[i]

PE

u.c.t.i

activity

ot:code] wc j pc flag
specification of constant

c I s I p I n~ i af
destinations

Figure 4. Instruction Fomat

300

Program
Memory

I-Structure ~ '
Memory

Input fro n
Communmation System

~ ~PE#,d >

Input
~<d >

I d=: 1 I

Color registers

L
F

nt= 1

nt=O

L_

1

tag

A - - - - 1

m

instruction l---,---,---r--4
[fitch [.L~J_~~____ por t

~_______~_ color
initia
instr ~

_ _ _ _

opcode,data

I

section [

I
I

\/
Output [.

Output to
Communication System

I
I

t

2,
data

tag,data 1,data 2

data(I or 2)

initiation number] I
instruction address]

-

. opcode,data,
destination ._]

<opcode,data,destination> t

[Ac tivi t-------~g-~5--j-- A L---~ 11 [

[destination Pit number ~J]

Figure 5. Processing Element

Waiting-
matching
Section

Instruction
Fetch
Section

•Service Section

301

Q
S Scheltller ~

k ~ m c m o ~ manager ~ ,,~ ra-~" ~ ~.--""~ I I t1, /
," / L,.//_\~d ~" IN-FETCIt-CR I I I " 1 / " ~ - ' - ~ . , . f f - o ~ _ v

L>.&F ~e=nINVOKE[+m+ --21 L " ~ ~ ~ ' ~ i ~ } ~4~" i a2 " ~

I DISTR|BU'[E I

t b

a.i

1
. "~ I-STORE

e

>

>

__ tb
a 1 [- - .

I
a n I - - tr

,_-u-F.~-~]__ ~ v v E T C .

vs'roRE k'-- > 1

,

IN-FETCH
r I .>

• ~m >

Code to
detect m

reads from
the activation

record

DEA LLOCATE
ACTIVATION

RECORD
I <To memoD manager>

INVOKING D O M A I N

r 1

r m - N
aCtlvatmn record
in I-structure
storage

>

<activation record
pointer + n + 1>

<-

I I-STORE ~ t r

1-STORE F rl

o

I I-STORE r m

code to detect
initiation of
m writes in

the activation
record

• RELEASE [
COLOR

<To the scheduler> >

INVOKED D O M A I N

Figure 6. Code for Procedure Call

302

