Idsys Manual

Computation Structures Group Memo 211
11 December 1981

Keshav Pingali

Vinod Kathail

Laboratory for Computer Science
Massachusetts Institute of Technology
545 Technology Square, Cambridge, MA 02139

This work was supported by the Advanced Research Project Agency of the Department of
Defense under Office of Naval Research contract no. N00014 -75-C-0661.

i

Table of Contents

1 Some Remarks about our Id Implementation

21/0inid

3IDSYS - A PROGRAMMING ENVIRONMENT FOR ID
3.1 Users View of the System

4 CREATING AND EDITING FILES

5 COMPILING ID FILES
3.1 RUNNING THE COMPILER

6 CALLING 1D PROCEDURES

7 DEBUGGING ID PROGRAMS

8 AN EXAMPLE

9 IDSYS COMMANDS

1

- 1 Some Remarks about our Id Implementation
The Id compiler you will be using implements Id as described in section 2 of the paper
"An Asynchronous Programming Language and Computing Machine", Arvind, Gostelow,
K.P. and Plouffe, W.E., TR-114a, University of California, Irvine, Dec. 1978, with the

following differences/addenda :

1. The Id reader automatically converts all upper case characters to lower case,
unless it is reading a string, Therefore, you can use either case in an Id program.

2. The compose operator has not been implemented.

3. A file given to the compiler can only have procedure definitions in it. You are
not allowed to compile Id expressions of any other kingd.

4. Procedures in TR-114 Id cannot have free variables in them. This means that a
TR-114 Id program must be an expression that is executed for value. Since we
would like to define libraries of procedures that can be used many times, and
we do not want to pass these library procedures explicitly into every procedure
that uses them, we permit free-variables in a restricted sense - any variable that
is used but not assigned to in an Id procedure is assumed to be a procedure in
your environment, which will get defined before you execute this procedure.
At compile time, a warning is printed to this effect.

5. The syntax for BLOCKs in our Id is
BLOCK ::= (let ASSIGNMENT-STA TEMENT-LIST
_ in EXPRESSION-LIST)
For example, the following is a legal Id block -

let x <- y+z;
y <- 3
in xty, x*y)

6. The following relational operators are defined in our Id:

OPERATOR ACTION PRIORITY EXAMPLE
-LEVEL

or BOOLEAN OR 1 true or false

and

not

BOOLEAN AND
BOOLEAN NOT
EQUAL
NOT EQUAL
LESS THAN

LESS THAN
OR EQUAL

GREATER THAN

GREATER THAN
OR EQUAL

true and true

not false

4>3

4>=3

7. IDSYS executes an assignment statement by completely evaluating the right-
hand side of the statement, and then performing the assignment. Therefore, no
data dependencies are allowed between variables being assigned to by the same

statement. For example, the following code is illegal.

a.b'<- 2, a+2;

Note that such dependencies are allowed in TR-114 Id.

Similarly, the compiler orders the statements in a block or a loop according to
the data-dependencies of their right-hand sides. The following code is,

therefore, illegal.
a <- f(b);

b,c <- 3,g(a): ICircular

between

data-dependency
statements!

8. For user convenience, we support a variety of structure formats. In an Id
program, the data structure <1 : 1, 2 : > (i.e., a structure with the value 1 at
selector 1 and <> at selector 2) can be written in any of the three forms shown

below :

< + [1]1 + [2]<
<1: 1, 2: <>

<l,<>>

Only the last format needs explanation - an expression list enclosed in angle-
brackets is understood to define a structure with selectors 1,2,3 (with as
many selectors as there are values). The expression list can consist of arbitrary
Id expressions. One note of caution : owing to a kink in Id syntax, a structure of
the form <-1:1> will cause the compiler as well as the IDSYS command
interpreter to protest. The reason is that <~ is also the assignment symbol (!). If
you must use structures in this format with negative selectors, then put a space
between the '’ and the -, For instance, the above structure could be re-written
as < -1:1>, and you will not get any complaints, (Sorry about this, but we are
going to fix this soon.)

9. In addition, the current Id implementation permits 1/0. This is described in the
next section.

21/0inId

The right way to implement 1/0 in Id is through streams. Although we have not
implemented streams, we have provided 170 commands which we have implemented using
170 in LISP. The following is an informal introduction to 170 in Id.

Let us define an "1/0 object” to be a number, string, boolean (i.e., TRUE or FALSE) or

structure. For example, the following are 170 objects -
20000.45E4

"THIS IS A STRING"
TRUE

<l : 23, 3 : 45>

The following is not an 170 object -

procedure silly(a)
(a+1)

The basic "unit” of 1/0 in 1d is an [/O object. This means that a single 170 operation will

4

result in the input or output of one I/O object. Notice that although a structure is itself
composed of 1/0 objects, it is read in or printed with just one 1/0 operation. The Id view of
a file on which 170 is being done is that it is a sequence of 1/0 objects. The following

example should make this clear,

Consider a file that contains the following :
MThe first selector in" <1 :2,2 :<> "is™ 1 "-" TRUE

For the purpose of this discussion, you can imagine a pointer that advances through this
file each time an 1/0 object is read from it. Before we can do any 170 on a file, we must
first create an association between this pointer (which we will call a file-pointer) and the
file. Initially,this pointer is at the beginning of the file. This is shown below by the "+"

mark -
"The first selector in" <1 :2,2 :<>> "ig" 1 "-»w TRUE
f

The Id procedure that reads objects in from a file is idread When an idread operation is

executed on this file, there are two things that happen:
1. the string "The first selector in" will be returned to you

2. the file pointer is advanced, so that it is ready for the next idread (if any).

- The file will now look like this:

“The first selector in" <1 :2,2 :<>» "fg" 1 "-v TRUE
t

The next call to idread will result in

"The first selector in" <1l 12,2 :<>> "is" 1 "-" TRUE
?

and the value <1:2, 2:<>> will be returned to you, and so on. One important point - when
the last value in this file (i.e., TRUE) is read, it is passed to you as a Boolean, and not as a

string (remember that all strings must be enclosed in double quotes).

The picture for output is very similar.

‘Therefore, to do I70 on a file, you must do the following :

1. associate a pointer with the file. This is called "opening” the file,
2. use this pointer to read or write on this file

3. when all your I/0 on this file is done, you must remove this association
between the pointer and the file. This is called "closing” the file.

At any given time, a file must be open either for input or for output - it is an error to
attempt to open the file for, say, output while it is open for input. There is absolutely no
reason why this Aas to be so - it was an implementation decision. You can, of course, open a
file for output, write I/0 objects into it, close it and then open it for input and read back
the 170 objects. The only situation in which you are allowed to have many pointers to one
file is this : you can open a file any number of times for input - this gives you many pointers
to the same file. You can use each of these pointers separately to read from this file, Of

course, you must close each file pointer separately as well.

The terminal is considered to be a special kind of file, and the commands for 170 from
files can be used for doing 170 from the terminal. The terminal is the only exception to the
rule that a file cannot be open for both input and output at the same time. When IDSYS is
started, the terminal is opened for 170 automatically. You should not open the terminal for

input or output or anything strange like that.

Let us now consider the Id command for Opeﬂing files for input. The syntax for this

command is
idopen—in(FILE— STRING, FILE— STRING)!

where a FILE— STRING is a string which the operating system understands as the name

]Owing to a font bug, all our underscores look a little like minus signs. Minus signs can occur in an Id
program only to represent the minus sign, inside strings or as the second character of the assignment symbol

<-. They cannot occur inside an identifier name. Hence, there should be no confusion.

of a file. For example, in XX,
- "program.output”
- "program.output.15"
- "Cid>program.output.15”

- "ss:<id>program.output.15"
are all valid file-strings. The usual defaults for directory, version number etc. apply.

This command is treated by the Id system like it would treat any ordinary procedure call.
The value returned by the idopen — in command is a file-pointer - the only thing you should
do with it is to assign it to an identifier. You can, of course, pass it as an actual parameter to
a procedure call, return it from a procedure call etc. but ultimately, it should get assigned to
an identiier. Any I/0 on this file must have the Jile-id as a parameter - not the file-string.

For example, the following program fragment is legal:

in_file <- idopen—in("input.file");
b,c <~ idread(2, in_file)

The file-id for the terminal is the reserved word IDTTY. When a call to idread with idtty as
an argument is encountered during the execution of your program, IDSYS will prompt you
and ésk you to type out the appropriate number of values on the terminal. When typing out
these values, you must use spaces, tabs, or <LFDs? as separators and end the list with a

<CR>.

Some other points to note are the following:

1. It is an error to attempt to read in any Id value that is not an 170 object. 1/0
objects in the file must be separated by "white space characters” i.e., blanks,
<CR>,<{LF>, TABs etc.

2. You can give any Id value as an argument to idwrite. However, the result is

Zl‘hc Line Feed Character

meaningful only if it is an 1/0 object. For example, if it is a procedure, the
string "**COMPILED PROCEDURE" will be printed out. Similarly, giving it
a file-id will result in the printing of the file-string that corresponds to the file-
id. A space is printed automatically after every 170 object that is written on a
file. This enables you to read back 170 objects that you wrote on a file. When a
structure is written, it is pretty-printed. The printing of every structure is always
started on a new line. Any values printed after a structure are also printed
starting on a new line. This is for readability.

3. A call to idwrite, idprint or idclose always returns exactly one value - true.

4. If you attempt to read in more things than there are on the file, you will get an
"End of File" error.

The syntax for the various commands is given below ;

- OPENING A FILE

* idopen—in(FILE-STRING, ,FILE-STRING) - This causes the Id

system to open for input all the files specified in the argument list.
Executing this command returns an expression-list that must be assigned
to an identifier list of the same arity. For example,

x<- idopen—in(“program.file")
x,y<- idopen—in("program.file", "foo. bar")
x,y<- 5, idopen—in("program.file")

are all correct statements in Id. The last statement is supposed to illustrate
that the expression list returned by an idopen—in can be treated like any

old expression list in Id.

* idopen~ out(FILE-STRING, ...FILE-STRING) - This is similar to
idopen —in except that the files are opened for output,

*idopen-—append(FILE-STRINGI, ..FILE-STRING) - This is similar to

idopen —out except that if there is a pre-existing file with the same name,
the output is appended to the end of this file, whereas idopen —out would

create a new instantiation of the file, and start writing from the beginning
of the file.

- CLOSING A FILE

* idclose(FILE-ID, ... FILE-ID) - This closes the files that correspond to
these file-ids. Idclose always returns one value and that is zrue, If a file

corresponding to a file-id is already closed, nothing happens. If one of the
arguments is not a file-id, then a non-fatal error occurs, and an error

message is printed out.

- READING FROM A FILE

* idread(ARG1, ARG2) -where arg] must be an integer and arg2 must be a

file-id. This is a command to read argl number of values from the file
specified by arg2. The default for argl is 1, and for arg? is idtty. For
example, the following are legal Id expressions

- idread(n, my — file) reads in n arguments from my — file
- idread(n, idtty) reads in n arguments from the terminal
- idread(n) same as the previous example

- idread(my ~ file) reads ir. 1 argument from my — file

- idread() reads in 1 argument from the terminal

- WRITINGTO A FILE

whose values are to be output and ARGn is file-id. There is no default for

ARGn - if output to the tty is desired, ARGn must be the reserved word
idtty. idwrite can also be called with only one argument. This argument

must be a file-id, and doing this results in a <CRXXLF> being output to
the file. idwrite always returns zrue. Anything written by idwrite can

always be read back in by an idread. For example,
- idwrite (2+ 3, 3+ 4, my - file)
- idwrite (w, idtty)
- idwrite(idtty)

are all correct cxpressions.

9

* idprint (ARG),....ARGn) - This is exactly like idwrite except that double-

quotes are not printed around strings. This exists for fancy 170 only -
attempts to read back things printed with idprint may result in errors,

The following program is an example of I/0 in Id. Consider the file we had earlier. The

program
(let
ptri,ptrz <- idopen—in("in.fﬂe"."in.file"):
a,b,c.d,e <~ idread(5,ptr1);
f <- (if idread(1,ptr1) then idread(1,ptr2)
else b);
dummy 1 <- idclose(ptri,ptr2)
in)

will return the string "The first selector in".

This completes our discussion on how Id as implemented by our compiler differs from
TR-114 Id.

3 IDSYS - A PROGRAMMING ENVIRONMENT FORID

We will now describe how to enter IDSYS and write, compile, debug and run Id
procedures, To enter IDSYS, type IDSYS<KCR> to the monitor. IDSYS should announce
itself with a message and type its prompt character (=>) out on the screen. Typing a ? will
print out a list of the commands that IDSYS recognizes along with information about these
commands. Typing a question mark after a command name will print out information
about that specific command. IDSYS is essentially a command interpreter which reads in a
command line from the terminal, executes it and prints information on the terminal about
the result of the execution. To exit temporarily from IDSYS, type +C. To restart IDSYS,
type IDSYSKCR> to the monitor, and you will restart at the point that you typed a 1C.
Executing the QUIT command (typing QUIT<CR) to IDSYS), will kill IDSYS and take
you back to the monitor.

10

3.1 Users View of the System
What the user sees of the system may be logically divided into three parts :

1. the procedure environment

2. the file environment
3. IDSYS commands to interface the user with these two environments

The procedure environment of IDSYS consists of all user-defined procedures that can be
called from IDSYS. When you start IDSYS, your procedure environment is empty.
However, IDSYS contains the following procedures which you can use without having to
define them, These are not considered to be part of the procedure environment - for

example, when you ask for your procedure environment to be printed out, these

procedures will not be listed.
- ST - the square-root function
- MAX - the "maximum" function. For example, MAX(2,3.0, 1.0E-9) returns 3.0
- MIN - the "minimum" function.
- SIN - the "sine" function
- COS - the "éosine" function
- ATAN - the "inverse tangent” function
= NLOG - the "natural log" function
- FIX - the "smallest-integer-less-than-or-equal-to" function
- FLOAT - the "make floating-point” function

You can add to your procedure environment by compiling a file containing Id procedures
and loading the object-code file produced. Every top-level 1d procedure in this file will get
added to your environment. However, if a procedure with the same name already exists in
your environment, IDSYS will ask you if you want to load in the new procedure definition

or retain the old procedure definition. Opting to load in the new procedure definition will

L

11

,ofcourse, remove the old definition from your procedure environment. If you choose to
retain the old definition, then loading resumes from the next top-level procedure. You are
allowed to redefine IDSYS procedures like SQRT, SIN etc.

Once a procedure has been added to the environment, it can be called from IDSYS,
There are IDSYS commands to delete procedures from the environment, find out what
procedures there are in the environment, how many arguments a certain procedure in the
environment takes etc. The section on IDSYS commands should be self-explanatory.

The other environment you work with is your file .enviromnent. At any point, the file
environment consists of all files that are currently open. When you start IDSYS, your file
environment is empty. You can open files inside Id programs, as described above, or at the
Id system level. The syntax in these two cases is different. The IDSYS commands infiles,
outfiles and appfiles enable you to open files at the system level for input, output and
appending respectively and add them to your file environment. Section 11 explains these
commands in more detail. Any files opened by an Id program you are running are also put
into this environment. You must use the idread, idwrite and idprint commands to read from
or write in files. The command FILES lists all files that are in the file environment as well
as whether they have been opened for input, output or appending. By using the idclose

command to close files, you delete them from the file environment.

Some additional details:

- The command
=> RESET(a)(cr>

will close the file a and then open it again, and assign it back to . Think of this
command as moving the file-pointer back to the beginning of the file.

- Suppose you call a procedure FOO in your environment from IDSYS. If you
open some files in FOO (or in procedures that FOO calls), and forget to close
them, then IDSYS automatically closes them just before it returns you to the
top level. You should not, however, rely on this to close your files - it is bad
programming practice. Similarly, all files that were opened at the top level (i.e.,

12

by infiles, outfiles etc.) are closed by IDSYS if you give it the QUIT command.

4 CREATING AND EDITING FILES

You can edit ID programs in EMACS. If you would like to use EMACS while in IDSYS,
type EMACS{CR> to IDSYS. After editing, you must exit EMACS by typing either +C or
*+X1Z. The preferred mode of exit is tX1Z.

5 COMPILING ID FILES

5.1 RUNNING THE COMPILER
= >compile("foo.baz" Xer>

The COMPILE command compiles ID procedures in the specified file into object code
that can e loaded and run by IDSYS. Nomlally, this command will create two new files
named FOO.LISTING and FOO.LSP. The file FOO.LISTING will contain the code from
the file FOO.BAZ with line-numbers inserted in front of every line as well as any messages
generated by the compiler. The object code will be in the file FOO.LSP.

The compiler generates two types of messages - WARNINGSs and ERRORSs.

An ERROR message is generated when the compiler detects a syntactic or semantic
violation of the rules of ID. In case of a syntactic violation, the compiler will print out the
line it was parsing, the previous line and the place where the unexpected syntactic entity
was encountered. This information is sent to both the terminal and the listing file, All files
opened by this run of the compiler are then closed. A syntactic error therefore results in the

termination of the compilation.

A semantic violation occurs in situations like the violation of the single assignment rule,
circular definitions among variables etc. Frror messages in these cases contain line
numbers and some information as to why the compiler did not like your program. As

before, error messages are sent to both the terminal and the listing file, but in this case, the

13

compilation is not terminated. However, no object code is produced for a procedure in
which a semantic error occurred.

A WARNING message is generated when the compiler detects a condition that is not
illegal but is peculiar enough (in its opinion) that the user be alerted. For example, a
warning message is generated when an identifier is assigned to but not used in a program.

Sometimes, the names of the default listing and object files (*. LISTING and * LSP) may
not be convenient. This may happen if a file with that name is already open, or is being
used for some other purpose. In that case, type COMPILEXCR>. IDSYS will ask you for
the names of the input, listing and object files. 1IDSYS also suggests the usual defaults for
the listing and object files - if that is satisfactory, type <CR>. Otherwise, type the file name
you want. An example of this is shown below (user input is shown in italics).
=>compileCer>
INPUT FILE NAME: super. testCer>
FILE FOR PROGRAM LISTING (DEFAULT IS PS:<KESHA V>super.LISTING)<cr>

FILE FOR TARGET CODE (DEFAULT IS PS:KKESHA V>super.LSP) super. listing<cr>

UNABLE TO OPEN THE FILE "SUPER.LISTING" --- IT IS ALREADY OPEN.
TRY ANOTHER FILE NAME ->super.lsp<er)

MULTIPLY COMPILED
COMPILATION OVER
=>

In the example above, IDSYS tried to open the file super.listing for outputting the object
code, but found it was already open. Hence, it generated a message and asked for another
file name. If IDSYS is unable to open this file as well, all files opened by this run of the
compiler are closed and control is returned 1o the top-level of IDSYS,

~As each procedure is compiled, IDSYS types out the name of the procedure on the
terminal. At the end of the compilation, the message COMPILATION OVER is printed on
the terminal.

14

6 CALLING ID PROCEDURES
=2 foo<1:22:3>, 3, "CHECK" , my—proc, idread(2,my — file)Xcr>

Id procedures in the procedure environment can be called from IDSYS. The actual
parameters of a procedure call in IDSYS can be -

- numerical, string, boolean and structure constants
- names of procedures in the procedure environment
- file~ids of files in the file environment

- calls to idread

In the example above, FOO is a procedure in the procedure environment that takes in 6
arguments. The first argument is a structure, MY - PROC should be the name of a
procedure in the procedure environment while the call to idread will read in 2 arguments

from the file my —file,

If all goes well, and the procedure call is executed correctly, the values returned by the
procedure will be printed out on the terminal, If any erTors occur, appropriate error

messages are printed out on the terminal.

7 DEBUGGING ID PROGRAMS

As of now, the only debugging facility in IDSYS is trace. If a procedure is being traced,
then whenever it is called, IDSYS will print out the arguments that are passed to it (i.e., the
actual parameters of the procedure call) as well as the values returned by the procedure to
the caller. By specifying some procedure names in the FROM-LIST part of the trace
command, it is possible to get the trace information printed out only when the procedure is
called (directly or indirectly) by one of the procedures in the FROM-LIST. The following
are legal trace commands in IDSYS:

trace(MY —PROC)
This traces all calls to MY — PROC,

trace(MY — PROC FROM FOO/BAZ, OUR — PROC FROM BUZZ/ FUZZ)

This traces calls to MY — PROC from FOO and BAZ,
and calls to OUR — PROC from BUZZ and FUZZ.

8 AN EXAMPLE

In this example, we compile a file called “sieve.buggy"” which contains two procedures

called "driver" and "sieve". Driver is calied with an integer n - it returns a structure

containing all prime numbers less than or equal to n. The procedure "sieve" had a minor

syntactic error in it which was caught by the compiler.
' THE BUGGY PROGRAM

procedure driver(n)
(initial 1ist <- <>; A <~ <o
for i from 2 to n do
new list[i-1] <~ i;
return sieve(list,n-1))

procedure sieve(list, n ILET'S HAVE A SILLY

(imitial p <- ©;: i <- +1;
while n = 0 do
p[i] <- Tist[1];
new i <- i+1;
New list, New n <«-
(initial a<- <; k<- 1;
prime <~ 1ist[1]
for j from 2 to n do
New a, néw k<-

ERROR!

(if mod(1ist[j].prime)=0
then a+[k]1ist[j],k+1

else a,k);
return a,k-1);
return p)

16

INTERACTION WITH IDSYS
=>compile("Ckeshav)sieve, buggy")

--DRIVER COMPILED
***WARNING- IDENTIFIERS UNDEFINED IN THIS PROCEDURE -
SIEVE USED IN LINE §
++ +ERROR--- UNEXPECTED TOKEN "(" ENCOUNTERED IN LINES.
7 procedure sieve(list, n
8 (initial p <- O; i ¢- +1
1
=>emacs

=>compile("'sieve.buggy”)

--DRIVER COMPILED

***WARNING- IDENTIFIERS UNDEFINED IN THIS PROCEDURE ->
SIEVE USED IN LINE §

--SIEVE COMPILED
COMPILATION OVER
= >load("'sieve.Isp")
----- Loading file sieve.lsp
Procedure DRIVER defined.
Procedure SIEVE defined.
~--=_ Done.
=driver(100)
<1:22:33:54:75:116: 13,7:17,8:19,9: 23,
10:29,11:31,12:37,13: 41,14 - 43,15: 47,16 : 53,
17 :59,18 : 61,19 : 67,20 : 71,21 - 73,22:79,23 : 83,
24:89,25:97>
=Dquit
----- All open files closed.

17

9 IDSYS COMMANDS

There are two types of IDSYS "commands” - interrupts and commands that are
interpreted directly by the IDSYS command interpreter. The interrupt commands you can
type in IDSYS are ;

tA - This interrupts whatever IDSYS is doing and returns you to the
IDSYS command interpreter level, Apart from< your procedure and
file environments, everything is reset. This command is useful
for breaking out of infinite loops etc.

+C - Ofcourse!

tG - This is like TA except that, in addition, your procedure and file
environments are thrown away.

1T - This is really an XX command that prints out some information
about the number of CPU seconds your job has got etc. Not very
exciting.

The following commands are interpreted by the IDSYS command interpreter. Unless
otherwise specified, IDSYS commands cannot be nested.

? Prints this information.

QUIT
Returns to the EXEC and resets the IDSYS fork. All open files are

closed. '

EMACS
To edit ID code. To return to IDSYS from EMACS, type tX1Z.

COMMANDS FOR COMPILING AND LOADING PROGRAMS:
COMPILE(file — string)
Calls the Id compiler. File—string and enclosing parentheses are
optional.

LOAD(file —string,)
Addsthe procedure definitions contained in the files to the
current environment. File—string is XX compatible file name,
If a name conflict occurs (i.e., a procedure in your procedure

18

environment has the same name as that of one of the procedures
in the file you are loading in), IDSYS asks you whether you want to
retain your old definition or replace it with the new one.

COMPLOAD(file —string)
Effect of this command is equivalent to doing COMPILE followed by
LOAD except that if a name conflict occurs, IDSYS does not prompt
you, but throws away your old procedure definition and replaces it
with the one being read in from the file.

COMMANDS RELATED TO PROCEDURE ENVIRONMENT:
PROCS(argl, ...)
Prints information about procedure named argl if it is defined in the
current environment. With no arguments it will print the information
about all procedures in the environment.

REMOVE(arg], ...)
Deletes the definitions of procedures argl, ... from the environment.

APPEND(argl, ..)
Adds the definitions of procedures argl, ... to the environment, It
will ask you the name of the file which contains these definitions,

COMMANDS FOR CALLING AND TRACING A PROCEDURE:
proc—name(argl,arg?, ...) '
Calls procedure named by proc—name. Result values are printed on
the terminal.

TRACE(proc —name FROM from—list,)
Turns on the printing of trace information for procedure named by
proc—name. From-— listis a list of procedure names separated by
/, for example FOO/ BAR/ ZAP.

UNTRACE(proc—name FROM from —list, ...)
Tums off the printing of trace information for procedure named by
proc—name. Argument specification is similar to TRACE.

COMMANDS FOR OPENING AND CLOSING THE FILES:
INFILES(file—id <- file—string,)
Opens the files for input. File—string is XX compatible file name.
File—name is an identifier. File named by file —string is opened

19
and assigned to file—id.

OUTFILES(file—id <- file—string,)
Opens the files for output. Arguments are similar to INFILES.

APPFILES(file ~id <- file— string,)

Opens the files for appending. Arguments are similar to INFILES.

CLOSE(file—id, e)
Closes the file associated with file

—id. Ifno argument is
supplied all open files are closed.

RESET(file—id, ...)

Closes the file associated with file

—id; opens the same file again
and assigns it to file —id.

COMMANDS FOR READING AND WRITING:
IDREAD(arg1,file — id)

Reads argl number of values from file specified by file—id. Default
value for argl is 1, and default value for file—id is IDTTY.

IDWRITE(argl,arg2, o o file—id)

Writes values of the arguments on the file specified by file—id., If
file—id is IDTTY arguments are printed on terminal,

IDPRINT(argl,arg2, , file—id)
Similar to IDWRITE except that strings are not enclosed in quotes.

