Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, Massachusetts

Computation Structures Group Memo 209
Data Should Not Change: A Model for a Computer System!

by
Jack B. Dennis
July, 1981
Revised July 1985

Abstract: Our goal is to apply the concepts of functional programming and data flow
computer architecture to the design of general purpose computer systems. We envision
that such a computer system will support many Users working at personal terminals and
sharing information residing in a central system; the central system will hold all
information in on line storage and provide access to it through a universal referencing
mechanism using unique identifiers with uniform meaning for all users of the system. We
advocate basing the design of such computer systems on a formal interpreter that provides
an operational semantics of a data flow base language for the system, Furthermore, we
propose that such systems be designed so that data is created, used and abandoned, but that
data never changes. The base Janguage presented here is determinate acyclic data flow
program graphs with an apply operator, special operators 1o support early-completion
construction of records, and a guardian construct for monitoring nondeterminate access to
shared data.

Use of a data flow base language allows a large degree of concurrency in the execution
of computations. This is consonant with the necessary trend toward distributed and data
driven architectures for future computer systems.

1T he ideas discussed in this paper were developed with support from the Nationa! Science Foundation, the
U. S. Department of Energy. and the Advanced Rescarch Projects Agency of the U. S. Department of
Defense.

Introduction

The M. I. T. Computation Structures Group is applying the concepts of functional
programming and data flow computer architecture to the design of general purpose
computer systems. In the Vim project we are building an experimental computer system
specified by a base language derived from data flow program graphs.

The Vim project is a continuation of work reported in [12] and [11], and has its origins
in the work on "capabilities” 1 published jointly with my first doctoral student, Earl Van
Horn {10]. The goal of our work on capabilities was to present a system model for a kind of
ideal multiprogrammed computer system. Such a system would serve many users in a way
that permitted sharing the products of their individual programming efforts without
sacrificing the principles of program modularity—the ability to build program units which

can be combined to form higher units, which in turn can be further combined.

Despite the passing of years, no practical computer system has achieved our original
goals. This is not to say there have been no close calls. The essential requirements for
modular programming in the context of one sequential process operating within a very
large address space were developed and implemented in Muitics [7, 5]. However, because
each process in Multics runs in its own separate address space, programmers are obliged to
go outside the coherent support of the virtual address space to share information among
several processes or to coordinate concurrent activities of processes. The Unix operating
system, although suffering from the address space limitations of the DEC PDP-11,
introduced a very significant form of modular program construction using pipes [27].
Among the several systems designed around the concept of capabilities [19, 35, 32], | think
the Chicago Magnum machine [19] was closest to realizing our original objectives, but the
project was never completed. More recently, the IBM System 38[23] has taken the
courageous step of assigning a unique identifier to every object residing in the system and
requiring that all accesses to an object be by means of its unique code. Unfortunately, in
System 38 this beautiful idea is hidden under so many intricate facilities that it is difficult to

discover whether any reasonable user-related goal has been achieved.

Let us speculate why the goals have been so hard to reach. From the user’s viewpoint
the failings of systems such as Multics and System 38 have been their inefficiency and the

complenity of the user interface.

I suspuct that the complexity exists because the designers did not have in mind a
complete. clean and simple model for the facilities to be provided to the user. Rather,
cerain characteristics believed to be desirable were provided by making minimal changes
10 the conventional structure of computer hardware. Since the ideal behavior of the system
was never carcfully formulated, there is a mismatch—the semantic gap—with the actual

implementation. The user encounters complexity when a needed feature is affected by the

gap.

I suspect the efficiency problems arise because simple variants of conventional
computer architecture do not suffice to efficiently support the desired system behavior.
Radically different structures may yield a superior result. Perhaps the mechanisms needed
{0 implement a significantly improved user interface arc at odds with conventional

sequential instruction execution.

In a paper for the [FIP Congress 1968 [11]. | argued that achieving "programming
generality"—meaning general support for modular programming— in a computer system
with a memory hicrarchy spanning orders of magnitude in access time requires exploiting
fine grain parallelism to achieve efficient operation. My reasoning starts from two
assumptions concerning memory hierarchy and modular programming:

« Large application programs will be required by economics to operate with their
information structures distributed among the levels of a hierarchical memory.

« In the construction of a large program, many parts of the program are written
independently and in a way that the author of one module need not know the
internal implementation details of other modules.

I expect the first assumption is agreeable to most readers in spite of the declining cost of
memory chips. The sccond is the basis of modular software and is essential, in my view, to

any significant progress in our ability to write large programs with less effort.

Our first conclusion is:

« The compuier system (hardware and operating system), rather than the designer
or user of a program module, must decide where information should reside

within the memory hierarchy.

The argument is that if the designer of one module is to make storage allocation decisions
for another module, the first would have to know implementation details of the second, in
violation of the requirements of modular programming. The next conclusion follows
immediatcly and is generally accepted:

« The referencing of information structures by a program module must be by

means of a virtual memory addressing mechanism.

The next point asserts the futility of attempting to anticipate the behavior of programs
through any sort of analysis at execution time:

o Information can be moved toward more rapidly accessible storage in the

memory hierarchy only on demand, that is, upon being referenced by an active
computation.

The next step is probably the most controversial:

« The units of storage allocation should be the information units on which the
primitive operations of the computer system ar€ carried out, that is,
instructions, scalar values, and records.

The argument in favor of this point is that choosing a larger unit of information movement
will unavoidably result in moving to higher levels of memory information not being
referenced by active computations. The cost is unnecessary information transfer and
wasted memory. Arguments against generally assume present day hardware structures that
favor the transmission of large blocks of data between memory levels. The choice of a small
allocation unit can be made practical by new designs of auxiliary storage systems and new
ways of coupling storage systems to the processing hardware. Such storage systems should
be able to handle hundreds or even thousands of concurrent retrieval requests.

The conclusion is that parallelism should be exploited at the detailed level to provide a
continuing large supply of concurrent retrieval requests to the storage system.
« Exploitation of fine-grain parallelism should be done to support modular

programming with high efficiency in computer systems having a hierarchical
memory.

Language-Based System Design

Dennis and Van Horn wrote their paper using the language and concepts of computer
systems: processes, multiprogramming, segments of address space, etc. This was natural
since the ideas grew out of their experience in working with the team of MIT faculty and

staff that was developing Multics [9, 8.

In 1964 1 decided to teach and do independent basic research rather than participate in
the project to implement Multics. I realized that the interface a computer system presents
to its users should not be described in "computer systems” terms, but rather in terms of
concepts and notations appropriate for a high level programming language. To proceed
otherwise requires description at several levels and fails to offer the coherence and clarity
of a single uniform notation. 'The programming language should be so complete that users
may express all elements of a computation concisely. It should not be necessary for the
programmer to depart from the notation of a high level language to express any
requirement of the application, be it a text editor or an airline reservation system. Thus
there should be no independent "data base" facility, or facility for control of concurrent
"tasks” invoked by means of "system calls”, or system library procedures that, in turn,
make such calls or, even worse, act on the hardware directly via machine instructions. To
resort to such means leads to confusion from disparate representations, and the use of

diverse mechanisms for the same objectives.

In language-based design a base language provides a standard model that separates
issues of application programming from problems of computer system implementation. By
computer system we now mean the combination of hardware, firmware, and software that
realizes the base language. The challenge to the system implementor is to build the best
realization of the specified base language within the state of the art. In the absence of the
discipline of language-based design, system implementors generally build upward from the
primitive facilities of some fixed hardware base, with no assurance that desired properties
at the user interface are even possible to achieve, let alone realize with acceptable

efficiency.

In this paper our objective is to sketch a specific base language proposal that addresses
the expressive needs of a broad and general class of computer applications, Our design is

built on concepts from functional programming [4] and data flow computation [13, 3},
extended to support input-output programming using streams, and to provide for
managing transactions on data bases. We believe this base language could serve as the

semantic model for a successful new class of computer systems.

Embodied in our base language proposal is a radical hypothesis: no data ever changes.
In suggesting this, we do not mean that data is not created during computation, or that data
does not eventually disappear. Rather, the collection of information held by the envisioned
computer system is continually augmented by the creation of new information. At the same
time, other information becomes inaccessible because all activities in the system have
relinquished their rights to have access to it. This information is garbage and the storage it

occupies may be made available to hold newly created information.

If data does not change, then some nasty problems in computer systems design become

much simpler:

1. The problem of maintaining consistency of files in a distributed system is
considered important and troublesome. 1f data never changes, there is no
distributed update problem. In the proposed base language “updates” have the
effect of creating a new version of an object and are handled by a guardian
associated with the object.

2. Protection systems distinguish permission to read and permission to write an
object. If data does not change, no writing is done and write permission is
irrelevant. A very simple concept of protection is possible: if a program
module does not contain an object and is not given the object as an input, it
does not have access to that object. This requires no specific protection-related
features in the user’s programming language.

3. Critical sections are used to protect resources containing objects on which write
actions may be performed. If no writing is done, there is no critical section
problem. In our proposal the role of critical sections is assumed by the
NewNode instruction which performs an atomic substitution, and is used only
in the implementation of guardians.

We believe it is feasible to build practical computer systems in harmony with these

principles. The sort of computer system envisioned would have these characteristics:

1.1t supports many users working at personal terminals and sharing

information—data and procedural—residing in a central system,

2. The central systen: includes a storage hicrarchy arranged so all information is
held online and information currently in use is quickly accessible.

3. All information held online is accessible through a universal referencing
mechanism using unique identifiers with uniform meaning for all users.

4. No data ever changes. That is, each unique identifier represents a mathematical
value (perhaps a large data base, for example) that does not change during
system operation. A “changing” data base is represented by a sequence of fixed
"versions”, each of which is an immutable object in the storage system.

5. Extensive concurrency of operation at the instruction level is realized by use of
a data-driven instruction execution scheme.

6. The "operating system” is simply a "shell” program that handles user
authentication, resource allocation, and accounting.

Base Language Model

For the discussion in this paper we will use data flow program graphs [13] as the base

language representation of program modules. A more formal operational semantics for a

similar program graph model is outlined in [17].

As it is convenient to use a conventional textual notation in presenting program

examples, we will also use an ad hoc dialect of the functional programming language VAL

11, 31] as an illustrative source language. In this form, a program for the greatest common

divisor (GCD) of two natural numbers is the following.

function GCD (m, n: integer) returns (integer)
ifm = nthenn
elseif m < n then GCD(m,n-m)
else GCD(m-n,n)
endif
endfun

The language elements illustrated in this example are the conditional expression, recursion,

and operations and tests on integers, The language we consider here does not include any

iteration construct, for we prefer to express iterative computations as recursive function

definitions. ®

Fig. 1. Data flow program graph for the GCD function.
The tokens represent a stage in the evaluation of GCIX(9, 15).

The data flow program graph shown in Fig. 1 is a base language representation of the
GCD program. The status of computations in the base language model is represented by
using a copy of the program graph for each activation of the corresponding function. How

far computation has progressed is indicated by the presence of tokens carrying information
values on certain arcs of the program graph. The figure shows a stage in evaluating the

outermost invocation in GCD (9, 15).

The model moves from one configuration to another by the execution or "firing" of
enabled nodes (also called actors or instructions) of a program graph copy. A node of a
data flow program graph is "enabled" if tokens are present on each input arc. An enabled
node is eventually "fired", removing tokens from its input arcs and placing a token carrying

the computed result value on each output arc,

The tokens on a program graph belong to a single "activation™ of the function the graph
represents. Since the graph is acyclic, it follows that there can never be more than one
token on any arc. Execution of the apply actor is performed by creating a copy of the
program graph that represents the function argument of apply and placing a token carfying ,
the operand value on the input arc of the program graph copy. When a token appears on
the output arc of a program graph instance, the value it carries is placed on the output arc
of the appropriate apply actor of the calling program graph, and the copy of the applied
graph is abandoned. Further on we will see that the graph copy must be retained because

activity may continue after the return instruction has been executed.

Streams

The language elements introduced so far allow us to write only programs which receive
inputs, compute, then produce output. It is not possible to represent programs that overlap
computation with input or output, or that process input and output concurrently. By
adding streams of data as a class of data types usable in writing programs, programmers
may readily express computations in a way that allows input/output overlap and

producer/consumer schemes of computation [33].

A stream is a sequence of values in which the individual values are all of the same type.
A stream may be an unending sequence. The basic operations for streams are cons, first,

rest and empty, which satisfy this relationship:

if empty (s)
thens = [}
else s = cons (first (s), rest (s))

As an example of programming with streams, we show a module that receives a stream of
integers and separates them into two result streams containing the even elements and the

odd elements of the input stream, respectively:

function Distribute { InStream: stream [integer])
returns (stream [integer], stream [integer])
let EvenStream, OddStream : = Distribute (rest (InStream));
Flement ;= first (InStream);
in
if even (Element)
then cons (Element, EvenStream), OddStream
else EvenStream, cons (Element, OddStream)
endlet
endfun

How should we represent streams and stream operations in the base language, that is, in
terms of tokens, program graphs and firing rules? If we represent a stream by the sequence
of tokens successively present on an arc of a program graph, then our observation that at
most one token ever occupies an arc in any instance of a program graph'would not hold
and it would be difficult to design execution rules that ensure safety (no overwriting of
operands) and liveness (freedom from deadlock). One alternative is to distinguish the
tokens by means of labels, as Arvind has proposed in the "unraveling interpreter” [3). For
our base language, we have chosen to represent streams by “early completion” data

structures, as discussed below,

Data Structures

We have found that use of "early completion” data structures solves certain problems in
expressing concurrent computation: processing streams of data and implementing data
base guardians. The ideas presented here are based on [1S, 33, 16] and have drawn
inspiration from [24, 25, 20, 21, 22, 26}.

A general purpose language should support a variety of data structures, such as arrays,

10

lists and records. For our present purposes, it will suffice to illustrate the principles using
binary trees. These data structures are simple in their properties, yet very general. In fact,
binary trees, in the form of list structures, arc used as a universal form of data in the

programming language Lisp.-
From the programmer’s viewpoint, binary trees form a simple recursive record type
type Tree = record [L, R: Value]

where the Value type is a union type containing binary trees, as well as the scalar types of
the base language. The basic operations on binary trees are Create, which forms a node
from two element values, Left and Right which select the left and right elements of a tree,
and the test Tree where Tree (x) = true if the value x is a tree. These operations satisfy

if Tree (t) then t = Create (Lefi(t), Right (t))

We imagine that a token on an arc of a program graph can just as well denote a binary tree
(of arbitrary extent) as a scalar vatue, and this is the image we wish users of the base

language to have for understanding the meaning of programs,

However, one of our objectives is to allow expression of stream-oriented computations
such that consumption of a stream by one module may proceed concurrently with
production of the stream by another. If we represent streams by binary trees, this means
that it must be possible to pass the tree on to a user module before the tree has been
completely constructed. We include exactly this feature in our base language by supporting
what we call "early completion” binary trees. The early completion idea is closely related to
concepts of eager and lazy evaluation that have been widely studied [20]. Here, we regard
the concepts as an implementation mechanism that must be designed so that the desired
properties of the user language—the properties of streams—are achieved.

To discuss early completion binary trees, we augment our semantic model for base
language programs as follows. To the collection of program graph instances we add a heap,
a multi-rooted, acyclic, directed graph in which each node is either

1. a teaf node with an associated scalar value;

11

2. a node with out-degree two and labels L and R on the out-going arcs.

An example of a heap is shown in Fig. 2a. Note that each node in the heap either represents
an associated scalar value, or represents a binary tree whose L- and R- elements are the
values represented by the nodes reached over the corresponding arcs leaving the given

node. The values represented by nodes a, 8 and y of the heap are shown in Fig. 2b.

) heap example W) values reygresented

o

5L | e R
SRR

Fig. 2. Nlustration of values represented in a heap.

One further type of heap node is required to implement "early completion” structures:
a queue to hold requests for elements of binary trees yet to be constructed. Such a request
occurs when a sefect actor (Left or Right) attempts to access a node for which no value has
been constructed. The elements held by a queue are called fargets and identify the
instruction instances to which the node value must be sent once it becomes available.

Each target consists of three parts: a unique identifier of the program graph instance in
which the target instruction resides; the index number of the target instruction within the
program graph; and a small integer that specifies which operand of the target instruction is

being supplied.
The base language instructions used in implementing binary trees are:
MkNode, MKLft, MkRht, Left, Right

In Fig. 3, the effect of executing each of these instructions is defined by transition rules for
the graph/heap model. (The rules for MkRht and Right are analogous to those given for

12

MKLIt and Left) A binary trec is represented in the heap by a node with left and right
elements, each of whnch is either a value or a queue. An element is a value once the
component of the binary tree has been constructed and made part of the heap by execution
of 1 MKLIft or MkRAt instruction, An element is a queuc from the moment its parent node
is created by a MkNode instruction, until the queue is replaced by a value. [nitially, the
queues are empty. On each execution of a Left or Right instruction for which the selected
component is a value, that value is the result: if the selected component is a queue, the

targets of the instruction (as determined by its output arcs) are entered in the queue.

56 >

ooy tiNade | bebre

oS MiNode | E—r‘t"\‘ S| [eett E <

T (] E;E.g__; i 1;5@;_._54

CRIE S S B CU B o B
Wi LIt o .. Lebt t.--l- o

“ I'ﬁ
Jabke - é}_ﬁ ,:' '!- oirtec [Celt] L r
'.3 @ t 6 “-\-i

Fig. 3. Base language transitions for early completion binary trees.

Fig. 4 shows the implementation of the binary tree operations in terms of base language

instructions.

The reader will note that, under the assumptions of our model and with only the
instructions introduced so far, we have adhered to our principle that no data changes: there
is no way of altering the value of any element of a binary tree in a way that can affect the

result computed by a program. An important consequence is that there is no way to build a

13

O) Lef# b) Rx'ghf c_) Create |
t + x 9
I [MkNode ;1
Lel:"t‘(t) | Rfjhﬂb) | (Ml | MRl
Create (x,4)

Fig. 4. Base language implementation of binary tree operations.

cycle in the heap. The acyclic property of the heap is secure and a reference count
implementation of storage reclamation may be used [14]. We find this attractive as it avoids
interruptions of computation and appears to permit more efficient implementation of the

heap on a memory hierarchy.

Fig. 5 is a program graph which is a possible translation of the Distribute function into
base language. The small open circles at each MkNode instruction indicate that arrival of a

token supplies a necessary signal for enabling each instruction.

Records

Records as used in programming languages are easily represented by binary trees: the
translator maps the record field names into sequences on the alphabet { L, R } in a manner
that is consistent for each record type. The record constructor operation builds the
appropriate binary tree, and record field selection is done by the appropriate series of Left
and Right instructions. Note that early completion of our record constructor operation
follows from our implementation of binary trees. Therefore we use records freely in our
program examples, This also provides a useful interpretation of functions that accept

multiple arguments or yield multiple results, We suppose that a multi-argument function is

F
¢ lo—~
Mk Rht
retuvn

Fig. 5. The Distribute function in base language.

implemented as a program graph that accepts as its only input a record with one field for
each argument of the function. Similarly, the program graph for a function with multiple
results produces a record of result values. Assuming early completion for the record
constructor, function evaluation will commence with the arrival of any argument value, and

a result may be sent to its target instruction before all results of function application have

been generated.

15

Data Base Transactions

Qur base language would not be complete without provision for expressing transactions
on data bases. Data base transactions are a form of nondeterminate computation in that the
relative arrival time of independent requests for transactions generally affects the results.
Of two agents requesting the last seat on an airline flight, one will win and the other lose,
but cither possible outcome is cotrect. Programs having this sort of behavior cannot be
written using the source language elements introduced so far. Only programs that

functionally map input historics into output histories can be expressed.

To express nondeterminate computations, use of the nondeterminate merge operation
has been suggested [6, 15, 28, 29]. This operation produces an output stream in which the
elements of two (or more) input streams are arbitrarily interleaved. Here we suggest using

a form of the manager construct described by Arvind {2, 3].

A guardian is syntactically similar to a function, but its single argument may be thought
of as a Command that the guardian perform some specific transaction. The single result
produced by a guardian may be thought of as its Answer to the command. The body of the
guardian is an expression denoting a function that maps a stream of Commands into a
stream of Answers. Each invocation of the guardian presents a value of type Command to
its body. A group of concurrent invocations creates many Command values that are merged
into a stream of Commands which is the input stream of the body expression, Operation of
the body produces a stream of Answers which is matched with the Command stream to

determine the invocation for which each Answer is the result value.

In the following we show how a guardian can be written for a simple data base and how
its implementation in the base language can support concurrency of access and update
operations. As our example, we use the integer set data type with two operations: Search
and Insert. These are representative of the access and update operations, respectively, that
would be implemented for a more elaborate data base. We represent a set of integers as a

chain of records using a distinguished union type [1, 30).

16

type Set = oneof [
empty: null;
nonempty: record |
element; integer;
rest: Set]]

We assume the list is maintained so the integers are kept in increasing order. This

representation permits us to show how the operations would work in a hierarchical

structure.

Using the tagease construct of VAL, which selects over the alternatives of a oneof type,

the Search and Insert operations may be written as follows:

function Search (S: Set; n: integer) returns { boolean)
tagcase S
tag empty: false;
tag nonempty:
if S.elentent = n
then true
elscif S.element > n
then false
else Search (S.rest, n)
endif
endtag
endfun

17

function Insert (S: Set; n: integer) returns (Set)
tagcase S
tag empty:
make Set [nonempty: record [
element: n; ‘
rest: S]];
tag nonempty:
if S.element = n then S
elseif S.element > n then -
make Set [nonempty: record [
element: n;
rest: S]]
else
make Set [nonempty: record [
element: S.element;
rest: Insert (S.rest, n)]]
endif
endtag
endfun

Each of these functions recurses down the chain of records until it succeeds or fails. Base

language program graphs for Search and Insert are shown in Figs. 6 and 7.

Our data base, an integer set, will be held by a guardian whose Commands and Answers

are of types defined as follows:

type Command = oneol |
search: integer;
insert: integer]

type Answer = oneof |
search; boolean;
insert; null |

The guardian for our data base is programmed as in Fig. 8.

Now let us look at the representation of the guardian in the base language. As before,
streams are represented as early completion binary trees and the Transact function has a

18

|

Fig. 6. The Search function in base language.

19

n
case. case
empty I non

|

&:1 |
|

rest | cloment [

Fig. 7. The Insert function in base language.

20

guardian [ntSet (Cmd:; Command) returns (Answer)
function Transact (
CmdStream: stream[Commandj;
BeforeData: Set)
returns (stream [Answer])
let
C: Command ;= first (CmdStream);
A: Answer,
AfterData: Set : =
tagcase C
tag search:
make Answer [search: Search (BeforeData, C)],
BeforeData;
tag insert:
make Answer [insert: nil],
Insert (BeforeData, C);
endtag;
AfterStream: stream [Answer]
.= Transact (rest (CmdStream), AfterData);
in
cons (A, AfterStream)
endlet
endfun
let InitData ;= make Set [empty: nil];
AnsStream: stream [Answer]
;= Transact (Cind, InitData);
in
AnsStream
endlet
endguard

Fig. 8. Textual coding of the IntSet guardian.

program graph implementation (Fig. 9) similar to that given earlier for the Distribute

function.

The implementation problem for the guardian reduces to that of receiving Commands
asynchronously from concurrently operating activities and forming them into a stream for

input to the Transact function. How this may be done is illustrated in Fig. 10. A scparate

e e
Ruaht Left
(== —
‘ CALS \
Seareh muﬁr”
C]
rest(Coal Strecom
Sonrchh
wopdy | _
S
[search wsaet
make Answee malce Answer
k! 4 '
L AftesDato,
A ———p Tm;u‘tl

. A>——e Mi d Stream
\ nkL%l Ak Rt

A ns Stream

rebuen

Fig. 9. The Transact function in base language.

22

copy of the program graph IntSet (Fig. 10a) is created for each invocation of the guardian.
The body of the guardian is implemented by the program graph shown in Fig. 10b, which
is activated exactly once by a token denoting the stream of tagged Commands (Entries) to
be processed by the Transact function. Initially, this stream is empty. For each invocation

of IntSet a record of the form

type Entry = record [
argument; Command;
return; Target]

is created and appended to the stream. The return field of an Entry is a Target which
specifies the instruction to which the response to the Command is to be sent. This process is
illustrated in Fig. 11 which shows successive states of the heap for one invocation of IntSet.
[nitially, the guard holds the unique identifier a of the empty tail of the stream of
command entries. In Fig. 11a, the MkNode instruction has obtained the unique identifier
B for the new (empty) tail of the stream and the command entry record e2 is waiting at the
MKL{t instruction. In the next step (Fig. 11b) the NewNode instruction performs the key
operation of the proposed implementation. It substitutes S for « in the guard and passes a
to its successors. The process is completed by execution of the MKL{t instruction which
places the entry record e2 in the stream as the L-component of node «, and the MkRht

instruction which installs the R-link from node a to node 8.

In the presence of many concurrent invocations of IntSet there may be many
concurrent executions of the NewNode instruction, all referring to the same guard. By
making executions of the NewNode instruction atomic events, we can ensure that the
stream of Commands is constructed to represent some specific order of arrival of
Commands at the IntSet guardian.

Now let us observe what happens when many Search and Insert commands are sent to
IntSet concurrently. As fast as commands arrive, [ntSet appends them to the stream being
processed by Transact., There is not likely to be a significant bottleneck here since the

limiting time per transaction is just the execution time of the NewNode instruction.

Next consider how Transact will process the stream of commands. Immediately after

treom [Command) |

Travsact

p—sveam [Tary]

Fig. 10. Base language implementaticn of the IntSet guardian.

initiating a search command Transact may process further commands because even a
subsequent Insert command will not affect the data seen by the Search function (data never
changes!). After initiating an insert command, Transact wiill wait only a few instruction
times before processing subsequent commands because the Insert"functjon returns its Set

result (an carly completion struciure) without waiting for inner activations of Insert to

complete. Thus many Search commands and even many Insert commands can be active at

once. The essential synchronization between Insert commands and crowds of Search
commands is accomplished by the queuing mechanism built into the binary tree

implementation.

In general, a significant data base will take the form of a broad tree structure. We have
sketched how many access and update transactions may be processed concurrently over the
depth of the tree. In addition it is desirable to allow concurrency of transactions that
involve ncn-overlapping subtrees. In the case of access transactions, this presents no

problem. To permit concurrent update of independent subtrees, two approaches are

24

(a)

ee

Fig. 11. Base language transitions illustrating use
of the NewNode instruction.

possible within the framework we have presented. One way is for the data base to be a large
record in which each independent subtree is a separate component. “Updating” a subtree
amounts to creating a new record in which a new subtree is substituted at the appropriate
field. If the record is an early completion record, the processing of further transactions,
including updates to other subtrees, may begin once processing of the first update has
begun and its (incomplete) result returned. A second approach is to treat the independent
subtrees as distinct data bases, that is, let the data base be a record in which each

component is a guardian that holds the current version of one independent subtree.

25

Sharing and Protection

Now let us consider issues of sharing and protection that arise because our computer
system will have many users who wish to work cooperatively, but also wish to be protected
from the consequences of accidental or deliberate interference from other users.

R

We adopt the idea that if information owned by user A is made available to user B and
user B decides to pass it on to user C, there is no point in attempting to prevent or block
such action. In any case, once B has the ability to read the information, B can construct a
copy of it to pass on to C as though B had created it. If the information is a function and B
is given the ability to invoke it and can use it as a module in building systems to be shared,
then B may pass on the ability to use the function to anyone he chooses. As in the real
society outside, security of data in a computer system ultimately rests on trusting
relationships between people, and the prospect of punishment if one is discovered to have
used or passed on information unethically. (Here we are not discussing systems that enforce

constraints on access to "classified” information.)

Here we consider how, in our base language model, we can arrange for user A to
authorize some user B access to a subsystem constructed by user A (an income tax adviser
program, for example). An illustration of the envisioned organization of information in the

computer system is shown in Fig. 12, Our assumptions:

1. There is a root node of the heap which is accessible to any activation by
performing the instruction Root. From the root any activation may access the
following information structures;

|
a. Whols Directory: A directory containing information about users,
maintained and certified by the computer system Manager.

b. Subsystem Directory. An information structure in which each entry has
two components: a "help” file giving information about the subsystem
and its use; and an entry function which is called by any user desiring to
make use of the subsystem.

2. Fach user has a User Directory, a private information structure to which access
is given when a person logs onto the system as the user. User directories are
inaccessible from the root.

26

3. The Whols Directory and the Subsystem Directory are held by guardians
which accept access commands from any user but accept update commands
only from named uscrs authorized by the Manager to install new information,

4. An activation of a function is owned by the owner of the function activation
from which it was created. Thus each user of the system has a well defined tree
of activations in any snapshot of the system. (Notc carefully that our concept of
ownership for this discussion applics only to activations, and not to data
structures or program modules {(functions).)

5. There is an instruction Owner which yields the name of the owner of the
function activation in which the instruction is executed.

The entry function can determine the guaranteed identity of the caller by using the
Owner instruction, and can request and check a password from the caller, if desired, before
returning the requested subsystern to the caller. The caller may then use the subsystem as
though it were an entry in his own directory.

T root Y Usew A
‘ A

|

[imu-a\ wn ¢)

User

Drves
LA B I]

““"QJ Gbamcin)

utq
|
Hedy &m.%“ Tare Hq?
FL'.L) [J 4!

(o thew M‘J\:@

Fig.12. Suggested organization of information in the
envisioned computer system.

21

Experimental Realization

In the Computation Structures Group of the MIT Laboratory for Computer Science we
have begun construction of an experimental computer system according to the principles
presented here. The system will eventually be implemented by writing microcode for an
interpreter of the base language, as outlined in an earlier paper [17]. Some further details
of the proposed implementation have been described [18]. At present a pyg!iininary
version of the interpreter has been implemented which runs on a commercial Lisp

machine.

We imagine that these ideas might eventually be re:alizled on a larger scale in the
following form: One or more central system configurations would hold the bulk of
infonnatidril storage and perform all intensive numerical computations, at least. The
architecture of each of the central systems would be patterned after the work of Kén Weng
[16, 34]. It is possible to design such a distributed system so it is coherent;' thzif is, it is
functionally equivalent to a single central system of larger size.

Users would communicate with the system from conventional terminals or from
personal computers or workstations. In the latter case, the workstation may be designed so
that its memory acts as a cache holding those portions of the centrally stored informatiox}
relevant to the current activities of the user. Information created at the terminal is
immediately sent to the central system for safe keeping and potential sharing with other
users. So long as no guardian is sent to a remote terminal, information at the wo‘rkstation is
never inaccurate -- there is no distributed update problem. Information in the terminal’s
memory may always be discarded in favor of new or more pertinent information without

concern that any data could be lost.

References

1. Ackerman, W. B. and Dennis, J. B. VAL -- A Value - Oriented Algorithmic Language:
Preliminary Reference Manual. Technical Report TR-218, Laboratory for Computer
Science, MIT, Cambridge, MA 02139, June, 1979.

2. Arvind, Gostelow, K. P, and Plouffe, W. "Indeterminacy, Monitors and Dataflow".
Operating Systems Review 11, 5 (November 1977), 159-169. Special issue: "Proceedings of
the Sixth ACM Symposium on Operating Systems Principles”,

28

3. Anvind. Gostelow, K. P., and Ploutle, W. An Asvnchronous Programming Language
and Computing Machine, Technical Report 114a, Department of Information and
Computer Science, University of California, Irvine, California, December, 1978,

4. Backus. J. "Can Programming Be Liberated from the von Neumann Style? A
Functional Stvle and Its Algebra of Programs™. Communications of the ACM 21, 8 (August
1978), 613-641.

5. Bensoussan, A, Clingen, C. T.. and Daley. R. C. The Mulucs Virtual Memory.
Proceedings of the Second Symposium on Operating System Principles, October, 1969, pp.
30-42.

6. Brock, J. D.. and Ackerman, W. B. An Anomaly in the Specifications of
Nondeterminate Packet Systems. In Formal Description of Programming Concepts,
Lecture Notes in Computer Science 107, Springer-Verlag, Berlin, Heidelberg, New York,
1981, pp. 252-259.

7. Corbato, F. J. Multics -- the first seven years, AFIPS Conference Proceedings, 1972,
pp. 571-583. '

8. Daley, R. C., and Dennis, 1. B. "Virtual memory, processes and sharing in Multics”.
Communications of the ACM 11,5 (May 1968), 306-312.

9. Dennis, J. B. "Scgmentation and the design of multiprogrammed computer systems”,
Journal of the ACM 12.3(October 1965}, 589-602.

10. Dennis, J. B, and van Horn, E. C. "Programming Semantics for Multiprogrammed
Computations”. Communications of the ACM 9, 3 (March 1966), 143-135.

11. Dennis, J. B. Programming Generality, Parallelism and Computer Architecture. In
Information Processing 68,

North-Holland Publishing Company, Amsterdam, 1969. The argument was presented in
the conference talk and appears in the compiete paper: Compulation Structures Group
Memo 32, Laboratory for Computer Science, MIT, Cambridge, MA 02139, 1968.

12. Dennis, J. B. On the Design and Specification of a Common Base Language.
Proceedings of the Symposium on Computers and Automata, Polytechnic Institute of
Brooklyn, New York, April, 1971.

13. Dennis, J. B. First Version of a Data Flow Procedure Language. In Programming
Symposium: Proceedings, Colloque sur la Programmation, B. Robinet, Ed., Lecture Notes
in Computer Science 19, Springer-Verlag, 1974, pp. 362-376.

14. Dennis, J. B. On Storage Management for Advance Programming Languages. Memo
109, Computation Structures Group, Laboratory for Computer Science, MIT, Cambridge,
MA 02139, November, 1974,

29

15. Dennis, J. B. A Language Design for Structured Concurrency. In Design and
Implementation of Programming Languages: Proceedings of a DoD) Sponsored Workshop,
J. H. Williams and D. A. Fisher, Eds., Lecture Notes in Computer Science 54, Springer-
Verlag, 1977,

16. Dennis, J. B., and K.-S. Weng. An Abstract Implementation for Concurrent
Computation with Streams. Proceedings of the 1979 International Conference on Parallel

Processing, August, 1979, pp. 35-45.

17. Dennis, J. B. An Operationat Semantics for a Language with Early Completion Data
Structures. In Formal Description of Programming Concepts,
Lecture Notes in Computer Science 107, Springer-Verlag, Berlin, Heidelberg, New York,

1981, pp. 260-263.

18. Dennis, J. B., Stoy, J.E., and Guharoy, B. Vim: An experimental multiuser system
supporting functional programming. Proceedings of the International Workshop on High-
Level Computer Architecture 84, Association for Computing Machinery, May, 1984, pp.
1.1-1.9. '

19. Fabry, R. S. "Capability-based addressing”. Communications of the ACM 17,7 (July
1974), 403-412.

20. Friedman, D. P., and Wise, D. S. CONS Should Not Evaluate its Arguments. [n
Automata, Languages, and Programming, University Press, Edinburgh, 1976, pp. 257-281.

21. Friedman, D. P., and Wise, D. S. Applicative Multiprogramming. Technical Report
72, Computer Science Department, Indiana University, Bloomington, Indiana, December,
1978.

22. Hewitt, C. E., Attardi, G., and Lieberman, H. Specifying and Proving Properties of
Guardians for Distributed Systems. In Semantics of Concurrent Computation, G. Kahn,
Ed., Lecture Notes in Computer Science 70, Springer-Verlag, Berlin, Heidelberg, New
York, 1979, pp. 316-336.

23. IBM. [BM System/38 Technical Developments. 1BM General Systems Division, 1978.

24. Kahn, G. The Semantics of a Simple Language for Parallel Programming.
Information Processing 74: Proceeding of the IFIP Congress 74, 1974, pp. 471-475.

25. Kahn, G., and MacQueen, D. Coroutines and Networks of Parallel Processes.
Information Processing 77: Proceedings of IFIP Congress 77, August, 1977, pp. 993-998.

26. Keller, R., Lindstrom, G., and Patil, S. A loosely-coupled applicative multi-processing
system. Proceedings of the National Computer Conference, June, 1979, pp. 613-622.

30

27. Knowlton, W., et al. "Papers on the UNIX Operating System". Bell System Technical
Journal 57, 6 (July-August 1978).

28. Kosinski, P. R. A Straightforward Denotational Semantics for Non-Determinate Data
Flow Programs. Conference Record of the Fifth ACM Symposium on Principles of
Programming Languages, January, 1978, pp. 214-221.

29. Kosinski, P. R. Denotational Semantics of Determinate and Non-Determinate Data
Flow Programs. Technical Report TR-220, Laboratory for Computer Science, MIT,
Cambridge, MA 02139, May, 1979.

30. Liskov, B. H. etal.. CLU Reference Manual, Lecture Notes in Computer Science 114,
Springer-Verlag, Berlin, Heidelberg, New York, 1981.

31. McGraw, 1. R. "The VAL language: Decription and Analysis". Transactions on
Programming Languages and Systems 4, 1 (January 1982), 44-82.

32. Needham, R. M., and R. D. H. Walker. The Cambridge CAP computer and its
protection system. Proceedings of the 6th ACM Symposium on Operating Systems
Principles, November, 1977, pp. 1-10.

33. Weng, K.-S. Stream-Oriented Computation in Recursive Data Flow Schemas.
Technical Memo TM-68, Laboratory for Computer Science, MIT, Cambridge, MA 02139,
October, 1975.

34, Weng, K.-S. An Abstract Implementation for a Generalized Data Flow Language.
Technical Report TR-228, Laboratory for Computer Science, MIT, Cambridge, MA 02139,
1979.

35. Wulf, W, et al. "HYDRA: The kernel of a multiprocessor operating system.”.
Communications of the ACM 17, 6 (June 1974), 337-345.

definitions. ®

Fig. 1. Data flow program graph for the GCD function.
The tokens represent a stage in the evaluation of GCD(9, 15).

The data flow program graph shown in Fig. 1 is a base language representation of the
GCD program. The status of computations in the base language model is represented by
using a copy of the program graph for each activation of the corresponding function. How

11

2. a node with out-degree two and labels L and R on the out-going arcs.

An example of a heap is shown in Fig. 2a. Note that each node in the heap either represents
an associated scalar value, or represents a binary tree whose L- and R- elements are the
values tepresented by the nodes reached over the corresponding arcs leaving the given
node. The values represented by nodes a, 8 and vy of the heap are shown in Fig. 2b.

) heap esamply W) vafaes my,reswtuq

T e

é@:ig b
5

3
r—lﬂ - x
- R &
© O® © O
Fig. 2. Ilustration of values represented in a heap.
One further type of heap node is required to implement "early completion” structures:
a queue to hold requests for elements of binary trees yet to be constructed. Such a request
occurs when a select actor (Left or Right) attempts to access a node for which no value has
been constructed. The elements held by a queue are called targers and identify the
instruction instances to which the node value must be sent once it becomes available.

Each target consists of three parts: a unique identifier of the program graph instance in
which the target instruction resides; the index number of the target instruction within the
program graph; and a small integer that specifies which operand of the target instruction is

being supplied.
The base language instructions used in implementing binary trees are:
MkNode, MKLft, MkRht, Left, Right

In Fig. 3, the effect of executing each of these instructions is defined by transition rules for
the graph/heap model. (The rules for MkRht and Right are analogous to those given for

12

MKLft and Left.) A binary trec is represented in the heap by a node with left and right

elements, each of which is either a valuc or a queue. An element is a value once the

component of the binary tree has been constructed and made part of the heap by execution
of a MKLft or MkRht instruction. An element is a queue from the moment its parent node
is created by a MkNede instruction, until the queue is replaced by a value. Initially, the
queues are empty. On each execution of a Left or Right instruction for which the selected

component is a value, that value is the result; if the selected component is a queue, the

targets of the instruction (as determined by its output arcs) are entered in the queue.

4] | N[g T
loebre thkN:!g bebre t .. o
Left ‘ é
o =
Ve MiNogde \S_J——‘((otber Left CI; ®
o« (M w ¢
b) ~ v rq d) o __u(_—-,
belore - belore) _ L. 4
“k]n Y ':. ‘Llc'% i=l“I‘
t
T T
: {
eher| B] of T Aiter| (el ¢ "
&> @ vt e

Fig. 3. Base language transitions for early completion binary trees.

Fig. 4 shows the implementation of the binary tree operations in terms of base language

instructions.

The reader will note that, under the assumptions of our model and with only the
instructions introduced so far, we have adhered to our principle that no data changes: there

is no way of altering the value of any element of a binary tree in a way that can affect the

result computed by a program. An important consequence is that there is no way to build a

13

a) LefFr b) RL'gh‘t c) Create |
ot t x 1
J I Hk!}[ngc
Lett Right
' | |
Le{("z‘f’c) Right(t) ’i’i&_ | MR

Create (x,4)

Fig. 4. Base language implementation of binary tree operations.

cycle in the heap. The acyclic property of the heap is secure and a reference count
implementation of storage reclamation may be used [14]. We find this attractive as it avoids
interruptions of computation and appears to permit more efficient implementation of the

heap on a memory hierarchy.

Fig. 5 is a program graph which is a possible translation of the Distribute function into
base language. The small open circles at each MkNode instruction indicate that arrival of a

token supplies a necessary signal for enabling each instruction.

Records

Records as used in programming languages are easily represented by binary trees: the
translator maps the record field names into sequences on the alphabet { L, R } in a manner
that is consistent for each record type. The record constructor operation builds the
appropriate binary tree, and record field sclection is done by the appropriate series of Left
and Right instructions. Note that early completion of our record constructor operation
follows from our implementation of binary trees, Therefore we use records freely in our
program examples. This also provides a useful interpretation of functions that accept
multiple arguments or yield multiple results. We suppose that a multi-argument function is

14

I rb\str ' hnd:g_ | ﬁ“q‘wm

Lelt Right

——

4_3__ Sist (T riream) | rest(Tnstvea W)
Divhrlowbe
el |
/OH‘HMM
T ~
} Hi Nede lo——
i 1r 43 ’_“ JIJ

retuvn

Fig. 5. The Distribute function in base language.

implemented as a program graph that accepts as its only input a record with one field for
each argument of the function. Similarly, the program graph for a function with multiple
results produces a record of result values. Assuming early completion for the record
constructor, function evaluation will commence with the arrival of any argument value, and
a result may be sent to its target instruction before all results of function application have

been generated.

18

il
|

L

e [Seav
(] | h“t, m 4)] \L‘n*_‘!‘j
| I

By

—h

roharn

Fig. 6, The Search function in base language.

19

)

Fig. 7. The Insert function in base language.

= [Sl R
Rant] e
i (oS
&
r“«ﬁg’\ Ty
Seuvreh "“"'kl seavch| inur t
C]
rrest(Cond Stream “j
Sowrth Trsect
L)
search wseet .
make Answee make Answet
$
| !' L —_
L AfterData,
A ——PD Townsact
MeNode] | ° owpdy |
. ——---_H[,LStreum
Mk Lt Wk Rt -
Ans Stream

rituren

Fig, 9, The "i“mnsa& function_i.n”base lénguage.

23

. ® C}' dreamlBnby)

empiy

m alte Set

Fig. 10. Base language implementation of the IntSet guardian.

initiating a search command Transact may process further commands because even a
subsequent Insert command will not affect the data seen by the Search function (data never
changes!). After initiating an insert command, Transact will wait only a few instruction
times before processing subsequent commands because the Insert function returns its Set
result (an carly completion structure) without waiting for inner activations of Insert to
complete. Thus many Search commands and even many Insert commands can be active at
once, The essential synchronization between Insert commands and crowds of Search
commands is accomplished by the queuing mechanism built into the binary tree

implementation.

In general, a significant data base will take the form of a broad tree structure. We have
sketched how many access and update transactions may be processed concurrently over the
depth of the tree. In addition it is desirable to allow concurrency of ‘transactions that
involve non-overlapping subtrees. In the case of access transactions, this presents no
problern. To permit concurrent update of independent subtrees, two approaches are

24

Fig. 11. Base language transitions illustrating use
of the NewNode instruction.

possible within the framework we have presented. One way is for the data base to be a large
record in which each independent subtree is a separate component. "Updating” a subtree
amounts to creating a new record in which a new subtree is substituted at the appropriate
field. If the record is an early completion record, the processing of further transactions,
including updates to other subtrees, may begin once processing of the first update has
begun and its (incomplete) result returned. A second approach is to treat the independent
subtrees as distinct data bases, that is, let the data base be a record in which each

component is a guardian that holds the current version of one independent subtree,

26

3. The Whols Directory and the Subsystem Directory are held by guardians
which accept access commands from any user but accept update commands
only from named uscrs authorized by thc Manager to install new information.

4, An activation of a function is owned by the owner of the function activation
from which it was created, Thus each user of the system has a well defined tree
of activations in any snapshot of the system. (Note carefully that our concept of
ownership for this discussion applies only to activations, and not to data
structures or program modules (functions).)

[

5. There is an instruction Owner which yields the name of the owner of the
~ function activation in which the instruction is executed.

The entry function can determine the guaranteed identity of the caller by using the
Owner instruction, and can request and check a password from the caller, if desired, be‘fdfe
returning the requested subsystem to the caller. The caller may then use the stibsystem as

though it were an entry in his own directory.

T root ‘ Usew A
A
[[- \
whots ek s\t\‘osnp :
\ \ | [5&4&!\:\\:\ 'J

[;u_nr_d\'an 1 Bnuwlw —J

-— User
Whao 1y L | Drves
-b\y-cr;h?r‘ ‘D“"’M " pe o9
* 9 T [N e o8 @
!]
A olit
A | * A {mctin
Vsa '
fon Elt |
Tnto [__c.l:t__m : hc.l!p ' min"

Rely Lanctroin Tae Nuj

[(_o ther mJ\..QnT)J

Fig.12. Suggested organization of information in the
envisioned computer system.

