L ABORATORY FOR %% MASSACHUSETTS
COMPUTER SCIENCE TECHNOLOGY

Addendum to the
Instruction Set Definition for a Tagged-Token

Data Flow Machine

Comptitation Structures Group Memo 212-3-1
12 October 1983

Vinod Kathail

Research support provided by the Advanced Research Projects Agency of the
artment of Defense under Office of Naval Research contract NO0O14-75-

C-0661.

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139



1. Changes to the Architecture
" The following is a brief description of the architectural changes to the machine,

1. The instruction address part of the tag on a token is now a tuple of the form <base-
register-number, relative address> where basc-register-number is 8 bits and relative
address is 16 bits. A base register has two parts: a code base register (CBR) which
contains base address of the code-block, and a data base register (DBR) which points to
a memory area where constant area pointers and other information is stored (see 2
below). The instruction-fetch section calculates the physical address by adding the
relative address to the code-block base address. The build-output-token section
calculates the relative address {and not the physical address) in addition to the base-
register number.

2. The color-continuation flags are no longer part of the map registers in the build-output-
token section. All the information associated with a color (ie., constant area pointer,
primary color, primary base register number, and next color) is stored in the memory
area pointed to by DBR (see Figure 1-1).

The primary base-register number and the primary color refer to the base register
number and the very first color allocated to a loop at the time of invocation. Since a
loop may use several colors and base-registers during its execution, D7 uses this
information to get back to the original context. The next color field specifies the next
color to be used in case the initiation-number part of the tag overflows. It can be
maintained in several different ways, e.g, color-continuation flag, circular list of colors
(see section 2). We may also want to allow only one constant area per base register. All
these variations can be simulated using the general structure shown in Figure 1-1.

3. The build-output-token section is split into two sections: one which computes the tag
part of the token (Compute-tag section), and one which puts together the tag and the
value part (Construct-token section). The relevant part of the PE diagram is shown in
Figure 1-2.

For each instruction, the construct-token section receives two streams of values—one
from ALU and one from the compute-tag section, and a stream of commands.
Associated with each value is a end-of-stream marker which is true if it is the last value
in the stream. A command specifies what type of value is coming from the construct-
token section and how the values coming from ALU and the construct-token section are
to be combined. We can view a command as consisting of three separate fields; their
functions are described below.

« Field 1; It specifies the type of value coming from the construct-token section.
The type can be one of the following:

a. ¢ = 0 token skeleton,

b. chain = 0,



Instruction-Fetch

0 CBR ]
DER il Constant area
255 I
Map Register A2
1 - ' / Constant area
. pointer (24)
DBR (24) . s :
Primary
\ 15 [ 16 bytelong Color (4)
Domain-Size (8)
Compute-Tag \ Primary
Domain-Base-PE (8) . \ 0 |Map-Register \ g’:l:f;nt-
Subdomain-Size (8) \{ ; Code \{fizg (1}
Subdomain-Base-PE {8)
Code-Per-PE {16) / s
lterations-Per-8D (8) . .
/ Register Files Program Memory
L ast-Subdomain-Flag (1}

Figure 1-1: Base Registers, Map Registers, and Constant Areas

c. PE, chain = 0,
d.chain = 1, d = Otag,
e. PE, chain = 1,d = O tag,

f. empty, ie, there is no value,

Note that if the value coming from the construct-token section is a d = 0 type
token skeleton and a value from ALU is needed, the value coming from ALU

must be a valid data type; in all other cases the value coming from ALU must bea
d = 1/2 type token skeleton.

o Field 2: This group specifies how the values coming from ALU and the construct-
token section are combined together.

a. Combine the value supplied by the ALU and the value supplied by the



Opcode  Opil Op2  Op3 Opcode Opt Op2 Tag

ALU Compute-tag

L

<end-of-stream, ' {end-of-stream,
value or Wd=0.2>o0r
d = 172, .5 lag

Construct-tokerk——(c———

mmand

To Routing-translation section

Figure 1-2: Compute-tag and Construct-token Sections

construct-token section, i.e., either put the value coming from ALU on the d
= 0 token skeleton supplied by the compute-tag section or put the value
coming from the compute-tag section on the d = 1/2 token skeleton coming
from ALU.

b. Discard the value supplied by ALU, and pass the token coming from the
compute-tag section.

c. Pass the token coming from ALU, and discard anything coming from the
compute-tag section.

d. Discard both of the values, and don’t generate any output token.

o Field 3: It specifies when a new value from the ALU stream is consumed.

a. Get a new value or token skeleton from ALU, and also store it for future
use.

b. Use the stored value as the value coming from ALU.



-4-

While processing instructions that require the two strcams to be combined element by
clement, e.g, Expand, In-Fetch, we may run out of the clements in either of the
stream. 1T the values in the stream coming from ALU are exhausted and a new value is
required. an error valué (too_many_dastinations) is used. This error value is either
put on the d = 0 token skeleton or pass (d = tag)
part of the value coming from the compute-tag section. On the other hand, if there are
extra values in the stream coming from ALU, they are simply absorbed.

2. Color Management

Compiler assumes that the assignment of colors and initiation-numbers to various invocations is
done in the following manner:

1. A recursive procedure is assigned a color, and can use the initiation numbers for the
recursive calls (via R and R™ operators). If initiation-number overflows during the
execution of an R operator, the normal procedure call mechanism is used.!

2. Any other procedure is assigned a color or an initiation number (if a copy already exists)
depending on manager's discretion.

3. An invocation of a loop may require more than one color to complete its execution,
One possible way to get a new color is to call the system manager via the normal
procedure call mechanism to start a new invocation of the loop. We have ruled out this
possibility because of its inherent overhead. Insiead, the manager is called to get a new
color belonging to either the same copy of the code-block or a new copy that is
distributed identically to the original copy. Since the new copy uses the same mapping
parameters as the original copy, we can avoid using I-structures 10 pass the values. The
copying can be done by allocating a new base register and making its CBR part point to
the original copy. We hope that allocating a small number of colors and reusing them
would be sufficient most of the time.

A code-block can get a new color in several ways; they differ from each other in when
the manager is called and how the manager returns the new color.

a. If the number of colors needed during the execution can be determined at the
time of the invocation then this information is passed to the manager, and the
manager is responsible for supplying that many colors. Note that the manager
need not allocate all the colors at the time of the invocation; it may allocate only a
few colors and reuse them. The colors are made available to the code-block either
by setting the next color field associated with the allocated colors, or by passing
tokens carrying the new color to a specified instruction in the code-block where

1A scheme similar to the scheme used for loops can be used to take care of overflow in the case of R operator; however,
reusing the colors, which mnake sense in the case of a loop. doesn’t make much sense in the case of recursive procedures. A
normal call mechanism may have to be used sometime or other.



-5-

they wait until consumed, At present, the next color ficld is one bit (also called
color-continuation flag). and the manager allocates a contiguous set of colors.

b. If the numbers of colors needed during the execution cannot be determined at the
time of invocation, the manager is asked to allocate a new color when the
initiation-number field overflows. Note that the manager is free to guess the
number of colors to be allocated. If it decides to allocate more than one color, it
must set the next color ficlds associated with the allocated colors and not pass the

colors on tokens.

To allow implementation of the above mentioned schemes and variations thereof
without changing the compiler, the compiler generates code shown in Figure 2-1. The
C-switch instruction is a dummy instruction. The loader is responsible for modifying
the code to bypass this instruction, ie,, the destination address in the D operator which
points to C-Switch instruction is replaced by the destination address on either the true
side of the C-switch or the false side of the C-switch depending on the scheme we want
to use.

Initition-number
overflow

——

Color from \
the manager

Not available

Available

Use

To Set-Tag's

Figure 2-1: Compiler Generated Code to Get a New Color



3. Managers and PE Controllers

If managers were implemented using streams as suggested in {1], a use of a manager would
involve sending a d = 0 type token 1o the entry operalor. However, streams have not been
implemented yet, and a manager use involves sending a d = 2 token with *entry opcode to the PE
controller. We need to distinguish these d = 2 type of tokens from those (d = 2 type of tokens)
which are used purposes specific to the implementation. Thus, to explicate the above mentioned
difference, the generalized paradigm of instruction processing may be described as follows:

d=0,{d=1/2}1d=0}
where { } means 0 or more occurrences and [ ] means 0 or 1 occurrence.

This generalized paradigm does include the paradigm 4 defined in [2] because d = Oand d = 2
»entry tokens are of the same nature. However, paradigm 4 of instruction processing is nothing
but an instruction followed by the Use or Decrement-CObj instruction. Such a paradigm may be
useful in the future, but it is really not necessary. In fact, the three instructions using this paradigm
are 0o restricted; they require that a manager or counter object always be the one to receive the
acknowledgment. Thus, the tag (on a d =1/2 type token) where the result or acknowledgment is to

be sent is always a d = O type tag.

An Id manager may call a PE controller, an I-structure controller, or some other manager to
perform some action, and may have to wait for acknowledgment. Such waiting would be achieved
by sending the tag (d = 0 type) of the destination instruction on the d = 1/2 type of tokens.2 On
the other hand, PE controller and l-structure controller instead of being implemented as Id
managers are implemented in hardware (or equivalently as sequential program). Therefore, they
should be structured in a way so that when they call other controllers or managers in the course of
processing a request, they don't wait for an acknowledgment.

4. PE controller, 170 Devices and Master Copy of Code-blocks

We envision that some of the PE controllers in the machine will have 170 devices (at least disks)
connected to them, and that a PE controller will be responsible for managing (buffering etc.) the
170 devices connected to it.

Devices in the system are identified by a 16 bit integer (referred to as device specification); the
most significant 8 bits represent the PE number, and the least significant 8 bits (referred to as
device) represent device group and device number inside the group. The intention is that devices
can be logically grouped together; for example, disks, printers. A manager may want o deal with
only the device group in which case selection of the device number is left to the PE controller. For
now, both device group and device number are 4 bits in length. A device number of 0 means that

2 1f a manager is implemented as a sequential program, waiting for an acknowledgment (Le,, an asynchronous event) has
to be simulated using some sort of dummy tokens. Exaclly how this is done is left (o the implementor (ie,

simulator/emulator people).



-7- |

no device number is specified. 1f a device is addressable then a 32 bit integer is used to specify the
address. A manager may or may not specify the address when dealing with a device,

A copy of the code-blocks available during the execution of a program is maintained on disks.
Before the compiler-generated code can be executed, a mapping between code-block names (either
user-defined or compiler-generated) and their disk addresses has to be established. The steps
involved in this process are as follows. In the compiled code references to code-block definitions
are represented using the proc type whose 32 bit value part is left unspecified. The code-block
header specifies the symbolic names for all the code-blocks referenced inside this code-block and
the places where they are referenced. These symbolic names must be converted to 32 bit values
(called code-block identifier), and these values must be put in the code at the appropriate places. A
code-block environment, which specifies the mapping between code-block identifiers and their disk
addresses, must be created and made available to the system manager. At present, a code-block
identifier is an integer offset in the code-block environment maintained as a linear array.

We assume that code-blocks are already resident on the disk, and that the environment is
available to the manager. How this is done depends to some extant on the user interface.

5. Data Types

Data types marked with * cannot occur as constants in the compiler generated code.

Data Class Names Data Length
01 Bool . 1
02 Char 1
03 CObj 4 *
04 Err 1
05 FP
‘ - FP-32 4
- FP-64 8
06 Int
- Int-8 1
- Int-16 2
- Int-24 3
- Int-32 4
07 Isa? »
- Isa-T-Var 0
- Isa-T-Fix 1
- Isa-U-Fix 2
08 Isd's *
- Isd-T-Var-Short 0

-

- Isd-T-Fix-Short

3Nou: that the data Jength field is an encoding of the type of I-structure address, and not the real leagth in bytes,



-8-

- Isd-U-Fix-short 2

- Isd-T-Var 4

- 1sd-T-Fix 5

- Isd-U-Fix 6
11 Mdef 4
12 MObj 4 *
13 Proc 4
14 Smash 0-15 *
15 Bits 0-15

5.1. Counter objects
A counter object consists of two parts—a 32 bit integer and an address where the

acknowledgment is to be sent once the count goes tO z€r0. The address can be a bit string of the
form <PE, tag, nt, port>, a manager object, of a counter object (see Figure 5-1). Both the integer
value as well as the return address are stored along with their data type.

Int-32 Int-32
| Type @& 1 MObi/
1 PE CObj
T Tag OR .

2 nt, port
13
VI

Figure 5-1: Counter Object

Since the system manager is responsible for managing the memory. allocation and deallocation of
counter objects is left to the manager (ie, there are no explicit Allocate-CObj and
Deallocate-CObj instructions). Instead, an instruction to initialize the counter object is provided.

5.2. I-structures
Three new type of I-structure descriptors (Isd-T-Var-Short, Isd-T-Fix-Short, and Isd-U-Fix-

Short) have been added. Note that the length field in the I-structure descriptor is no longer the
actual length of the descriptor, but simply an indication of its type. Given the type, length can be
derived. Formats of I-structure descriptors have changed; the new formats are given below.
1SD-T-Var:

<Base-location>
<Base-PE-number> (8)



<Base-address> (24)
<Total-structure-elements> (16)
Mapping-information>

<elements per group> (16)

<Numbper of Pt’s> (8)

ISD-T-F1IX:
<Base-location>

<Base-PE-number> (8)

<Base-address> (24)
<Total-structure-elements> (16)
<Mapping-information> '

<elements per group> (16)

<Number of PE's> - (8)
<Hement-length> (4)

I1SD-U-Fix:
<Base-location>

<Base¢-PE-number> (8)

<Base-address> (24)
<Total-structure-elements> (16)
<Mapping-information>

<elements per group? {(16)

<Number of Pt's> (8)
<tlement-type>

<Data-iength> 4)

<Data-class> (4)

Short I-structure descriptors are always stored in the memory of one PE, and therefore don't need
mapping information. Other than the lack of mapping information they are similar to their
corresponding larger versions, The operations on I-structure descriptors (e.g., Form-Address,
I-Fetch) should be suitably extended to deal with the short descriptors.

Associated with an I-structure is a reference count which is kept at addresses immediately below
the base address. Though the reference count is stored only on one PE, the locations are reserved
on all the PE’s over which the I-structure is distributed to simplify the memory management. We
can use the base PE of the I-structure as the PE where reference count is stored; however, to
distribute the work of maintaining the reference counts, we use the following simple scheme to
determine the PE number.

PE

reference count

= Base-PE + Base-addressy ,, mod Number-of-PE’s

where Base-addressg is the number represented by bits 8 to 15 of the base address.

The information necessary to maintain the reference count for an I-structure is as follows: a 32-bit
integer, a return address (manager object, counter object, or bit-string of the form <PE, tag, nt,
por>), and the descriptor of the I-structure, We will need 24 bytes to store this information.



-10-

When the reference count associated with an I-structure reaches zero, the stored [-structure
descriptor is forwarded to the return address. Note that reference counts of all the elements which
happen to be I-structures must be decremented by one before storage used by an I-structure can be
deallocated. Since deallocation of storage is done explicitly via the Deallocate instruction, we
have left the task of decrementing the reference counts of component [-structure to *Deallocate

family of I-structure controller operations.

5.3. Error values _
The following new types of error values have been added.

1. I11egal_argument: An argument to the operator has wrong value.

2.Device_read: An error occurred while reading from a device and the operation was
aborted.

3.Davice_write: An error occurred while writing on a device and the operation was
aborted.

4. Too_many_destinations: An instruction that require different values to be sent to
different destinations (eg, Expand, In-Fetch) has more destinations than the

number of values supplied.

5. Never_written: The requested I-structure element is not going to be produced as the
I-structure has been deallocated.

6. Instructions as Specified in the Instruction Set

The compiler assumes the following opcodes for the instructions. An instruction marked with * is
not used by the compiler at this time. The description of an instruction marked with ! has changed

(see Section 7).

NAME OPCODE
ARITHMETIC
+ ¢ 001
-C 002
*c 003
/c 004
tc 005
+ nc 006 *
- nc 007 -
* nc 008 *
/nc 009 ¢
&*

1t nc 010



arith-to-arith
char-to-int
int-to-char

//

BOOLEAN
not bool
ior bool
and bool
xor bool

BIT STRING
notl
not 2
ior bits
and bits
xor bits

shift-left 0
shift-teft 1
shift-left s
shift-left w
shift-right 0
shift-right 1
shift-right s
shift-right w

concatenate

adjust-lengthl(
adjust-lengthr0
adjust-lengthil
adjust-lengthrl

RELATIONAL
{=¢
{¢
=
L c
>
>=cC

{=nc
{nc
= nc

011

012

013

014

016
017
018
019

020
021
022
023
024

032
033
034
035
036
037
038
039

041
042
043

049
050
051
052
053

054
055
056

* # X * % ¥ * * * ¥ * * *

* % # % &



~z= n¢
>=nc

= any

EXTRACT/CONSTRUCT
extract-type
extract-value
construct-data

I-STRUCTURE
form-address
i-fetch
form-address-i-fetch
i-store
form-address-i-store
allocate
deallocate

SIGNALLING
allocate-cobj
deallocate-cobj
decrement-cobj

ITERATION AND RECURSION
D
R
D-l
R—l

DATA MOVEMENT
read-byte
write-byte
transfer

INPUT/OUTPUT
input-block
output-block

CONTROL
exit
write-code-block-register

12

057
058
059

060
061

065
066

072
073
074
075
076
o7
078

080
081
082

088
089
091
096

097
098

104
105

112
113

*!
*|

*|
*|

*
*!
*!

*
*

*



-13-

identity 114
switch 115
set-supervisor-mobj 116 *
MISC
- use 120
compress 121 _
expand 122 !

In addition, the compiler assumes that the following instructions are available.

fix ' 130
float 131
sqrt 132
min 133
max ‘ ' : 134
atan 135
sin 136
cos . 137
remainder 138
abs 139
log 140

7. New Instructions and Changes to the Existing Instructions*

7.0.1. Allocate (077)°

Allocate no longer takes a manager or counter object. It takes two arguments: the first argument
is an I-structure descriptor, and the second argument is an Int-8 specifying a PE number where
the storage is to be allocated, A d = 1 token is sent to the PE spccified by the second argument.
Note that, to allocate an [-structure that is distributed over n PE's, this instruction will have to be
issued n times.

¢ ISD X Int-8 =
<d=1,PE,chain=0,<*A11 ocate <addr,elements-per-PE element-length>>>
or
<d=1,PE,chain=1<d= 0,PE,,tag,nt,port>,<*A11 ocate,<addr,elements-per-PE element-length>>>

o Paradigm: 2 or 3

4ln the data field of a d = 1/2 type of token, a field written in bold is the data along with data class and data length
field, otherwise it is just the appropriate number of bytes. Type ANY is used to denote any of the valid data types except
the ISA’s,

5 The number within () refers to the opoode of the instruction.



e Possible errors; type_mismatch

Elements-per-PE is the number of elements on each PE — this is different then the length per group
carried on the token. In case the I-structure is of type ISD-T-Var(short or long), the element

length defaults to one word (4 bytes).

7.0.2. Deallocate (078)
Similar to allocate, deallocate also doesn’t take a manager or counter object as one of the

arguments. The first argument is an I-structure descriptor, and the second argument is an Int-8
specifying a PE number, A d = 1 token is sent to the PE specified by the second argument. Note
that, just as in the case of Al1ocate, to deallocate space on n PE's, this instruction will have to be

issued n times.

e ISD-T-Var X Int-8 =
<d=1,PE,chain=0,{*Deallocate -T-Var <addr.elements-per-PE>>>

or

<d=1,PE,chain= 1Xd=0,PE, tag,ni,port>.<{*Dealloc ate-T-Var.<addrelements-per-PE>>)

¢ ISD-T-Fix X Int-8 =
<d=1,PE,.chain=0,{*Deallocate-T-F ix,<addr elements-per-PE, element-length>>>

or

<d=1,PE,chain=1<d=0,PE, tag,nt,port>,(*Deallocate-T-F 1x,<addr,elements-per-PE,
element-length>>>

¢ ISD-U-Fix X Int-8 =
<d=1,PE,,chain=0<*Deallocate-U-Fi x,{addr,elements-per-PE element-length,

element-type>>>
or

dd= l,PEl,chain =14d=0,PE, tag,nt,port>,<*Dealtocate-U-F1 x,{addr elements-per-PE,
element-length, element-type>>>

¢ Paradigm: 2or3

¢ Possible errors: type_mismatch
The behavior for short descriptors is the same as above.

7.0.3. Allocate-Cobj (080) and Deallocate-CObj (081)
These instructions no longer exist. Instead, the manager is responsible for allocating and

deallocating counter objects.



7.0.4. Set-CObj (083)

This instruction is used to initialize a counter object. 1t takes two arguments: a counter object
and a smash type. Smash type itself contains two components: a 32 bit integer value, and a return
address (i.e., a manager object, counter object or a bit string of the form {PE, tag, nt, por).

¢ CObj] X Smash =
<d=2,PE chain=0<*Se t-COb J,<CObj-addr,Int-32, (BITSVMOb §VCOb§)>>>
or
<d=2,PE, chain= 1£d=0,PE, tag.nt,port>,<*Set-CObJ <LCObj-addr,Int-32,
(BITSVMObjVCOb >

o Paradigm: 2 or 3

o Possible errors: type_mismatch

PE, is the PE where the counter object resides, and CObj-addr is the 24 bit local address.

7.0.5. D (088)
It doesn’t check the next color field associated with the color field of the incoming tag; that is left

to a separate instruction, If the initiation-number overflows, it passes the value without changing its
initiation-number to destinations specified in the second destination list.

7.0.6. R (089)

The mapping algorithm for the R operator is slightly different than the mapping algorithm for the
D operator. The value of initiation-number on the token is always the calculated value (i.e., a*i +
b) regardless of the subdomain to which the token is sent.

70.7. D’ (090)
It reads the primary color and base register number associated with the color field of the

incoming tag (see Figure 1-1), and uses them to calculate the new tag.

7.0.8. Read-Bytes (096) _

This operation replaces the Read-byte instruction. It takes two arguments: a 32 bit integer that
specifies the starting address, and a 8-bit integer that specifies the number of bytes to read. At most
15 bytes in the address space of a single PE can be read. The result is returned as a bit string.

e Int-32 X Int-8 = |
<d=2,PE;chain=1<d= 0,PE2,tag,nt,port>,<'Read-Bytes,(addr, length >>

o Paradigm: 3

o Possible errors: type_mismatch, illegal_argument

Addr is the 24 bit local address, and length is one byte.



7.0.9. Write-bytes (097)
This operation replaces the write~byte instruction. It takes two arguments: a 32-bit integer

specifying the starting address and a bit string (1 10 15 bytes in length). The addresses where the bit
string is to be stored must be in the address space of a single PE. At most one destination where an

acknowledgment is to be sent may be specified.

e Int-32 X Bits =
<{d=2,PE,chain=0,{*Store-1n-Memory, addr,data>>

or
<d=2,PE,chain=1<d=0,PE, tag,nt,port>,<*$ tore-4n-Memory <addr, length, data>>

¢ Paradigm: 2 or 3

o Possible errors: type_mismatch, 11legal_argument

Addr is the 24 bit local address. The number of bytes in the data is specified by the 24 bit length
field.

7.0.10. Transfer (098)
A destination may or may not be specified.

7.0.11. Expand {122)
The way mask and destination list are interpreted has changed. It takes two arguments: The first

argument is of smash type, and the second argument is of 81ts type. The most significant bits of
the second argument are interpreted as a mask.

The operation of the instruction can be explained as follows: First, a list of data values contained
in the smash type is formed. Then a new list is formed by discarding the values for which the
corresponding mask bit is zero; the most significant bit, if zero, will cause the first data value to be
discarded. The first datum in this new list is sent to the first <Destination>, the second to the
second, etc. Note that if there are more data values than <Destination> entries, they will be
discarded. If there are more <Destination>s than data values, error values
(too_many_destinations) will be sent to the remaining destinations.

o Smash X Bits = {<Da>, V Error| 1 < i < n where n is the number of
destinations}

o Paradigm: 1

o Possible errors: type_mismatch, too_many_destinations

1.0.12. Input-from-Device (104)

This operation replaces the 1nput-block instruction. It takes three arguments: the first
argument is either a 16 bit device specification or a smash type of 16 bit device specification and 32
bit device address, the second argument is a 32 bit integer specifying the destination address, and



-17-

the third argument is a 24 bit integer specifying the block length in bytes. Note that one of the
operands must be constant. At most one destination where the acknowledgment is to be sent may

be specified.

eInt-16 X Int-32 X Int-24 =
<d=2,PE,chain=0,{*Input-from-Dev1 ce,{destination-addr,length,device>>

or
<d=2,PE, chain=1<d= 0,PE, tag.,nt,por>,{*Input-from-Devi ce,{destination-addr,

length,device>>

e Smash X Int-32 X Int-24 =
d= 2.PEl,chain =0,<*Input-from-Device, (destination-addr,length,device,device

address>>

or
<d=2.PE,chain= 1,<d=0,PE, tag,nt,port>.<*Input-from-Dev ce,{destination-addr,

length,device,device-address>>
o Paradigm: 2 or 3

o Possible errors: type_mismatch

PE, is the PE number to which the device is connected, and device is the <device group, device
number> part of the device specification.

7.0.13. Output-to-device (105)

This operation replaces output-block. It takes three arguments: the first argument is a 32 bit
integer specifying the source address, the second argument is either a 16 bit device specification or a
smash type of 16 bit device specification and 32 bit device address, and the third argument is a 24
bit integer specifying the block length. Note that one of these operands must be constant. At most
one destination may be specified. The result sent to the destination is either an acknowledgment or
a smash type of the device specification and the device address where the block was written (if such

an address makes sense and was not specified).

e Int-32 X Int-16 X Int-24 =
{d= 2,PE1,chain =(,{*Read-and-Forward,{addr,length,device-specification>>
or
<d=2,PE,chain=1<d=0PE, tag.nt,port>,<*Read-and- Forward,<addr,length,
device-specification>>

e Int-32 X Smash X Int-24 =
d= 2,PE1,chain =0,{*Read-and-Forward,<addr,length,device-specification, device-
address>>
or
<d=2,PE,,chain=1<d= 0,PE, tag.nt,port>,{*Read-and-Fo rward,<addr,length,
device-specification,device-address>>



-18-

o Paradigm: 2 or 3

o Possible errors: type_mismatch

PE1 is the PE number derived from the source address,

7.0.14. Write-Base-and-Map-Register (113)

This operation replaces the operation write-code-block-register. It takes two operands: an Int-16
specifying a PE number and a base register number, and a bit string. Bit string is of the form
<code-base-address (3), data-area-pointer {3), domain-size (1), domain-base-PE (1), code-per-PE
(2), subdomain-size (1), subdomain-base-PE (1), iterations-per-subdomain (1), last-subdomain-flag
(1)> where the number in parentheses is the byte length of the field.

e Int-18 X BITS =
<d=2,PE, chain=0<*Write-Base-and-Map-Registe r <register-number,data>>

or
<d=2,PE,chain=1<d= 0,PE tag,nt,por>{*write-base-and-map-register,

<{register-number,data>>
e Paradigm: 2 or 3

o Possible errors: type_mismatch

7.0.15. Set-Supervisor-MObj (116)
A destination may or may not be specified.

7.0.16. Length(071)
This operation returns the number of elements in an I-structure.

¢ ISD = Int-186
» Paradigm: 0

o Possible errors: type_mismatch

7.0.17. Constant-Store (099)
The intended use of this instruction is to store constants in the constant area. It takes two

arguments: The first argument is a value, and the second argument is an integer offset. It generates
nd = 2 type tokens where n is the number of PE’s in the physical domain, The values stored in the
constant area are assumed to be of the same length, usually 16 bytes.

o ANY X Int =
{<d = 2,PE,chain = 0, <*Constant-Store, {Base-address, Address-offset, Any>> | 1

<i<n}

o Paradigm: 2



-19-

o Possible errors:type_mismatch

Base-address is the base address of the constant area associated with the color, and address-offset is
integer offset multiplied by 16.

7.0.18. In-Fetch (79)

This instruction is similar to form-address-1-fetch except that it fetches a number of
consecutive elements starting at a specified selector. The first argument is an I-structure descriptor,
the second argument is an integer specifying the starting value of the selector, and the third
argument { n ) is an integer specifying the number of elements to read. The actual number of
values that are read is given by min(n, number of destinations). The first fetched value is forwarded
to the first destination, the second to the second destination, etc. If the number of destinations is
more than n, error values (too_many_destinations) are forwarded to the remaining destinations.

Note that one of the arguments must be a constant.

e ISD-T-Var X Iat X Int =
{Kd= l,PEi,chain= 1.4d =0,PE2,tag,nt,port),<‘ I-Fetch -T,addri» 11<i< n}

e ISD-T-Fix X Int X Int =
{<d=1,PE,chain= 1,<d =O,PE2,tag,nt,port),<'I -Fetch-T,addr2>> |1<i<n}

e ISD-U-Fix X Int X Int=
{<d=1,PE chain=1<d= 0,PE, tag,nt,port>,{*I-Fetch -U,addr;, type>> |1<i<n}

» Paradigm: 3

o Possible errors: type_mismatch, 11legal_index, too_many_destinat fons

The behavior of the instruction for short descriptors is the same except that the PE number is
always the base PE.

7.0.19. Set-RC (123)
This instruction is used to initialize the reference count associated with an I-structure. It takes

two arguments: an I-structure descriptor and a smash type. The smash type itself contains two
components: a 32 bit positive integer, and a return address (i.e., a manager object, counter object, or
a bit string of the form <PE, tag, nt, port>.

¢ ISD X Smash =
<c1:1,PE1,chain=0,<-Set-nc.(Base-address.znt—az,(aIrsvu0ijc0bj).lsn>»

or
{d= l,PEl,chain =1<4d= O,PEz,tag,nt,porO,(‘Se t-RC,(Base-address,Int-32,
(BITSVNOb3JVCObJ), ISD>>>

o Paradigm: 2 or 3

o Possible errors: type_mismatch, 111egal_argument



-20-

PE, is the PE where the reference count is stored; it is derived following the hashing scheme
described in Section 3.2.

7.0.20. Increment-RC (124)
It increments the reference count associated with an l-structure, The first argument is an I-

structure descriptor and the second argument is a positive integer. At most one destination where
an acknowledgment is to be sent may be specified.

¢ISD X Int =
<d = 1,PE,, chain = 0 <*Update, {Base-address,Int>>>

or
{d = 1,PE,,chain = 1,<d = 0.PE, tag,nt,port>, <*Update, <Base-address, Int>>>

o Paradigm: 2 or 3

e Possible errors: type_mismatch, 11legal_argument

PE, is the PE where the reference count is stored; it is derived following the hashing scheme
described in Section 5.2.

7.0.21. Decrement-RC (125)
It decrements the reference count associated with an I-structure. The first argument is an I-

structure descriptor, and the second argument is a negative integer specifying the value to be added
to the reference count. The acknowledgment, if needed, is generated by ALU and not by the

I-structure controller.

¢« ISD X Int =
<d = LPE,, chain = 0 <*Update, <Base-address, Int>>>
and
@ V <d = 0,PE, tag,nt,port, <data>>

o Paradigm: 2

e Possible errors; type_mismatch, 11legal_argument
PE, is the PE where the reference count is stored; it is derived following the hashing scheme

described in Section 5.2,

7.0.22. Extract-Tag (067)
This operation returns the tag on the token as a bit-string of the form <PE, base-register number,

color, initiation-number>. The PE number included in the bit string is the subdomain-base-PE.

¢ ANY == BIT-STRING

e Paradigm: 0



« Possible errors: none

7.0.23. Set-Tag (068)

This operation takes two arguments: a value, and a bit string of the form <PE, base-register
number, color, initiation-number> which is used to compute the tag on the output token. The
PE-OFFSET and ADDR-OFFSET are calculated as usual. The tag on the output token is set to
<PE + PE-OFFSET, base-register number, color, initiation-number, ADDR-OFFSET>.

e ANY X BITS = ANY
o Paradigm: {
o Possible errors: type_mismatch

7.0.24. Construct-Token (069)
This operation takes two arguments: a value of any type, and a bit string of the form <PE, base-

register number, color, initiation-number, relative address, nt, port>. A token with tag equal to the
bit string and value equal to the value specified by the first argument is constructed.
Acknowledgment tokens are sent to all destinations.

e ANY X BITS = ANY
o Paradigm: 0
o Possible errors: type_mismatch

7.0.25. Next-Color(126)

This instruction has two sets of destinations, It checks the next color field associated with the
color field of the incoming tag. If a color is available via the next color field, it generates a bit-string
of the form <PE, base-register number, new color, 0> and sends it to destinations in the first list;
otherwise, it passes the token to destinations in the second list. The PE number included in the
bit-string is base PE of the current subdomain if (255 mod k) + 1) mod k is not zero; otherwise, it is
the base PE of the next subdomain. Ifk is a power of 2 then ((255 mod k) + 1) mod X is always 0.

At present, the next color field is actually a bit (color-continuation flag) specifying whether the
next sequential color can be used or not, and the new color, if available, is always color + 1.

e ANY == BITS
or
ANY = ANY
o Paradigm: 0

¢ Possible errors: none



-22-

7.0.26. Use-immediate (126)
This is similar to the USE instruction except that the acknowledgment, if needed, is generated by

ALU.
o MObJ X ANY =
{d=2,PE,chain=0<*Entr y.<MObj-addr,ANY>>>

and
B Vv <d = 0, PE, tag. nt, port, <acknowledgment>>

e Paradigm: 2

o Possible errors: type_mismatch

8. I-structure Controller Operations

These operation may return an explicit value with data length and class fields, an
acknowledgment (written ACK and probably encoded as boolean true), or nothing at ail (@).

8.0.1. *Allocate (1)
This operation is used to set the status bits of the storage allocated to an I-structure. Note that

there is only one ®*A1locate operation.

o Addr X Elements-per-PE X Element-length = Ack V @
¢ Possible errors: none

8.0.2. *Deallocate-T-Var (2), *Deallocate-T-Fix (3), *Deallocate-U-Fix (4)

These instructions deallocate the storage assigned to an l-structure, ie, set the status bits
appropriately. They are also responsible for decrementing the reference counts of all the elements
that happen to be I-structure, and for sending error values (never_wr1itten) to any pending read

requests,
1. *Deallocate~T-Var:

¢ Addr X Elements-per-PE = (Ack V &)

and
{<d=1,PE chain=0,(* update,<ISDi,-1>>>|I SD, is an clement of the [-structure}

and
{<d=0,PE tag.nt,port, <never_written>>] for all pending read requests}

2. *Deallocate-T-Fix:

o Addr X Elements-per-PE X Element-length = (Ack V @)

and
{Kd= l,PEi,chain =0< 'update,(ISDi,-D))l ISD, is an element of the I-structure}

and



-23-

{<d=0,PE tag,nt,port, <never_wr1tten>>| for all pending read requests}

3. *Deallocate-U-Fix:

o Addr X Elements-per-PE X Element-length X Element-type = (Ack V &)

and
{<d=1,PE,chain=0 <'updata <18D;, 1>>>|ISD is an element of the I-structure}

and
{<d=0,PE,tag, nt,port {never_written>>| for all pendmg read requests}

o Possible errors: never_written

8.0.3. *Set-RC (5)
This operation initializes the reference count associated with an [-structure. It receives the base-
address of the I-structure. Given the base-address, it can calculate the address where reference

count is stored by subtracting a fixed offset (24 bytes).

o Base-address X Int-32 X{(MObj V CObj VB1ts)X ISD = Ack V &
« possible errors; none

8.0.4. *Update (6)

This operation is used to increment or decrement the reference count. It receives the base-
address of the I-structure and a 32 bit integer value. Given the base-address, it can calculate the
address where reference count is stored by subtracting a fixed offset (24 bytes). The integer value,
which may be positive or negative, is added to the reference count.

o Base-address X Int-32 = ACK V @

o Possible errors: none

If the reference count goes to zero then a token of the following type is generated. Note that the
I-structure descriptor included in the token is the descriptor stored with the reference count.

o <d=0,PE,tag,nt,port, <ISD>>
or
<d=2, PE,, <*Entry <MObj-address, <Zero-RC, ISD>>>D
where Ze ro-RC is the name of manager request (see Section 10).
or
<d=2,PE,<{*Decrement-COb}, <CObj-address>>>

8.0.5. *I-Fetch-T (7), *I-Fetch-U (8), *I-Store-T-Fix (9), *I-Store-T-var (10), *I-Store-U-Fix (1 1)
See [2].



9. PE Controller Operations

The data coming on a d = 2 token is treated as a sequence of bytes; the exact interpretation of the
data is based on the opcode. These operation may return an explicit value with data length and
class fields, an acknowledgment (written ACK and probably encoded as boolean true), or nothing at
all (@). If an error occurs during the processing an error token is sent to the destination specified on
the token. If no destination is specified, a token of the following form is sent to the manager. Note
that the manager address is accessible through a special register.

®
d= 2,PE1,chain =0,{(*Entry,{MObj-addr,<{Hand1e-error ,ERROR,PE-controller-number,

opcode-which-caused-error>>>>
where Handle-error is the name of manager request.

9.0.1. *Entry (1) and *Exit (2)
See [2].

9.0.2. *Constant-Store (3)
This operation takes the base-address of the constant area, an address-offset and a value. The

value is stored at base-address + address-offset. The mechanism to detect when all the constant
have been written uses two level of counter objects. Counter objects at the first level are stored in
the first location of constant areas. There is only one counter object at the second level, and it is
stored in the second location of the constant area in domain-base-PE. The second location in all
other constant areas is left unused to simplify the allocation of memory.

Once the value is stored, the counter object in the first location of the constant area is
decremented. If the count goes to zero, action similar to *Decrement-COb j is taken.

e Base-address X Address-offset X ANY = @
o Possible errors: none

9.0.3. *Set-CObj (4)
This operation initializes the counter object stored at the address specified by CObj-addr.

e CObj-addr X Int-32 X (MObj V CObj V BITS) = AckV @&
» Possible errors: none

9.0.4. *Decrement-CObj (5)
The value of the counter object at the specified address is decremented. 1f the count goes to zero,

an appropriate token is sent to the return address stored in the counter object.

o CObj-addr =
<d=0,PE,tag.nt,port, <ACK>>
or



-25-

Kd=2, PEI, <{*Entry <MObj-address, <Zero-C0b j,CObI>>>>
where Zero-COb j is the name of manager request.

or :

<d=2, PE,, <*Dacrement-CObJ, <CObj-address>>>

¢ Possible errors: none

9.0.5. *Read-Bytes {6)

This operation reads 1 to 15 number of bytes starting at the address specified by the address field,
and returns them as a bit string. Note that when reading from the I[-structure memory, invisible
pointers are not traced.

o Address X Length = <d=0,PE,tag,nt.port, <Bits>>
« Possible errors: none

9.0.6. *Store-in-Memory (7) -
This operation stores the data at specified addresses. The starting address is given by the address
field. The number of bytes in the data is specified by the length field.

o Address X Length X Data = ACKV @
¢ Possible errors: None

9.0.7. *Input-from-Device (8)

This operation is used to read data from a device and store it at a specified address. The device
specification is of the form <device group, device number>. If the device number is 0, any device in
the group is selected. The length of data to read in number of bytes is given by the length field. A
device address may or may not be specified.

The destination-address is of the form <PE2 addr>. If PE, is the same as the PE on which this
instruction is executing, the data is simply written in the local memory; otherwise, a d = 2 token is
sent 1o PE,.

o Destination-address X Length X Device =
Ack V&
- or
<d=2,PE,,chain = 0, <{*Store-1n-Memory,{Addr, length,data>>>
or
<d=2,PE,,chain = 1,<d=0.tag,nt,port> <{*Store-1n-Memory,<Addr, length, data>>>

o Destination-address X Length X Device X Device-address =
Ack V @
or
{d=2,PE,,chain=0,*Store-1n-Memo ry.<Addr, length, data>>>
or



26~

{d= 2,PE2.chain =1,{d=0,PE,tag,nt,port>,{*Store-in-Memory.KAddr,length, datad>>

o Possible errors: device_read

Chain and destination address (if any) are copied from the incoming token.

9.0.8. *Read-and-Forward (9)

This operation reads specified number of bytes from the local memory, and writes them on the
specified device. The device-specification is of the form <PE,, device>. If PE, is the same as the PE
on which this instruction is executing, the data is simply written on the specified device (see the
description of *output-to-device instruction for this case); otherwise, it is sent to to the PE
controller responsible for managing the device. Note that when reading from the I-structure

memory, invisible pointers are not traced.

o Address X Length X Device-specilication =
Ack V & V <d=0,PE tag.nt,port, <Smash>>
or
<d= 2,PE2,chain =0,{*Cutput-to-Device,<device length,data>>>

or
<d=2,PE,chain=1,(PE.tag.nt,port>,<*Qutput-to-Devi ce,{device, length,data>>>

o Address X Length X Device-specification X Device-address =
Ack V @ V <d=0,PE tag,nt,port, {<Smash>>

or
<d=2,PE,chain=0,{*Cutput-to-Devt ce,{device;length,data,device-address>>>

or
<d=2,PE, chain=1,<PE,tag,nt,port>,{*Output-to-Devi ce {device,length,data,
device-address>>>

« Possible errors: device_write

Chain and destination tag are copied from the incoming token.

9.0.9. *Output-to-Device (10)

This operation writes the data on a device. The device is specified as a tuple of the form <device
group, device number>, If the device number is zero, any device in the group is selected. If a device
address is specified, the data is written at the specified address; otherwise, it is written at an address
chosen by the PE controller. An acknowledgment or a smash type of the device specification
(Int-16) and the device address (Int-32) is returned as the result.

¢ Device X Length X Data = & V Ack V <d=0,PE,tag,nt,port, {Smash>>

e Device X Length X Data X Device-address = @ V Ack V <d=0,PEtagnt,port,
{Smash>>

o Possible errors: device_writa



9.0.10, *Transfer (11)

This operation reads specified number of bytes from the local memory, and is responsible for
storing them at the address specified by <dest-PE, dest-addr> pair. If the dest-PE is the same as the
PE on which this instruction is executing, the data is simply stored in the local memory; otherwise, a
- d = 2 token is sent to the dest-PE. Note that when reading from the I-structure memory, invisible
pointers are not traced.

o Source-addr X Dest-PE X Dest-addr X Length =
AckV @
or
<d=2,dest-PE,chain=0,{*Store-1n-Memory,{dest-addr,length,data>>>
or
<d=2,dest-PE,chain=1,<{d=0,PE,tag,nt,port>,{*Store-1in-Memory,{dest-addr,
length,data>>>

o Possible errors; none
Chain and destination tag are copied from the incoming token.
9.0.11. *Write-Base-and-Map-Register (12)
This operation sets the specified base register and the corresponding map register.

o Register-number X Data = ACK V &

¢ Possible errors: none

Data is of the form <code-base-address, data-area-pointer, domain-size, domain-base-PE, code-per-
PE, subdomain-size, subdomain-base-PE, iterations-per-subdomain, last-subdomain-flag>. Code-
base-address and data-area-pointer are stored in the base register, and the rest of the information
along with the data-area-pointer is stored in the corresponding map register in the compute-tag
section.

9.0.12. *Set-Supervisor-MObj (13)
Specified manager object is stored in the special register in the PE controller.

eMObj = ACKV &

« Possible errors: none

10. Requests to the System Manager

The system manager may be asked to satisfy the following request; note that this list is by no
means complete. The argument to the manager is usually a smash type; the first field of the smash
type is an Int-8 request identifier. If a return address is specified but there is no explicit result to
return, an acknowledgment should be returned.



1. Invoke a new code-block:

o Argument supplied: <1, code-block-identifier, number of arguments 1o be passed,
{number of it,erations))6

o Result expected: A smash type of the form <argument I-structure descriptor,
result I-structure descriptor>

In the case of a loop, the manager is also responsible to do the following things.

a. To allocate a constant area of appropriate size. The number of constants that
would be stored is specified in the code-block header.

b, To initialize the data area associated with all the colors allocated to the loop.

c. To allocate and initialize counter objects used by the constant-store
instructions. The first level counter objects should be stored in the first location of
the constant areas. The count of these counter objects should be initialized to the
number of constants to be stored in the constant area, and the return address
should point to the second level counter object. The second level counter object,
with an initial count of n where n is the number of PE’s in the domain, should be
stored in the second location of the constant area on the domain-base-PE. This
counter object sends the acknowledgment to an operator in the code-block, thus
its return address is a proper tag. The address of the operator is specified in the
code-block header, and the manager is responsible for generating the proper tag.

2.Allocate & new color: This is a request to allocate a new color for an already
executing loop. '
» Argument supplied: <5, tag as a bit string>
o Result Expected: A bit string of the form <PE number, base-register number,
color, O

If the manager decides to create a new copy of the code-block, it must be loaded in the
same domain with the same mapping parameters as the old code-block. Base-address is
the base address of the code-block —either new or old. PE number is calculated using
the scheme followed by the Next-color operator. The manager is also responsible for
initializing the data area associated with the color.

3. Ralease color:

o Argument supplied: <2, tag as a bit-string>

¢ Result expected: none

8 Fieids in () may be omitted with all following fields also omitted



-29-

The manager will receive two requests to release the primary color assigned to a loop.
The primary color should be released only when both the requests have been received.

4. Allocate a new I-structure:

o Argument supplied: <3, number of clements, (data class), (data length), (n) (d)>
where n and d are mapping parameters,

» Result expected: I-structure descriptor

5, Zero-RC: This request is made when the reference count associated with an [-structure
goes to zero. The I-structure should be deallocated.

¢ Argument supplied: <4, [-structure descriptor>
¢ Result expected: none

6.Allocate a Counter Object: It is a request to allocate a counter object. The PE
where the counter object is to be allocated may or may not be specified.

o Argument supplied: <6, (PE number)>
¢ Result expected: Counter object

7.Deallocate the Counter Object:

» Argument supplied: <7, Counter Object>
» Result expected: none

8. Zero-CObj: This request is made when the value in a counter object reaches zero.

o Argument supplied: <8, Counter object>
¢ Result expected: none

9. Handle-error: This request is made when an error occurs during the processing of a
d = 2 type token.

¢ Argument supplied: <7, error value, PE controller number, opcode which caused
the error>

¢ Result expected: none



-30-

Relerences

1. Arvind, K. P. Gostelow, and W.Plouffe. An Asynchronous Programming Language and
Computing Machine. Tech. Rep. 114a, Department of Information and Computer Science,
University of California, Irvine, Califomia, December, 1978.

2. Arvind, émd R. A, Iannucci. Instruction Set Definition for a Tagged-Token Data Flow Machine.
Memo 212, Computation Structures Group, Laboratory for Computer Science, MIT, Cambridge,

Mass., December, 1981, revised February, 1983



-

Table of Contents

1. Changes to the Architecture
2. Color Management
3. Managers and PE Controllers

4. PE controller, 170 Devices and Master Copy of Code-blocks

3. Data Types
5.1. Counter objects
5.2, I-structures
5.3. Error values
6. Instructions as Specified in the Instruction Set
7. New Instructions and Changes to the Existing Instructions’
7.0.1. Allocate (077)%
7.0.2. Deallocate (078)
7.0.3. Allocate-Cobj (080) and Deallocate-CObj (081)
7.0.4. Set-CObj (083)
7.0.5. D (088)
7.0.6. R (089)
7.0.7. D™ (050)
7.0.8. Read-Bytes (096)
7.0.9. Write-bytes (097)
7.0.10. Transfer (098)
7.0.11. Expand (122)
7.0.12. Input-from-Device (104)
7.0.13. Output-to-device (105)
7.0.14. Write-Base-and-Map-Register (113)
7.0.15. Set-Supervisor-MObj (116)
7.0.16. Length(071)
7.0.17. Constant-Store (099)
7.0.18. In-Fetch (79)
7.0.19. Set-RC (123)
7.0.20. Increment-RC (124)
7.0.21. Decrement-RC (125)
7.0.22, Extract-Tag (067)
7.0.23. Set-Tag (068)
7.0.24. Construct-Token (069)
7.0.25. Next-Color(126)
7.0.26. Use-Immediate (126)
8. I-structure Controller Operations .
8.0.1, *Allocate (1)

OO 0O e -1 OO B

[

14
14
15
15
15
15
15
16
16
16
16
17
18
18
18
18
19
19
20
20
20
21
21
21
2
22
22

7111 the data field of a d = 1/2 type of token, a field written in bold is the data along with data class and data lengiR
field, otherwise it is just the appropriate number of bytes. Type ANY is used to denote any of the valid data types except

the ISA’s.

8“I'he number within ( ) refers to the opcode of the instruction.

13



-ii-

8.0.2. *Deallocate-T-Var (2), *Deallocate-T-Fix (3), *Deallocate-U-Fix (4) 22

8.0.3. *Set-RC (5) 23

8.0.4. *Update (6) 23

8.0.5. *1-Fetch-T (7), *I-Fetch-U (8), *1-Store-T-Fix (9), *I-Store-T-var (10), *I- 23
Store-U-Fix (11)

9. PE Controller Operations 24
9.0.1. *Entry (1) and *Exit (2) 24
9.0.2. *Constant-Store (3) 24
9.0.3. *Set-CObj (4) 24
9.0.4. *Decrement-CObj (5) 24
9.0.5. *Read-Bytes (6) 25
9.0.6. *Store-in-Memory (7) 25
9.0.7. *Input-from-Device (8) 25
9.0.8. *Read-and-Forward (9) 26
9.0.9. *Output-to-Device (10) 26
9.0.10. *Transfer (11) 27
9.0.11. *Write-Base-and-Map-Register (12) 27
9.0.12. *Set-Supervisor-MObj (13) 27

10. Requests to the System Manager 27



-iii-

List of Figures

Figure 1-1: Base Registers, Map Registers, and Constant Areas
Figure 1-2: Compute-tag and Construct-token Sections

Figure 2-1: Compiler Generated Code to Get a New Color
Figure 5-1: Counter Object

[+ IRV SV S



