MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE
CAMBRIDGE, MASSACHUSETTS

COMPUTATION STRUCTURES GROUP MEMO 215

HIGH PERFORMANCE DATA FLOW COMPUTERS

A Proposal to the Department of Energy

JACK B. DENNIS

MARCH 1982

Introduction

In June, 1982, the MIT Computation Structures Group will complete a three-year
“research program on data flow computer architecture sponsored by the Department of

Energy. In this period we have;

- Designed and documented the programming language VAL as a high-level
programming language for programs to be executed on data flow computers.

- Constructed an “Engineering Model”, a hardware system for the evaluation of
proposed architectures of data flow computers.

- Designed and implemented procedures for translating the constructs of VAL
into data flow machine language.

- Developed promising approaches to handling the data structures of large
numerical computations.

- Analyzed several application problems for their suitability for efficient
execution on data flow computers.

- Explored design mecthodologies for packet architectures and developed
preliminary specifications and designs for several basic units of data flow
computers,

With support from the National Science Foundation, we have contributed to the specific
theoretical characterization of data flow languages and computations, and of architectures

known as packet communication architectures,

Our work has shown that data flow computers will be able to demonstrate high
performance through exploitation of large scale parallelism for computational problems in
signal processing and in the solution of the partial differential equations of fluid systems.
- For example, we have studied the NASA global weather model--a benchmark program
written in Fortran. This code has been rewritten in VAL and we have developed machine
code structuring principles that permit the VAL code to be mapped onto the processing and

memory resources of a static data flow supercomputer, The conclusion of our cnalysis is

that a data flow computer system with 256 processing elements would be able to carry out
this computation at about 180 megaflops, and would complete one time step in each five
seconds of computing time for the 144 by 87 by 9 grid. Since the configuration assumed
does not require high performance memory to achieve this speed, and since all logic and
arithmetic is done by LSI parts, the hypothesized machine should be much smaller and
consume less power (by a factor of ten or more) than a conventional supercomputer of the
same specd. Furthermore, additional speed can be achieved by increasing the number of
units in tue machine until the complexity of wiring the interconnection network limits the

possible gain. (This is not likely before the machine has several thousand processing

~elements.) The analysis of the weather model benchmark program and a discussion of the

level of performance possible using a data flow supercomputer is presented in [14], which is
attached to this proposal. Other applications under study are a Navier Stokes code for
aerodynamic simulation provided by the NASA Ames Research Center, and the Simple

code provided by the Livermore Laboratory.

We propose to continue this project with the goal of building practical high-

- performance data flow computers during the next three to five years. The work involved

includes the design and engineering of the physical hardware for data flow machines, the
design of an efficient machine instruction set, and the development of program
transformation and optimization techniques for programs expressed in VAL. This work is
already in progress and we are confident of its completion and avatlability for the

construction and use of practical data flow computer systems.

The principal work to be done, howeve.r, is the design of the five to ten custom LSI
circuit chips from which a broad range of data flow machines may be built. This work
includes selecting, acquiring, and/or programming the necessary computer aided design
tools, acquiring facilities for testing and evaluating custom fabricated devices, and
developing the approach to be adopted for achieving full hardware fault detection. Many

MIT computer science graduate students now have training in VLSI design, so a pool of

resources--people and sofiware--is developing at MIT.

We will also need access to fabrication facilities for LST devices. The MIT VLSI
Program is an important resource for us, but it is not clear whether our requirements can be
met through this channel alone. We have initiated some contacts with east coast industry as
possible partners in custom device fabrication. The Digital Equipment Company, IBM, and

Bell Laboratories are possible resources.

For the proposed project, the character of much of our work will change from design
studies, problem analyses and basic résearch, to hardware design and software
development. This requires appointment of qualified full-time staff personnel to lead
critical areas of the project effort, Fortunately, several very talented people will be available
to us in the near future who are enthusiastic and highly qualified to take on these new

responsibilities,

In the following section we briefly review the progress and status of our current effort,
We discuss work being done elsewhere. Then we outline in greater detail the program of

effort required to meet the goals.

Research Status

In our proposal for the research presently supported by the Department of Energy we
outlined six projects devoted to essential groundwork for successful development of
practical large-scale data flow computers. Here we review our achievements in each of

tirese six areas,

Project I: Data Flow Source Language. The programming language VAL has been
designed expressly for programming applications for data flow computatior.. Tt is a
Sunctional language, by which we mean that each textual unit of a VAL program just defines
a process for computing output values from input values--there is no other effect [1]. This

Propeity permits easy analysis of VAL programs for parts that can be exccuted

concurrently. A preliminary reference manual for VAL was published in 1979 [3], and the
language has been implemented in the form of a translator and interpreter, which are
written in CLU and run on the DEC Syétem 20 machine at the MIT Laboratory for
Computer Science. This implementation serves as a standard for the language and has
allowed evaluation of the language through the programming of many examples and

several benchmark applications [25].

The VAL impIementatibn has been extended with an experimental code generator that
constructs formal program graphs from the abstract parse trees produced by the VAL
~ translator, then transiates the program graphs into data flow instructions. At present a
program written in VAL can either be executed by the intcrpreter,'or, if it is not too large or
complicated, translated into a collection of data flow machine instructions and loaded into
the processing clements of a data flow architecture under study using the Engineering
Model.

Project 2: Construction of an Engineering Model. The concept, purposes, and design of
our Engineering Mod~! were described in [12]. This facility is now operational with four
microprogrammed processing units and a four-by-four routing network through which
result packets may be sent between emulated data flow processing elements, Programns
involving several hundred data flow machine instructions have been compiled from VAL
source programs into an éxperimental instruction set [30] and run on the Engineering
Model. During the next month, expansion of the engineering model to eight processing
units interconnected by an cight-by-eight packet routing network will be completed, and it
will be possible to run significantly larger programs for evaluation. Our experience with
- this facility will provide valuable data for instruction set design, for strategies of program
| optimization and code generation, and for developing suitable methodologles for hardware

specification, design, debuggmg, verification, and fault to]emnce

Project 3: Program Translation, Qur first steps on the problem of translating VAL into

data flow machine code were limited to programs that do not process data structures,
Montz [26] showed how to reduce ihe number of acknowledge arcs in data flow programs
while supporting pipelined operation at the maximum raté. Todd [32] developed
Tanslation rules for converting the basic VAL constructs for conditionals, iteration, and

distribution into pipelined data flow machine code.

The availability of the engineering model has focused interest on the problems of
choosing good program structures and generating efficient machine code. Since VAL isa
functional programming language in which side effects are excluded, the analysis of data

depcndencies for purposes of program optimization is straighiforward.

Project 4: Data Structures, A major subject of current study is how computations
involving structured data should be handled on data flow computers. William Ackerman is
pursuing doctoral research on the concept of spatial interleaving of arrays. In this scheme
large arrays are divided into man y fragments which are processed at different sites within a
data flow computer. Programs to be analyzed are represented as abstract program graphs
and transformations performed on them to put the program in a form that can run

efficiently on a general class of paraliel computers.

In a master’s thesis, Gao is developing the basis of a general scheme for using pipelined
opcration of data flow machine code to match parallelism in an application to parallelism
in the machine [16]. We have successfully applied this scheme to the global weather
model [14] and are evaluating the cextent to which this paradigm of machine program

structure can be applied to other com putations that have a less regular structure.

Project 5: Architecture Description and Simulation. As our ideas about data flow
computer architecture have crystallized, we have become interested in the prcblem of
writing satisfactorily precise specifications of hardware units, Some experinieats with

“varions notations appear in earlier publications [18,19). This work has now come to

fruition: Clement Leung and Willie Lim have completed the Preliminary Reference
Manual for PADL [24}--a specification and design language for systems employing the
packet communication architecture that characterizes our concept of data flow computers,
The PADL language will be used to specify hardware units for projected prototype data
flow computers. Already PADL has been used to specify the basic router module, and to
develop a preliminary design for the array memory module of our proposed static data flow

architecture,

Project 6: Specification of a Form 2 Data Flow Processor. Our studies have shown that
the originally proposed Form 2 data flow processor is the best basis for developing practical
machines for large-scale numerical computation. We now call this machine brganization
the staric data flow architecture. It is significantly different from the Form 2 machine as a
result of studies of program structure, hardware design tradeoffs, and analysis of specific

applications.

L. Data structures are to be supported as arrays allocated to contiguous sets of
locations in conventional random access memory devices. A more general
scheme of reprcscntatlon had been proposed but is too complex for machines
‘of the near future [2].

2. We have found that the static architecture is considerably more flexible than we
had appreciated. [t appears possible to implement most features of appropriate
high-level functional languages through use of su1table machine level program
structures [29, 31].

3. The appropriate size of the instruction mémory of data flow processing
elements is, on the basis of application codes we have studied, much larger than
we had thought, and this requires rethinking the hardware designs developed

- earlier.

Further discussion of the proposed static architecture for data flow computers is provided

under Proposed Rescarch.

In addition to the six principal projects, supporting studies have been carried out on

several topics where new knowledge is needed to provide a solid basis for a successful

implementation project.

Analysis of Applications, In étudying the probiems of generating good machine code
programs for data flow computers, we are using several benchmark programs supplied by
research sponsors. The attached paper [14] includes an analysis of a global weather model
code from NASA. This code has been translated by hand from FORTRAN into VAL, and
the hydrodynamics portion of the VAL progfam mapped into data flow machine code.
Other large application codes being studied include a Navier-Stokes code, also from

NASA, and the Simple code provided by the Livermore Laboratory.

Packet System Architecture. Our work on the basis of packet system architecture spans
the range from theoretical to pragmatic. Tam-Anh Chu is evaluating alternative designs for
the processing element of a static data flow supercomputer. Willie Lim is investigating
alternative approaches to developing LSI designs suitable for digital systems havi ng packet
architecture. Our group has already devoted considerable effort to developing design
methodologies using the principles of self-timed systems [28, 19], and studying application
of this approach to the key module types for the static data flow architecture [9, 10].
Another approach being studied is based on the "stoppable clock” -- each LSi chip is
internally timed using a clock circuit that can start and stop reliably in response to the
presence or absence of signals indicating tasks to be performed. The testability of modules
employing asynchronous operation is also of interest. Router modules for the prototype
evaluation facility have been built with testing features that allow diagnosis of a large

routing network without disassembly [22, 23).

Routing Networks. In his doctoral research G. Andrew Boughton [6] has completed the
first major part of his doctoral research on the structure and performance of packet routing
networks by sharpening his analysis of the case in which the cost and delay of individual
connections hetween routing modules is constant. The second phasc of this research

concerns how these cost and delay factors would affect the structure and performance of

9

'VLSI realizution’s.in which a major part'of a packet network would be implemented within

El singk; chip.

Semantics of Nondeterminacy. Our work in the area of formal semantics of computer
languages and systems includes the doctoral research of Dean Brock, who uses a concept
called "scenarios” to capture the ordering information essential to giving a unique
description of the behavior of a non-determinate concurrent program [8]. His ideas

- overcome the flaw discovered in the use of mathematical relations for this purpose,

A General Purpose Data Flow Computer System. Professor Dennis is developing the
formal description of a general purpose computer system of unusual characteristics using a
novel technique of writing the formal operational semantics for computer systems [13].
'The proposed computer system is advocated as an exploration of a combination of
assumptions that seems very attractive: many interactive users sharing centrally stored
information; concurrency at the level of individual instructions; all information accessed
through a universal mechanism using unique identifiers; and no data changes -- that is, data
are created, used in defining other data, and discarded -vhen no longer of interest. Qur

plans for this work are given in a paper submitted for publication [15].

Related Work

Of all the computer architectures currently under consideration, only the data flow
projects combine development of hardware architecture with development of an
appropriate, sound programming language and methodology. Of the data flow projects, it
seems to us that only the project we propose here has a realistic chance of realizing

supercomputer performance within the next few years.

Among the projects of interest are the Stanford/Livermore S-1 machi.ne, the HEP
machine of Denelcor, and CDC's Advanced Flexible Processor. The S-1 is a conventional

shared-memory multiprocessor [34] and has the usual problems- it uses expensive fast

10

circuitry and does not expand gracefully to large numbers of processing elements, No
programming methodology for exploiting many processors on one problem has been

developed for this architecture.

The Heterogeneous Elemcnts Pirocessor (HEP) offers an intermediate position between
conventional multiprocess realizations and data driven instruction execution [7]; the design
includes a relatively efficient means for communicating data from one process to another.
Consequently, a finer level of concurrency is achievable without loss of performance
through high cost of managing process interaction. The HEP architecture retains the
problems of shared main memory, and I am not aware of the development of a suitable

programming methodology.

The Advanced Flexible Processor (AFP) deve.loped by the Control Data Corporation
uses a totally different principle of machine level program organization. It is very suited to
the pipelined operation of many processors performing parts of a large computation [11].
However the structure of the processor restricts the variety of computations that may be
supported efficiently and the generation of the needed control words could be a severe
problem. No suitable programming methodology has been developed for this machine,
but one mtt,restmg possibility is the design and implementation of a compiler for a

functional fanguage such as VAL,

Work on multiprocessor systems is also being carried out at New York Univérsity, and
at the University of Texas in Austin. The work at NYU is ‘based on certain
processor/memory interconnect configurations which are well matched to the data-access
patterns of some important algorithms [27]. It has not been shown that the high
performance possible in principle can be realized within the framework of a stored
program, general purpose machine. The work at Texas attempts the implementation of
many ideas--some good, some bad--and is not likely to produce significant results unless

the etfort is focused on a more coherent overall concept of system operation [17]. In both

11
projects I have not seen an adequate guiding methodo]ogy of program structure,

Other projects in data flow computation are related to the proposed effort. The project -
at the Texas Instruments Company was the closest in $pirit to our present proposal. That
effort provided a practical demonstration that a data flow com puter can provide a speed-up
cqual to the number of processing elemenis. ‘However, the TI project did not address
cffectively the problem of handling the data bases associated with large numerical
computations. Recently, this group has been pursuing a different concept of data flow

architecture better suited to process control and military command and control systems.

Professor Arvind (a colleague at MIT) has proposed a tagged token architecture that
uses a novel approach to handling structured data and envisions hundreds of processing
elements, each complete on a single VLSI chip [5]. A small associative memory is to be

used in each processing clement to perform the matching of tags.

At Manchester University in England, Gurd and Watson have assembled a prototypé
data flow computer which uses the tagged token principle [33]. This machine has been
demonstrated with up to four processing elements In each processing unit a large

associative store is used to perform token matching and to hold data structures.

We are aware of interesting work being done in Japan, especially the work of Amamiya
of the Nippon Telephone and Telegraph company [4). Although several experimental
machines have been built, it is not clear that any of these are the basis for a practical, large-
scale data flow machine, and there is at present no firm industrial commitment to the
development of data flow machines. Nevertheless, the considerable interest in the subject

in Japan is likely to lead to strong efforts in the future.

Proposed Effort

We propose to desigri and fabricate a basic set of LSI parts from which data flow

machines may be constructed. The class of data flow machines we propose to construct is

12

(256,256) (8,8)
I | - ~
» PE > » FU1 >
g s FU2 _ -
» AM |}—p
. RN2
. 'J * . (8,8) T
. »! PE > » FU1 —
~ ; » FU2 >
o] PE » ™ AM —-——i-)
RN1 RN2 RN3

signal packets

L { result packets} < , J

Fig. 1. Structure of the proposed prototype machine.

illustrated in Fig, 1 and explained further in the attached paper. The main units of the
machine are;
- PE: Processing Flements. These units hold instructions of the machine level

program. They receive result packets from other instructions and determine
which instructions are ready for execution.

- FUL,FU2: Functional Units. These units perform the basic scalar operations,

- AM: Array Memories. These memory units hold the array values that form the
structured data of the computation. :

- RNI: Routing Network (256-in, 256-out). This network delivers result packets
to the processing elements that contain their target instructions.

- RN2: Routing Networks (8-in, 8-out; 32 networks). This network transmits
ready instructions (with their operands) to an appropriate functional unit, or to
an arrdy memory unit via RN3 if an operation on structured data is called for.

.13- _

- RN3: Routing Network (32-in, 32- -out). This network routes instructions that
operate on structured data to the array memory module that holds the relevant
data,

Fach of the routing networks is built of individual two-by-two router units, each being a
single L.SI part. Network RN1, the largest network, consists of eight stages with 128 two-by-

two routers in each stage--a total of 1024 router units.

The thesis to be tested is that high performance can be achieved through massive
par a]lellsm at less expense than through ultra-fast circuits. Hence the technology in which
- the basic units of the proposed machines will be fabricated is NMOS or CMOS. In this case
machines cén be built from RAM chips and the five basic custom LSI devices listed in Fig,
2.

" Machine Unit _ Part Count

Cell Block (256)

Cell Block Controller (custom) 256

RAM Chips (8 apiece) 2048
Array Memories (32) :

Array Memory Controller (custom) 32

RAM Chips (32 apiece) 2048

Adders (four per section) (custom)
Multipliers (three per section) (custom)

Routing Networks
RN1 (256 by 256) ' - 1024
RN2 32 networks (8 by 8) 384
RN3 (32 by 32) 80
Subtotals
Routers (2 by 2) (custom) o 1488
Other Custom Chips 512
RAM Chips 4096
Total : . 6096

Fig. 2. Part counts for a data flow supercomputer.

14

Due to the pin limitations on practical devices, we assume that packets are transmitted
1s byte-serial format using 16-bit bytes. The 225 MHz computation rate is based on a byte
transmission rate of eight MHz. which is within the performance range of conncctions to

NMOS and CMOS devices.

These numbers are for a data flow computer which, according to our preliminary
analysis of the global weather code, could perform that computation at the rate of one time
step in each five scconds of computation -- a speed of about 225 MIPS or 180 MFLOPS.
For a machine of higher performance, these numbers may be simply doubled for each
doubling of computation speed except that the distribution network will require one more
stage for each doubling of performance. For example, to achieve 360 MFLOPS capacity,

“in addition to multiplying all part counts by two, the addition of 256 two-by-two routers to

make up a ninth stage of the distribution network is required.

In a static data flow computer instructions of the machine-level program are assigned to
processing elements (instruction cell blocks) by the compiler and program loader, and this
allocation is fixed for the duration of the computation. The operands of instructions are
stored as part of the instruétions, S0 an instruction cannot be reused until the result of jts
previous cxecution is consumed. For this reason, pipelining of data through the
instructions of the machine-level program is an important means for achieving high

performance. A carefully designed optimizing compiler is required.

In bringing a large scale data flow machine into operation for the first time design
errors and faults in operation are certain to be discovered. We wish to make sure that a
clear distinction can be made between three classes of difficulties: software problems such
a5 eIroneous source programs and incorrect compilation; hardware design errors; and
fuilures of hardware elements, Because the envisioned machines are highly asynchronous,
it is particularly important that failure of hardware be'distinguished from other scurces of

error. For this reason, we plan to implement full-coverage hardware fault detection in the

15

proposed machines, adapting the methodology developed by Leung [20, 21}, Simulation

- will be used to verify the functional correctness of hardware designs,

‘The schedule of work is shown in Fig. 3. In addition to support for graduate students

and staff, the proposed budget requests equipment funding as follows:

Year 1: (1982-83) - $50K
Equipment to support design, testing and verification of LSI

- logic circuits.
© Year 2: (1983-84) | $100K

Mask generation and circuit fabrication costs for custom
device development; test equipment.

Year 3: (1984-85) $300K
' LSI device production for prototype machine: packaging,
wiring, power supply, cabinetry, and cooling eqmpment host

computer for programming support systems.

16

1982-83

- Design instruction set,

- Develop fault detection scheme.

- Preliminary module design (PE and AM).
- Fabricate arid evaluate 2-by-2 router chip.
- Acquire CAD tools.

- Design and acquire test facility.

- Develop compilation techniques.

1983-84

- Final designs for modules.

- Logic simulation for design verification,

- Fabrication of experimental chips.

- Mechanical.and packaging design for prototype machines.
- Compiler implementation.

- 1984-85

- Device production.

- - Prototype assembly and checkout.
- Develop programming support system.
- Evaluation.

Fig. 3. Project work schedule,

17.

~ References

L. Ackerman, W, B. Data flow languages. Computer 15, 2 (February 1982), 15-25.

2. Ackerman, W.B. A Structure Memory for Data Flow Computers. . Technical Report
TR-186, Laboratory for Computer Science, MIT, Cambridge, MA 02139, August, 1977.

3. Ackerman, W. B. and Dennis, J. B. VAL -- A Value - Oriented Algorithmic Language:

Preliminary Reference Manual. Technical Report TR-218, Laboratory for Computer
- Science, MIT, Cambridge, MA 02139, June, 1979, '

4. Amamiya, Makoto, et al. Data Flow Machine Architecture. Musashino Electrical
Communication Laboratory, Nippon Telcphone and Telegraph, May, 1980.

5. Arviﬁd, and Kathail, V. A Multiple Processor Dataflow Machine That Supports
Generalized Procedures. Eighth Annual Symposium on Computer Architecture,
May, 1981, pp. 291-302. |

6. Boughton, G. A. Routing Networks for Packet Communication Systems. Ph.D, Thesis
Proposal. Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA
02139, January, 1981. : '

7. Brinton, J. B. System grows from 10 to 160 MIPS. Electronics 55,4 (1982), 161-163.

'8'. Brock, I. B., and W.B. Ackerman. Scenarios: A Model of Non-dcterminate

Computation. Lecture Notes in Computer Science, Formalization of Programming

- Concepts, Springer-Verlag, New York, 1981, pp. 252-259.

9. Chy, T.-A. Determination of Throughput Rates for the Cell Block. Computation
Structures Note 43, Laboratory for Computer Science, MIT, Cambridge, MA 02139,
November, 1981.

10. Chu, T-A. Circuit Analysis of Self-Timed Elements for NMOS VLSI Systems. Master
Th., Dept. of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139,
June, 1981, - .

11, Control Data Corporatioﬁ. Advance Flexible Processor: Design Specification.
Information Sciences Division, Control Data Corporation, Minneapolis, Minnesota, 1979.

12. Dennis, J. B, Boughton, G. A., and Leung, C. K C.- Building Blocks for Data Flow
Prototypes. Proceedings of the 7th Annual Symposium on Computer Architecture,

* May, 1980, pp.1- 8. o

18

13. Dennis, J. B. An Operational Semantic_s for a Language with Early Completion Data
Structures. In Formal Description of Programming Concepts, Springer-Verlag, Berlin, 1981.

14. Dennis, J.D., G.R. Gao, and K. W, Todd. A data flow Supercomputer. Laboratory
for Computer Science, MIT, Cambridge, MA 02139, 1982.

I5. Dennis, 1. B. . Paperin preparation.

16. Gao, G.R. An Implementation Scheme of Array Operations in Static Data Flow
‘Machine. S.M. Thesis Proposal. Dept. of Electrical Engineering and Computer Science,
MIT, Cambridge, MA 02139, April, 1981, :

17. Kapur, R.N., U. V. Premkumar, and G.J. Lipovski. Organization of the TRAC
Processor-Memory Subsystem. AFIPS Conference Proceedings, May, 1980, pp. 623-629,

I18. Leung, C.K. C, D.P. Misunas, A. Neczwid, and J.B, Dennis. A Computer
Simulation Facility for Packet Communication Architecture, Third Annual Symposium on
Computer Architecture, Institute of Electrical and Electronics Engineers, Piscataway, N. J "
08854, 1976, pp. 58-63. | '

19. Leung, C.K. C. ADL: An Architecture Description Language for Packet
Communication Systems, Proceedings of the 4th International Symposium on Computer
Hardware Description Languages, IEEE, October, 1979, pp. 6-13.

20 Leung, C.K. C, and Dennis, J. B. Design of a Fault Tolerant Packet Communication
- Architecture. The 10th International Symposium on Fault Tolerant Computing, IEEEF,
July, 1980, pp. 328-335. _

21. Leung, C. K. C. Fault Tolerance in Packet Communication Architectures. Technical
Report TR-250, Laboratory for Computer Science, MIT, Cambridge, MA 02139,
September, 1980.

22. Lim, W. Diagnostic Hardware of the Prototype 2 x 2 Router, Laboratory for
Computer Science, MIT, Cambridge, MA 02139, 1982.

23. Lim, W. A Test Strategy for Networks of 2 x 2 Routers, Laboratory for Computer
Science, MIT, Cambridge, MA 02139, 1982. Forthcoming.

24, Lim, W, and C. K. C. Leuﬁg. PADL: A Packet Architecture Description Language
Preliminary Reference Manual. In preparation,

25. McGraw, J. Data flow computing: the VAL lal_iguage. ACM Transactions on
Programming Languages and S ystems 4, 1 (January 1982).

19

26. Montz, L. B. Safety and Optimization Transformations for Data Flow Programs.
"Fechnical Report TR-240, Laboratory for Computer Science, MIT, Cambridge, MA 02139,
January, 1980,

27. Schwartz, J. T. Ultracomputers. ACM Transactions on Programming Languages and
Systems 2, 4 (October 1980), 484-521. - -

28. Singh, N.P. A Design Methodology for Self-Timed Systems. Master Th., Dept. of
Electrical Enginecring and Computer Science, MIT, Cambridge, MA 02139, January, 1981.

29. Stoy, J. E. . Unpublished memorandum

30. Todd, K. W. An Interpreter for Instruction Cells. Laboratory for Computer Science,
MIT, Cambridge, MA 02139, July, 1981. :

31. Todd, K. W. . Unpublished memorandum

32. Todd, K. W. High Level VAL Constructs in a Static Dataflow Machine. Master Th.,
Dept. of Electrical Engincering and Computer Science, MIT, Cambridge, MA 02139,
February, 1981,

33. Watson, I. and J. Gurd. A Practical Data Flow Computer. Computer 15, 2 (February
1982), 51-57. o

34, Widdoes, L.C, Jr. The S-1 P'roject: Developing High-Performance Digital
Computers. COMPCON Spring 1980, February, 1980, pp. 282-291. ' -

20

Current Support

National Science Foundation ,
Title: Data Flow Computer Architecture
Principal Investigator: Jack B. Dennis
Period: 1 March, 1980 to 28 February, 1983
Amount: Second year: $81K; Third Year: $90K"

National Acronautics and Space Agency
Title: High Speed Data Flow Architecture for the
Solution of the Navier-Stokes Equations
Principal Investigator: Jack B. Dennis
Period: 1 February, 1981 to 1 March, 1982
Amount: $25K"

Proposals Pending

National Science Foundation
Title: Experimental Computer System
Based on Functional Programming Concepts
Principal Investigator: Jack B. Dennis
Period: 1 April, 1982 to 31 March, 1934
Amount: First year: $248K; Second year: $209K

NASA: We may continue work with the Ames Research Center on analysis of
Aerodynamic simulation codes and there is a possibility of support for further analysis of

weather simulation codes from the Goddard Institute for Atmospheric Research,

