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ABSTRACT 

Programs for data flow machines are written in functional 
languages, some of which require efficient support for dynamic 
procedure invocation to achieve high performance and 
programming flexibility. Among the proposed data flow 
machines, few support procedures in any generality. Our 
machine, which is a hardware realization of the U-interpreter 
for data flow languages, provides support for a variety of 
procedure calling conventions. Because the U-interpreter 
assigns a unique activity name to each instance of a 
computation (activity), an activity name may become arbitrarily 
large in the case of nested or recursive procedure calls. 
Hardware considerations, however, require that an activity 
name be represented by a fixed-size tag. We describe a 
mechanism that uses fixed-size, reusable tags in hardware. 
Like processor and memory resources, a group of tags is 
allocated and deallocated for each procedure activation. The 
proposed mechanism passes procedure arguments and results 
efficiently, given the distributed environment of our machine. 

INTRODUCTION 

The data f low model of computation is one basis for 
exploiting massive amounts of parallelism present in 
many important computer applications. Prototype 
computers based on data f low principles are in various 
stages of development at several laboratories in the 
United States, ~-5 in Europe, 6,7 and in Japan. 8,9 
Architectures of these machines use "arrival of 
operands" as the main mechanism for controlling 
instruction execution and rely on functional languages 
(such as Lisp, Id, 1° and Va111) to express programs for 
these machines. These projects also show a remarkable 
diversity in actual hardware structures that are used (or 
proposed). The diversity stems primarily from the 
essential features of data f low machines: 

1. The mechanism for detecting enabled instructions 

2. The mechanism for scheduling instructions on 
processors 

3. The mechanisms for handling data structures 

The machine that we are designing 1 consists of N 
identical processing elements (PEs) communicating by a 
bit-serial packet communication network (Figure 1). 
(The reader should not confuse our machine with the 
data f low machine of J. Dennis, which is also being 
designed and constructed at the M. I. T. Laboratory of 
Computer Science.) Each PE is essentially a complete 
computer that includes a private program and data 
storage of up to 128K bytes, and a f loating-point 
arithmetic and logic unit (ALU). A prototype of this 
machine that will have a minimum of 64 PEs is being 
designed; however, two important design goals are (1) 
to incorporate up to several thousand PEs simply by 
, v  " in" plugging a group of PEs and (2) to show 
improvements in performance proportional to the 
number of PEs in the machine. (The performance goal is 
meaningful only for those applications that have an 
inherent parallelism greater than the number of PEs in 
the machine. Many applications in the areas of partial 
differential equation simulation, scene and vision 
analysis, and simulation of VLSI designs satisfy this 
criterion.) 

THE U-INTERPRETER, A N D  ACTIV ITY  N A M E S  

Our machine is a hardware implementation of the 
U-interpreter for a graphic data f low base language. 1° 
Programs written in any functional language that can be 
compiled into this base language may be executed on 
our machine. Such a compiler for the high-level data 
f low language Id 1° is already in use. The U-interpreter 
uncovers parallelism in programs during execution by 
uniquely labeling independent activities as they are 
generated. Each instance of execution of an operator is 
called an activity and is given a unique activity name. 
Activities that have all their input values available can 
execute provided a processor is available. An activity 
name contains four fields: 

U:  The context field, which uniquely identifies the 
context in which a code block is invoked, The 
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context itself is specified by an activity name, thus 
making the definition of u recursive: 

C; The code block name. Each procedure and each 
loop has a unique code block name. 

S: The statement (instruction) number within the code 
block. 

i: The initiation number, which identifies the loop 
iteration in which this activity occurs. This field is 
1 if the activity occurs outside a loop. 

Within a U-interpreter machine, each value v is 
combined with its destination activity name into a packet 
called a token, denoted by <u.c.s.i, V>port in which the 
term port identifies the input port to an operator. The 
basic operation of the machine is to bring together 
tokens with identical names, to execute the desired 
operation, and to generate output token(s) holding the 
result value(s) along with their destination activity 
names. For example, two data values x and y with the 
destination activity name u.c.s.i are intended for the ith 
execution of instruction s of code block c, which was 
invoked in some context u. When these two tokens get 
together, the code (instruction s of code block c) is 
fetched, the operation indicated by the instruction is 
performed, and result data values with new destination 
activity names are generated. In most cases, these new 
names are derived simply by changing the statement 
number part of an input token's activity name: In the 
previous example, if c,s refers to +, and the output of s 
is connected to an input of t, then the result data token 
will have the value x + y and the destination activity 
name u.c.t. i .  Base language operators for implementing 
procedures (A, A -1, BEGIN, and END) and loops (L, L -1, 
D, and D-l), however, manipulate activity names in such 
a way  that these names may become arbitrarily large. 
The operators related to procedure application are briefly 
described below. 

According to the semantics of Id language, all 
arguments for a procedure are combined together into a 
structure, and the structure is passed as a single 
argument to the procedure. Similarly, all results are 
returned within a single structure. The first instruction of 
every procedure is the operator BEGIN, which is given 
the statement number begin; the last instruction is 
always operator END, with the statement number being 
end. A, the operator to activate a procedure, expects 
two inputs: Q, a procedure definition, and x, a structure 
of arguments (Figure 2). A passes x to the BEGIN 
operator of Q, and BEGIN distributes x within a new 
activation of O. The END operator of a ultimately 

returns the structure containing results to A -1, the 
procedure terminate operator. A -~ distributes these 
results within the environment that invoked Q. 

Suppose A receives tokens <u.c.s A . i  Q>proc and 
<U.C.SA.i, X>arg. (C.S A refers to an A operator; c.s T refers 
to the companion A-I.) The output tokens of A will refer 
to cQ, the code block corresponding to procedure Q. 
Because data f low languages are purely applicative 
languages, Q is like a mathematical function: it has no 
internal memory, and it cannot affect or be affected by 
any other procedure in the machine. Hence, we create a 
new context to execute Q and execute all activities 
belonging to this invocation of Q independently of all 
other activities. The A operator does this by sending x 
to the first operator of Q by assigning it the activity 
name u'.cg.begin.1 in which u' equals U.C.ST.i. When the 
END operator of Q is ready with the result structure, it 
sends the result structure A -~ in the old context u. The 
proper activity name for A -1 is U.C.ST.i, which iS easily 
extracted from u'.Q.end.l. 

For a thorough understanding of the U-interpreter, the 
reader is encouraged to read section 3 of Arvind et al. 1° 
The behavior of L and L -1 is similar to A and END. The 
D operator is used to increment the i field, which also 
may become arbitrarily large. In our machine, we use 
the same basic mechanism for implementing both 
procedures and loops. Before this mechanism is 
explained, however, (1) the way programs are mapped 
onto the machine and (2) the special type of storage 
used for passing arguments and results are reviewed in 
the fol lowing two sections, respectively. 

SCHEMES FOR DISTRIBUTING ACTIVITIES ON 
PROCESSING ELEMENTS 

For the purpose of distributing activities on the machine, 
assume that separate operators that produce activity 
names with a new context part (for example, A, END, L, 
and L -1) are separated from the ones that do not. A 
group of PEs, known as a physical  domain,  is allocated 
whenever a procedure or a loop is invoked (A or L is 
executed). All activities of the invoked procedure (or 
loop) take place within the physical domain, except 
those activities that are caused by an operator that 
changes the context part. The activities of a procedure 
(loop) can be distributed within a physical domain on the 
basis of the instruction number or the iteration number 
of an activity name. Suppose a physical domain 
includes PEs with numbers from PEbase tO PEbase + 
dom-size - 1 in which dom-size is the size of the 
physical domain. If the activities are being distributed on 
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the basis of the s part to activity names, the destination 
PE number of an activity can be either PEbase + S mod 
dora-size or PEbase + (s/J) in which j is greater than or 
equal to the number of instructions in the code body 
divided by dom-size. Either scheme can distribute the 
code uniformly over the physical domain. Parallelism, 
however, could be severely limited, because all 
initiations of an instruction will take place on one PE. If 
a similar mapping is done based on the i part of activity 
names, each PE in the domain will need a copy of the 
code, but as many as dom-size number of initiations 
can execute in parallel. It is also possible to combine 
the two schemes. 

Once a physical domain and a mapping scheme have 
been selected, the code needed by PE is fixed and can 
be reloaded into the program memory of PE. Further, if 
we assume that program graphs are stored using 
forward link pointers, static relocation will eliminate the 
need for evaluating the mapping function dynamically. 
Our implementation minimizes the number of addresses 
to be relocated statically by providing base registers for 
relocating code. If only one procedure or loop is 
permitted to be active in a physical domain, there is no 
need for the tokens to carry the u and c parts of activity 
names. In fact, if the code is being preloaded, the c 
part is absorbed by the forward link pointers. In case an 
implementation permits more than one invocation (but a 
fixed maximum number of invocations) in a physical 
domain, the tokens wil l  have to carry extra bits to 
signify to which invocation they belong. 

The scheme for mapping programs discussed in this 
section needs a scheduler to allocate domains. The 
scheduler is called when a procedure (loop) is invoked, 
and it selects a domain by taking into account such 
factors as how many activities are expected to be 
generated, the size of the code block, if the code block 
is already present in some other physical domain, and 
most important, how much data has to be moved 
between the invoking physical domain and the new 
physical domain. It appears at this stage that the 
scheduler would need hints from the user to perform its 
task optimally. The scheduler could be either a program 
(executed by predesignated PE or PEs) or a 
special-purpose processor. 

differ only in the value on selector i. The copying 
semantics for data structures in functional languages has 
to be preserved, or the advantage of these languages 
for parallel processing is lost. I-structures have recently 
been proposed to avoid excessive copying) 3 

An I-structure is an array-like data structure with certain 
constraints on its creation. An element of an I-structure 
can be written into (defined) only once. Besides 
ensuring functionality, this restriction also makes it 
possible to do several concurrent writes on a single 
I-structure. We plan to implement all data structures as 
I-structures and provide special hardware storage for 
them in our machine. A cell in the I-structure storage 
can be read only after the cell has been written, and a 
cell can be written only if it is empty. A bit is associated 
with every cell to indicate the empty/ fu l l  condition. 

In our machine, an I-structure may be distributed over 
several PEs, but all I-structure storage forms a single 
address space. Thus, an I-structure pointer can be 
decomposed into two parts: APE  number and a local 
memory pointer. An attempt to read or write I-structure 
storage can result in tokens going from one PE to 
another PE, Consider the select operation x[k ]  that 
requires x o, the address of the first element of x, and 
integer k. (The scheme actually used in the machine is 
more general: x o is treated as an array descriptor with 
enough information to determine what PE has the x[k ]  
element, given k.) As shown in Figure 3, the processor 
executing x [k ]  sends a read request to I-structure 
memory location x o + k - 1 along with the activity name 
where the result should be sent. Note that PE in which 
xo [k  ] is executed can be different from PE that has the 
memory location x o + k - 1 as well as PE that executes 
the destination activity of x[k] .  

An append operation (append (x, k, v)) is similarly 
broken in two steps: one to form an address from x 0 
and k; the other to send value v to the address 
calculated. An append operation has no destination, 
because several appends together create one I-structure 
whose descriptor is forwarded separately to select 
instructions. I-structures are allocated by a memory 
manager, which does reclamation of storage by 
maintaining reference of I-structure descriptors. 

I-STRUCTURES 

In functional languages, modification of even one 
element of a data structure results conceptually in a new 
data structure. 12 Hence, the meaning of a statement like 
x[ i ]+v  is new x+append(x.i,v) in which x and new x 

PROGRAM REPRESENTATION 

Each loop and each procedure of an Id program is 
compiled as a separate code block. An individual 
instruction is uniquely identified by a code block number 
and an offset within the code block. The format for a 
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typical instruction is shown in Figure 4 in which the 
operation code is an 8-b i t  operation code. Each 
instruction provides space for constants and the 
destination where result values are to be sent. The c bit 
is used to chain the destination list; a 0 flag indicates an 
empty destination list. Each destination consists of s, p, 
nt, and a f  fields: 

s: The relative address of the destination instruction 

p: A one-bi t  number indicating the port of the 
destination operator (An operator can have at most 
two inputs.) 

nt: A one-bi t  number indicating the number of tokens 
to enable the destination instruction 

af: The mapping scheme to be used in calculating the 
destination PE number 

Fields wc and pc specify the addressing mode and the 
port number for the constant values, respectively. A 
constant may be stored in the instruction itself or in a 
block (called an activation record) associated with each 
invocation of a code block. An activation record has 
space for input arguments and output results and is 
allocated at the time of procedure invocation. 

THE PROCESSING ELEMENT 

Activity names are represented by f ixed-size tags in the 
machine. The manipulation of tags by the machine is 
isomorphic to the manipulation of activity names by the 
U-interpreter; however, the exact correspondence 
between an activity name and a tag is not easily 
described, because the correspondence involves the 
architecture of the machine and the schemes for 
mapping programs on the machine simultaneously. 

We assume that the local program memories of all PEs 
(like the I-structure storage) constitute a single address 
space. A complete memory address, therefore, has two 
parts: a PE number and a local memory address within 
PE. A tag must contain the address of the instruction to 
be executed. A processing element assumes that the 
instruction indicated by the tag of an incoming token 
has been loaded into local memory before its arrival. 
This permits using physical addresses as parts of tags 
and, consequently, a part of a tag to determine the 
destination PE number. 

Two kinds of tokens that are transmitted between PEs 
are tokens corresponding to values in data f low graphs 
and tokens generated by the system. 

Tokens Corresponding to Values in Data Flow 
Graphs 

The first kind of tokens are those tokens that 
correspond one to one with the tokens in data f low 
graphs. These tokens are referred to as d = 0 type and 
contain the fol lowing fields: 

< PE number, d = 0, tag, nt, port, data> 

in which the tag can be further subdivided into three 
fields: color, local instruction address, and iteration 
number. Note that the PE number is logically a part of 
the complete tag. It is used by the communications 
system to route tokens and is deleted when a token 
enters PE. When a token arrives at the input of PE 
(Figure 5) the token's d and nt fields are examined. 
Tokens with d = 0 that need a partner (nt = 1) have their 
tags matched associatively against the tags of tokens in 
the wait ing-matching buffer. In case a match is found, 
both tokens are moved to the instruction-fetch buffer; 
otherwise, the incoming token is put into the 
wait ing-matching buffer. In case the wait ing-matching 
buffer is full, local memory is used to handle the 
overflow of tokens. If an incoming token does not need 
a partner (nt = 0, which means a single-operand 
instruction), it is directly moved to the instruction-fetch 
buffer. Using the instruction address bits of the tag, an 
instruction is fetched, and then a packet containing the 
operation code, operands, and destinations is passed on 
to the service section. The arithmetic and logic unit in 
the service section executes the operation code, and 
new tags are generated as dictated by the U-interpreter 
and the program mapping scheme being used. The 
result tokens are sent to the output buffer, which in turn 
sends them to other PEs through the communications 
network. If the destination PE on a token is the same as 
the source PE, a local path from the output buffer to the 
input register of a processing element is used to reduce 
external communications traffic. (The U-interpreter was 
developed at the University of California at Irvine, and 
consequently, the architecture of our PE is related to PE 
of the simulated machine of Gostelow and Thomas. 14) 
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System-Generated Tokens Color Registers 

There is a class of instructions (for example, a request 
to read I-structure memory or to reset ALU and other 
registers in PE) whose behavior does not f i t  the pattern 
described previously. The operation codes for these 
instructions are carried within system-generated tokens 
(d = 1); such tokens are routed directly to the service 
section because no instruction fetch is needed. A d = 1 
type of token contains the fol lowing fields: 

<PE number, d = 1, opcode, data> 

To understand how these tokens come about, consider 
again the high-level operation, append (x 0, i, v). The 
FORM-ADDRESS instruction calculates 
<PEnu m, local-pointer>, an I-structure pointer, and 
forwards it to the I-STORE instruction on a d = 0 type 
of token. Upon receiving a value v and <PEnum, 
local-pointer>, the I-STORE instruction produces the 
fol lowing token: 

<PE number = PEnu m, d = 1, opcode = I-WRITE, 
data = <local-pointer, v>> 

The PE with number PEnu m performs the write operation, 
and no further tokens are generated. The select 
operation similarly forms an address 
<PEnt m, local-pointer> passes it to an I-FETCH 
instruction, which produces the fol lowing token: 

<PE number = PE,u m, d = 1, opcode = I-READ, 
data = <local-pointer, destination-info >> 

in which destination-info is the tag, nt, and port of the 
token to be sent to the destination of the select. The 
contents of the I-structure location addressed by 
local-pointer is read by PEnu m, which produces a d = O 
type of token using the destination-info and the value 
read. Note that a separate section to hold deferred 
reads (requests to read an absent element of an 
I-structure) is provided to avoid blocking the service 
section (Figure 5). A generalization of the I-FETCH 
instruction is the IN-FETCH (indexed fetch) instruction. 
The IN-FETCH instruction has n destinations and 
generates n (d = 1) type of tokens for reading n 
successive locations starting with the input I-structure 
pointer. Each value read is sent to a different 
destination. 

We want to include the possibility of activating several 
code blocks (not necessarily distinct from each other) 
within the physical domain. This is achieved by 
assigning a different color to each activation. (The color, 
along with a completely logical entity called the physical 
domain name, represents the u part of an activity name.) 
Only a finite number of colors are allowed within a 
physical domain, and if all colors of a physical domain 
are being used, no new loop or procedure activation can 
be scheduled on it. Colors are released when a loop or 
procedure terminates. Sharing of code blocks within a 
physical domain is feasible, because all invocations carry 
different colors. 

There are several color registers in each PE. Each color 
register contains two sets of base-and-l imit  pointers: 
one set of pointers points to the base and limit of the 
code block associated with a color; the other set points 
to the activation record in local memory. Color registers 
are not necessary, but provide several benefits: 

1. They allow the instruction address in a tag to be 
shorter, because it is made relative to the program 
base pointer. (The program base pointer also 
reduces the number of forward pointers that have 
to be statically relocated.) 

2. The activation record pointer, together with the 
special addressing mode, avoids the need to 
circulate values that remain constant during a loop 
invocation. This reduces the token traffic as well 
as the number of tokens in the wait ing-matching 
buffer. 

IMPLEMENTATION OF PROCEDURES 

Whenever a procedure is invoked, memory for the 
activation record has to be allocated (conventional 
languages often use stack allocation for this purpose). It 
is preferable to allocate storage for an activation record 
in the physical domain of the invoked procedure to take 
full advantage of color registers. Id semantics require all 
input arguments to be present before a procedure can 
be invoked while Id loops, and many other languages 
relax this restriction. 1° The fol lowing scheme allows the 
compiler to implement either argument passing 
convention. Assume the compiler designates an input to 
a procedure as a trigger to call the scheduler, which in 
turn calls a memory manager. Let this trigger be known 
as t=. The scheduler will return a newly allocated 
activation record pointer, which can be used by the 
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invoking domain to store the arguments. It makes sense 
to distinguish between the allocation of a domain, and 
the startup of the associated procedure, which is done 
by having the compiler generate another trigger called t b 
to start procedure execution; however, it is not 
necessary for t ,  and t b to be different from each other 
or from a procedure input or a code block name. A 
trigger similar to t b, called t r, is also required by the 
invoked procedure to inform the invoking domain about 
the availability of results. 

The steps involved in a procedure call and return (Figure 
6) for the case when the size of the activation record 
can be determined at compile time are as fol lows: 

1. The INVOKE instruction is executed whenever the 
code block name and the trigger t become 
available. The INVOKE instruction sends the code 
block name, the size of the activation record, and 
the destination tag for the fol lowing DISTRIBUTE 
operator to the scheduler. The DISTRIBUTE 
instruction merely sends copies of its input to 
various destinations. 

2. The scheduler, either on its own or with some 
advice from the programmer/compiler, assigns a 
physical domain to the invoked procedure and 
performs four steps: 
a. It asks a manager to allocate an I-structure 

area in the new physical domain for the 
activation record of the called procedure and 
sends the resulting I-structure pointer to the 
DISTRIBUTE operator in the calling domain. 

b. It loads the code block on all PEs of the 
physical domain. The destination fields within 
the code block being loaded depend on the 
mapping scheme to be used for this invocation. 
If a copy of the code block is already present in 
the physical domain, this step is not performed. 
In general, code blocks reside permanently in 
secondary storage, and loading one of them can 
take significant time. 

c. It assigns a color and stores the pointers for the 
loaded code block and the allocated local 
memory area in the appropriate color register of 
each PE in the physical domain. 

d. It sends a token to read the first location of the 
activation record; this read will be delayed until 
the first location is actually written, because the 
activation record is an I-structure. The 
destination for the result of the read instruction 
is the IN-FETCH-CR (indexed fetch through 
color register) operator. (IN-FETCH-CR is the 
same as IN-FETCH, except that it uses the 

I-structure pointer from the color register.) By 
convention, trigger I b is written into the first 
location of the activation record; therefore, no 
new tokens in the activated procedure are 
generated until t b is written by the calling 
domain. 

3. As soon as the activation record pointer is 
received by the DISTRIBUTE instruction, it makes 
n + 2 copies of it: one for writ ing t b, n for writ ing 
n arguments in the activation record, and one for 
reading t r from the activation record. 

4. When indirectly triggered by lb, the IN-FETCH-CR 
instruction reads n values from the activation 
record and sends them to various instructions as 
dictated by code block Q. 

5. The invoked procedure write m results in an 
I-structure area (not necessarily different from a 
separate part of the activation record) and passes 
a pointer to this area to the calling domain through 
the t r location of the activation record. 

6. Since the writ ing of t controls when the results 
are actually available to the calling procedure, the 
generation of trigger t must be according to some 
policy. For example, if the results should be 
returned only after all are available, the compiler 
has to put in code to detect that all m writes have 
been completed. In general, the condition that 
results have been stored has to be detected to 
release a color. Releasing a color does not 
deallocate the activation record. 

7. In the invoking domain, a read request for t r is 
made as soon as the pointer for the activation 
record becomes available (step 3). This request is 
satisfied only after t r is actually produced. The 
destination for the t read results in the IN-FETCH 
instruction. 

. The IN-FETCH instruction in the invoking domain 
reads m results and sends them to operators as 
dictated by the invoking code. After all results 
have been read, the activation record is released. 

To store parameters in an activation record to be 
accessed as constants, it is possible that a copy of a 
part of the activation record may be needed by each PE 
in the physical domain. This copying wil l  depend upon 
the mapping scheme used, and it can be initiated by the 
scheduler. 
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FURTHER CONSIDERATIONS-PROCEDURES AND 
LOOPS 

There are two additional problems related with 
procedure (loop) implementation. Allocation of storage 
for data structures implemented as I-structures is often 
coupled with procedure (loop) invocation; deallocation of 
I-structures is associated with procedure (loop) 
termination. In general, an I-structure can be distributed 
across several PEs; hence, an additional memory 
manager with a global view of the machine is needed 
for efficient storage management. Because the 
scheduler must interact with this memory manager to 
minimize data movement between the invoking and 
invoked physical domains, the scheduler's response in 
returning an activation record pointer may be slow; 
however, the compiler has the flexibil ity of executing the 
INVOKE instruction early by using trigger t .  

The mechanism described works for the case in which 
there is no mismatch in the number of parameters 
passed by the calling expression and expected by the 
called procedure. The Id language permits such a 
mismatch in case of procedures (but not loops) and 
gives precise rules for dealing with the situation. The 
basic rule is to neglect extra parameters and to produce 
error values for those required but not supplied. A 
protocol for implementing such procedures forms first a 
structure of the arguments in the calling domain. Then, 
the scheduler in response to the INVOKE operation 
sends the number of expected parameters along with 
the activation record pointer. Some compiler-generated 
code can use this information to copy the appropriate 
number of arguments from the original argument 
structure into the activation record and store error values 
for missing arguments. A similar strategy is possible for 
returning results. 

The mechanisms described in this paper are sufficient 
for implementing procedure and loop invocations 
correctly without sacrificing any generality. An additional 
operator called D is used inside loops to increment the i 
field, which can cause problems if there is more than a 
fixed maximum number of iterations. Setting i to 0 after 
a fixed maximum number of iterations can produce 
duplicate activity names and incorrect results. One way 
to solve this problem is to allocate a new color if D 
needs to increment i beyond the maximum. The new 
color register will have exactly the same setting as the 
old color register. When no tokens with the old color 
remain (all tokens with i less than or equal to the fixed 
maximum iterations have been produced and 
consumed), the old color can be released. This 

allocation of a new color can be done quickly, because 
no resources besides a color register are needed. 

It is possible to have more than one scheduler in the 
machine by using a static allocation rule for dividing 
procedure activations among various schedulers. This 
has no impact on the hardware structure of our 
machine. For large numeric applications, however, 
scheduling to minimize data movement remains a 
significant research issue. 

CURRENT STATUS OF THE MACHINE 

We are in the process of designing the processing 
element that will be implemented using one or two 
custom VLSI MOS chips and commercially available 
memory boards and ALUs. We are planning to use a 
32-token wait ing-matching buffer for each PE and 
36-b i t  tags: 10 bits for the PE number, 3 bits for color, 
16 bits for an instruction address, and 7 bits for the 
iteration field. The validity of these sizes is to be 
determined by hardware and software simulation 
experiments. There are still design details to be worked 
out, regarding especially the interface with commercial 
chips. We expect to fabricate a processor element by 
December 1982. 

A compiler to translate Id language into Lisp language is 
currently in use. A compiler to translate Id language to 
data f low machine language is being written and should 
be in use by May 1981. 
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