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Implementation Strategies for a Tagged-Token
| Data Flow Machine

1. Introduction

The architecture of a tagged-token data flow machine based on the U-interp eter has
progressed from an abstract definition of the base language (1, 2]. to the definition of the
maching's structure [4, 5], to the specification of the instruction set [3]. Work in progress

includes the formal functional specification of the machine’s behavior [6].

In recent months, the Functional Languages and Architectures group at M.LT. has
reviewed this progress. In so doing, the machine's architecture has been refined, and a

clearer idca of its future has emerged. This paper examines three aspects of this review

process:

1. Abstract Architecture and Goals: A perspective is given for evaluating possible
implementations.

2. Implementation Proposals: Several of the major proposals are presented.

3. A Multitasking Micromachine: One of these proposals is examined in detail
(hardware configuration, microprogrammer’s interface, etc.).

1t should be emphasized that the work presented here represents the efforts of all the
members of the group. Specific credit is given where appropriate, however, many of the

ideas simply evolved from the discussions.

2. Abstract Architecture and Goals

The abstract architecture of our tagged-token data flow machine is shown in Figure 2-1.
Essentially, the machine consists of an nXn routing network connected to n identical
Processing Elements (PEs). Each PE contains 17n of the total program memory in the
system, 1/n of the total data (I-structure) memory, a waiting-matching associative memory,
an ALU, and simple input/output facilities. Fach PE bas a connection to the routing

network (input and output} as well as a local data path. In essence, each PE is capable of
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standalone operation without the communication network.

It should be noted that this is not the only possible organization of a tagg.d-token
machine. Figure 2-2 shows an alternative organization which can exhibit rarkedly
different behavior. Rather than organizing the PEs and communication network

separately, pieces of the two can be combined.

2.1. Abstract Architecture
Current work is directed toward the organization of Figure 2-1, As such, we have
proposed a PE architecture as shown in Figure 2-3. The PE can be logically divided into

three relatively independent subsystems:

1. d=0 token processing: This subsystem interprets the data flow graphs proper.
It contains the waiting-matching memory for pairing tokens which require
partners, a program memory for storing instructions (code blocks), an ALU for
performing the operations, and logic for constructing output tokens (tag
computation) [3].

2.d=1 token processing: The I-structure subsystem processes all requests for
fetching data from, and storing data into the I-structure memory. It is capable
of handling many reqguests simultaneously (in that a fetch operation is
suspended until the required datum is available). All d=1 tokens contain the
tag to be used when the indicated operation is complete. For this reason, no tag
computation hardware is necessary.

3.d=2 token processing: Many operations may be categorized as service or
control functions, These are carried out by the PE controller which has global
access to all of the memories contained in the other subsystems as well as
having control over the clocking and error handling services.

All output tokens carry the identifier of the logical target PE. Prior to sending these
tokens out to the communication network (or routing them back over the local path), the

logical PE number is translated into a routing address.
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2.2. Goals
Each of the possible implementations considered for the abstract machine was weighed

against a set of goals. While there was some debate s to the relative importances, the goals
were

1. Adherence to the architecture: This statement asserts that any proposed design
should, in some sense, be isomorphic with the abstract design.

2. Ability to demonstrate scalability: Given a program with sufTicient paraliclism,
the machine should show a linear speedup as PEs are added. Further, the
machine should not rely on technology in a way that would be difficult to

extend.

3. Lack of artificial constraints: An important issuc is that the basic design should
have sufficient capacity (memory, processing speed) to allow for the running of
very large programs without necdless concern over the physical constraints of
the machine. A rough bound on performance would require a PE to be able to
cxecute {on the average) at least 1 data flow instruction every 200 jLsec.

4. Flexibility: Any machine should be considered as a research tooi rather than a
"final product”. It is foolhardy to presume that we can anticipate all of the
questions we may wish to ask about the machine and its behavior beforchand;
it is important to keep the design open-ended and the interface to it simple.

5. Reliability: While this kind of concern is usually voiced more in an
industrial/commercial context, it is of great importance to this project due to its
nature.  Implementing a single PE without concern for reliability may not
present problems, but the desire to have 64 PEs aff working at the same time
cannot be cealized using the same philosophy.

6. Pragmatic concerns: In view of the fact that we wish to demonstrate a working
machine in finite time, the following sub-goals were considered;

a. Reasonable cost of PE replication: Any PE design must live within the
constraints of current and projected funding. We have set g limit on the
per-PE cost (including necessary support hardware, frames, power
supplies, cables, etc.) at $10,000.

b. Minimization of external dependencies: Any effort to extend the project
beyond our own research group should be done in a way that the success
of the project does not depend totally upon factors beyond our control.
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c. No reliance on constrained resources: No proposed design should
presuppose resources (tools, facilities, people) which cannot be
reasonably expected to materialize. This concern is particularly strong in
the area of design automation facilities which, in most cases, ire
themselves research projects.

d. Ease of construction/testing/debug: Again, due to the sheer numbers
involved, the design should be as simple as possible and as scif-
diagnosing as possible. Current design practice shows that this can be
done fairly easily if considered from the outset of the project.

A rough figure of merit is the cost/performance (C/P) ratio. Cost is measured in $/PE;
performance is measurcd in instructions/sec. (with the understanding that data flow
instructions are being measured). Therefore, C/P figures quoted in this paper will be
understood to have units of ($ sec.)/(PE instructions). Obviously, a "better” design will

have a lower C/P ratio than will a "poorer” design.

3. Implementation Proposals

This section describes the six major hardware proposals considered by the group. With
each is a brief description of its features and an analysis of how well it addresses the goals.

The proposals are presented in roughiy chronological order.

3.1. The Discrete VLSI Approach
The desire to implement a PE as a small set of VLSI chips is due to Arvind and Kathail

(4}.

3.1.1. Proposal
Returning to Figure 2-3, the basic strategy is to partition the design as follows (one VLSI

chip per part):

- Waiting-Matching: Control logic accepts d=0, nt=1 tokens and attempts to
pair up those with identical tags (using an associative memory). Pineda has
designed and fabricated a waiting-matching chip which performs this function
for a 64-deep memory. External logic and memory are required to handle
overflow, should it occur.
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- Instruction fetch: As described in [3], d=0 tokens delivered from the waiting-
matching section (or directly from the PE input in case of nt=0) denote an
instruction in the program memory. ‘The instruction fetch section builds an

operation packet for the ALU according to a fixed rule.

- ALU: This component performs the functions for all d=0 type operations
{with the exception of those whose purpose is simply tag alteration, eg., D,
SWITCH, etc.).

- Token building: All tag computation is to be done by this subsystem according
to the rules in [3]. This involves accepting a partially complete token from the
ALU along with the destination list pointer and old tag supplied by the
instruction fetch component,

- I-structure controller: Tokens of type d=1 are processed here. The operations
involve storing and fetching clements from I-structures along with certain low-
level storage management primitives. A facility for queucing unsatisfiable
fetches is controlled by this subsystem.

- PE contrel: Service type operations (raw read/write opcrations to the various
PE memories, starting/stopping of the clocks, diagnostic operations, etc.) are
carried out by a small processor, perhaps a commercially-available
MICrOprocessor.
Also, MSV/LSI giue (qucues, etc.) will be used to bind the chips together. It is estimated
that this design could be realized at a per-PE cost of roughly $2000 and a performance on

the order of one data flow instruction (on the average) every 10 jpsec.

3.1.2. Evaluation
This design clearly adheres very closely to the abstract architecture. Scalability is also

easily demonstrated. The detailed design is sufficiently vague that it can be argued that no
artificial constraints have been applied. Also, while reliability has not been addressed in
detail, it should not seem unreasonable to claim that it could be designed into the chips. In
quantitics, this proposal has the lowest PE replication cost of the other designs if the actual
design can be made to fit into the few VLSI chips outlined. This design has the best C/P
ratio of all of those considered (C/P = 0.02).

The proposal is weak in several areas. As in any design with discrete data paths, fixed
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interfaces, or VLSI technology, the “cost™ of flexibility is very high. If anything, the design
can be made practical only through the systematic elimination of flexibility. Furher, it is
yet to be demonstrated that the tools exist to allow a smail research group to censtruct a
project of this scale and to get it working in a few years. Several rescarch projects are
moving in the direction of specifying a design in a high level language and compiling to

sificon, but no tools for that purpose exist today.

This proposal is best described as Jong-range and is a good candidate for the ideal

"ultimate" project.

3.2. The Migration Strategy
A strategy suggested by lannucci and Thomas is to construct the tagged-token machine
in pieces, with commercially available microprocessors acting to “take up the slack™ for

components not yet realized in hardware (through emulation). A diagram of such a system

is shown in Figure 3-1.

3.2.1. Proposal

As shown in the figure, each major subsystem is housed on a separate card (in this case,
an Intel MULTIBUS! card). The physical interface between two subsystems consists of a
discrete data path which can be logically disabled and replaced with an interface to the
MULTIBUS. The philosophy here is that, for subsystems that are not yet implemented, a
Motorola 68000 processor attached to the bus can be used to emulate the behavior of the
missing subsystem(s). The send-acknowledge protocol will be translated into a
MULTIBUS interrupt handshake sequence (in essence providing a send-acknowledge

protoco! between a hardware component and a software module).

Cards implementing the various subsystems in hardware can be staged into the design as
manpower permits. Top-card cables would provide the discrete data paths between

hardware components. This strategy has the additional benefit of being able to isolate the

]'I'rademark of Intel Corp.
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hardware modules even after they are designed and debugged - for testing and diagnostic

purposes.

The per-PE cost of this design is close to $15,000. In final form (all discrete dita paths
implemented), it would have the same performance as the VLSI design - 1 instruction

every 10 psec.

3.2.2. Evaluation

This design addresses most of the goals quite cffectively; due to the fact that the ultimate
version of the PE implements the subsystems and data paths -as the architecture indicates,
the system matches the architecture well. This design is more flexible than the VLSI
version in that hardware modules can be staged in and out simply and easily without major
impact (allowing for simple design changes). As in the VLS| machine, reliability would
have to be considered more carefully. This design also has a very good C/P figure of 0.15.

No dependence exists on technologies far beyond the state of the art in this design. This,
along with the well-defined interfacing strategies, allows the project to be partitioned
among as many (or as few) designers as are available. As has been pointed out, this design

exhibits excellent debuggability and testability characteristics.

The single biggest drawback to this strategy is the cost per PE. As shown in the diagram,
each PE would be 6 (perhaps 7) MULTIBUS cards. The estimated cost exceeds the
$10,000 per PE threshold defined by the goals.

3.3. The Motorola 68000 Based Single-Card PE
Arvind and Thomas suggested a design based on a commercially available single-card

computer (see Figure 3-2).

3.3.1. Proposal
In this design, no time or expense is incurred in designing PE hardware; the philosophy
is 10 interconnect 64 commercially-available MULTIBUS processor cards (M68000 based

by virtue of the available software). Fach card would emulate (via multitasking) or
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simulate the behavior of one PE.

An optimistic estimate claims that it would be possible to construct a 64 processor
machine at a per-PE cost of $2500. Performance would be on the order of one instruction

every 150 psec.

3.3.2. Evaluation
In support of this approach, it is by far the least manpower-intensive, it offers the

ultimate in fexibility, and the cost of replication is low. C/P is good but not excellent at
0.375.

This proposal has several drawbacks. Primarily, the adherence to the archirecture is
harder to argue in the case of emulation; if a simulation is chosen instead (to preserve the
internal as well as external characteristics of the abstract PE), performance would suffer
considerably (thus artificially constraining the types of programs which could be executed
by virtue of slowness). Reliability of the single-card computers is also questionable in that

none are available with error-corrected memories.

3.4. The Motorola 68701 Based Single-Chip Computer PE
The author also proposed a discrete data path machine which relied less on external
factors than the discrete VLSI approach yet, at the conceptual level, adheres closely to the

architecture.

3.4.1. Proposal

The strategy behind this design was to use off-the-shelf single chip microcomputers
(random access memory, ultraviolet erasable programmable read-only memory,
input/output, timing/interrupt facitities, and a CPU on a single chip) like the Intel 8748 or
the Motorola 68701. One microcomputer would be used to implement each major
subsystem (see Figure 3-3). Further, to reduce the amount of unnecessary data movement,
a global heap storage would be used to contain the token data; the discrete data paths

would be used to pass pointers among the subsystems.
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As a token arrives from the network, an input processor would send the bulk of the data
(sce Figure) to the heap; the heap manager would return a unique identifier which would
be used by the other subsystems to access the data. The heap would be a contention-frce
four port memory (using bipolar components, the cycle time of the heap is approximatcly

five times the fastest single instruction time of the 68701).

Fach of the other subsystems (with the exception of waiting-matching) wculd have
access to the heap. Also, each subsystem would have some local memory for non-shared
data (eg. program memory, I-structure storage, etc.). As the subsysicms ran
independently (no memory conflicts, even at the heap), the execution rate would be
determined by the pipeline step time. For the average case, the ALU/Service Section
could execute a data flow instruction in approximately 150 psec., relying on an intel 8087

for floating-point arithmetic.

A rough partitioning showed that this design would span roughly three MULTIBUS
sized cards, and the per-PE cost would be nearly $6000 (including frames, powet supplies,

etc.).

3.4.2. Evaluation:

As pointed out, the advantages of this design derive from its adhcrence to the
organization and partitioning of the abstract machine. ltis fairly flexible in that the control
programs for each 68701 can be readily changed, although the physical paths are somewhat

constraining. The design does not rely at all on the availability of advanced design tools or

facilities that are not readily available.

The disadvantages, however, are equally noteworthy. The design relies on the relative
speeds of the heap vs. the 68701 to assure interference-free behavior. This kind of
constraint is usually difficult to preserve as individual technologies (single chip computers,
memories) advance. The raw speed is not exceptional; moreover, the cost/performance is
the worst of all the designs considered (C/P = 0.9). Reliability would also have to be

addressed.
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3.5. The 3-Microprocessor Shared Memory PE Structure
Pineda took a slightly different approach; by using a contention-based shared memory

structure with off-the-shelf components, a physically sim pler design could be realized.

1.5.1. Propusal
Referring to Figure 3-4, we see that the design is partitioned into four major subsystems:

three processors and one shared memory (bus-connected to the processors). ‘The paths
shown in the diagram are logical, not physical. Three physical processors allow for some
PE-level concurrency (missing in the single-card computer scheme), and the design allows
for the use of commercially-available math coprocessors (like the Intel 8087). This design,
flike the 68701 based PE, takes advantage of pointer movement rather than data movement.

Unlike the 68701 scheme, the three processors communicate the pointers through shared

memory and synchronizing semaphores.

Pineda’s analysis shows data flow instructions can be processed at a rate of about one per

250 psec. The per-PE cost is in the neighborhood of $2500 (packaged as a single logic

card).

35.2. Evaluation
This design is very attractive in terms of cost, manpower, flexibility, lack of dependence

on external factors and general simplicity.

A primary disadvantage is the machine's instruction execution speed. Note, however,
that while this design is somewhat slower than the 68701 based machine, it does have g
better cost/performance figure (C/P = 0.625). However, it does not exhibit an obvious

isomorphism to the abstract machine,

3.6. The AMD 2903 Data Flow Multitasking Micromachine
Early on in the evaluation process, the author proposed a multitasking micromachine as

an implementation strategy. This idea was dismissed and then later resurrected.
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3.6.1. Proposal
The philosophy of this proposal was to design a machine that could be readily realized

with current components and technigues which in and of itself exhibited substantial
capacity (processing speed and memory size), comparable to a MOS VLSI implementation.
The machinc itself should be easily constructed, debugged, and tested; morcover, it should
have better reliability than commonly-available single card systems. It should be open-
cnded to the extent that, not only should it itself be able to interpret data flow graphs at
nontrivial rates, but it should allow for the staging of the design from code-based modules

to hardware-based modules (as does the multi-card migration strategy). Further, it should

be inexpensive to replicate,

A machine which meets these criteria is shown in Figure 3-5. A detailed description of
its operation is given in a later section. lts low-level structure relies on microcode level
context switching in the spirit of the Xerox Alto [9] and Dorado [7). As in the M68000
single-card design, each subsystem in the abstract machine is represented as a software
(microcode) module.  Unlike the single-card system, context switching is extremely

efficient because of explicit hardware support for it,

The data paths, memory, and arithmetic elements are sufTiciently wide (32 bits) that no
convoluted code need be constructed 1o manipulate normal data objects (e.g., floating-
point numbers, memory addresses).  Automatic alighment circuitry and length/boundary

hardware climinate the vagaries of manipulating objects smaller than 32 bits as well.

The control storage subsystem implements & very sophisticated yet simple branching
mechanism to allow for 2-way, 4-way, 8-way, ... 256-way branching on any data object.
Mukliiway branching can be performed on contiguous and noncomtiguous bits within the

suine eipht bit byte,

‘The maiatenance subsystem contains a microprocessor which is separate from the main
data paths; it facilitates initialization, testing, debug, and control of the micromachine. To
further enhunce the reliability of the primary memaory (constructed from 64K bit or 256K

bit dynamic RAMs), it is error-corrected.
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The rough per-PE cost is $3500; the data-flow execution rate is in the neighborhood of

one instruction per 20 psec,

3.6.2. Evaluation
This proposal has one of the best cost/performance figures of all the designs examined

(C/P = 0.07), second only to the VLSI machine. It is flexible in that the control logic is
implemented in microcode rather than in silicon. It is also the only design to specifically
address the reliability issue. Debugging is significantly enhanced through the use of a
maintcnance processor for which software already exists. Since it is constructed from off-
the-shelf components, it relies only on design tools for card-level wiring. The design makes
no outlandish claims on the underlying hardware: hence the micromachine should scale

with technology.

The primary disadvantage is the difficulty of arguing adherence to the architecture. To
do this proverly, it will be necessary to demonstrate that the external characteristics of the
abstract PE have becn preserved. The internal behavior relies on the structure of the
microcode; strict interiaces must be maintained between the microcode tasks (analogous to

the "strict” wire interfaces between subsystems in the abstract machine).

4. A Multitasking Micromachine

4.1. Basis and Structure

As described in the previous section, the AMD 2903 based micromachine of Figure 3-5
was conceived as a general research tool, and answers well most of the objections raised in
cvaluating the other machines. This section reviews the major subsystems of the

micromuchine, and describes the microinstruction format.

It is important to recall the salient features of this design while reading the detailed
descriptions; they are presented here in summary:
3

- Hardware-supported context switching: Tasking on a conventional machine is
gencrally hited by the overhead in performing a context switch. ‘I he biggest
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problem is generally in saving the programmer-visible machine  state
(addressing and data registers, status {lags, etc.). The Xerox Alto and Dorado
{7, 9] solve this problem at the microcode level by replicating machine state
wherever it occurs, and by putting a fixed limit on the number of tasks which
can concurrently exccute. As these machines are register-based, this means that
each task has its own sct of registers. Thus, rather than rolling out task,’s
registers and rolling in task.'s registers (Jots of memory references), the physical
hardware is simply replicated. Switching then becomes trivial.

Unfortunately, at the microcode level, the machine state manifests itself in
many morc ways than just the gencral-purposc registers and the program
counter. Any specific hardware resources (e.g., loop counters, MARs, MDRs,
branching registers, etc.) must also be duplicated. The trend exhibited by
Xerox in the Alto-to-Dorado transition was to increase the machine complexity
by doing just this.

In the design of our micromachine, this was the original thinking. However, it
became apparent shortly thercafier that it does not make much sense to
duplicate afl such machine state for the following reason: in that the tasks for
the data flow micromachine will be communicating with ecach other rather
heavily (unlike the Alto and Dorado where the tasks are rather autonomous), it
will be necessary o implement an atomicity mechanism for using shared
storage (a common situation). Memory-based synchronization flags would
represent a serious performance degradation (due to the relative stowness of the
memory). Rather, it is better to allow the microprogrammer some explicit
control over the decision to switch tasks; in an "atomic" section of code, the
task switching would be temporarily disabled (e.g., for the duration of a
memory operation). Giving the microprogrammer fine-grained control over
the decision to enable task switching allows us to further reduce the hardware
complexity by making al! use of non-duplicated resources atomic. In the case
of MAR and MDR, this actually comes for free (since the memory reference
must be atomic, anyway).

- Adequate capacity: The micromachine is designed to contain a minimum of
256K 8-bit bytes of error-corrected dynamic memory (refreshed by a microcode
task). By replacing the 64K bit chips with pin-compatible 256K chips, the per-
PE memory size is 1 Megabyte, fully error-corrected. The control storage size is
8K x64 bits. The clock period is under microprogram control; register-to-
register arithmetic will cycle in under 200 nanoseconds.

- Efficient branching: The control storage is two-wa'y interleaved; each access
fetches two consecutive microinstructions. Late in the cycle, a boolean value
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will sclect the odd- or the even-addressed microword. This allows conditional
branching to occur without the typical one-cycle pipeline delay penalty which
most machines exhibit. This results in microcode which is ecasier to write
without any loss of performance.

Further, efficient multiway branching on any number of bits in an arbitrary 8-
bit byte can occur in a single cycle (in parallel with arithmetic and main
memory operation).  Each task has its own micro program counter, and has the
capability for one level of subroutine linkage. Task switching occurs without
the loss of any microcycles.

- Reliable operation: The micromachine, as noted, uses error-corrected memoty.
Scveral hardware checks are also performed (parity on all control storage
fetchcs).  All errors cause a special error-handling task to be enabled. It
responds by communicating the nature of the error to the maintenance
processor which can perform further logout and analysis, The maintenance
processor has full access (o the micromachine’s state (including the contents of
the control storage, CSAR, and CSDR).  Further, a "diagnostics” task is
cnabled o ran when no other work is being performed by the micromachine
(hackgronnd opceration).

4.2. Major Subsystems
‘The micromachine is partitioned into four major subsystems; the ALU, the control
(microprogram) storage and sequencer, the main storage, and the maintenance subsystem.

These four systems communicate with one another through
- a 32 bit wide shared data bus,
- 4 64 bit wide microinstruction bus, and

- 4 status bus.

Liuring any microinstruction cycle, any or all of the following may take place:

- Source selection: The microprogrammer may select two general-purpose
regisiers (GPRs), a constant and a GPR, a constant and a data bus-connected
register, or a GPR and a bus-connected register as inputs to the ALU.

- Destination selection: The microprogrammer may select one or more targets
for the result of a computation: a GPR, main memory, or a bus-connected
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register. The offsets/boundaries are under microprogram control.

- Branch selection: Many options are available for performing multiway
branching; most can be overlapped with other useful operations.

- Memory reference: The microprogrammer has low-level control over the
behavior of the dynamic memory subsystem. This allows for simpler hardware;
refresh is handled by a microcode task. The details of manipulating the
memory are largely handied by a set of fairly powerful macro operations for the
user who does not care about such things.

- Status setting: Many status conditions can be latched or used in the conditional
branching hardware directly. A hardware-managed loop counter is provided
for writing single microinstructions which can loop on themselves while
automatically decrementing and testing a count.

- Next task computation: Hardware examines the pending requests for all of the
16 possible tasks and sclects the next task. 1f the microinstruction specifically
allows task switching, the current micro program counter will be saved, and the
new task’s microprogram counter will be fetched. No delay cycle is necessary
in order to do the task swiiching,

4.2.1. ALU

The arithmetic subsystem is designed around a set of eight AMD 2903A bipolar bit-slice
processor chips. External lookahead carry !ogic'is also provided. The register file internal
to the 2903s is ignored, and an external file of 16 groups of 32 32-bit registers is used
instead (one group of registers per task). The register file is actuaily duplicated (one copy
for the ALU A-input, the other for the B-input). Writing into the files is done to the same
address in each, but reading may be done using two different addresses. This gives, in

effect, a fast dual-ported memory.

Multiplexers and control logic allow the ALU A-input to be driven from one register file
or the microprogram-specified constant, while the ALU B-input can be driven from the
other register file or the data bus. Alternation of the register addresses between source and
destination, as well as the padding-out of the addresses with the current task 1D, is also

handlced by the hardware.
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4.2.2. Control Storage

The primary function of the control storage subsystem is to fetch microinstructions from
the microprogram memory in some meaningful sequence. This machine docs not employ
any hardware for performing arithmetic (e.g., add 1) on the microinstruction addresses.

Instead, each microinstruction contains enough information so that the next microprogram

address (heid in the uPC) can be computed by fairly simple bit-substitution.

There are several hardwarc-supported microprogram address formation modes:

- Jump: This is the norma! mode of operation. Bits in the microinstruction are
substituted as-is into the uPC. 'Thus, unconditional control transfer and normal

sequential flow are handled in the same manner.

- Jump to subroutine: The current pPC is saved in a special memory, and the bits
in the microinstruction are interpreted as the new pPC (the starting address of
the subroutine) as in the Jump case. The hardware only supports one level of
subrcutine call.

- Return from subroutine: The pPC is restored, and the low order bit is forced on.
This simplification implies that all Jump 10 subroutine microinstructions must
be mupped (o even-numbered addresscs in the microprogram memory. Due to
the fuct that cach microinstruction in a sequential flow can be mapped o any
focation cqually well, this is not a significant problem.

- Multinay branch: The eight low bits of the microinstruction-specified address
are nterpreted as a Mask. The remainder of the bits are substituted directly
into the addressing register as in the Jump case.

The hardware contains a special §-bit register (the Branch Data Register, or
BDR) which is connected to the data bus. It is a legal destination target, and
can Lhus be set under microprogram control to any value,

The Mask and BDR are combined to form the low-order eight bits of the uPC
by thz lollowing rule. For 0<i<7, examine Maski.

*if0: uPC, is left unaltered.
*il 1: uPC, is set to the value of BDR..

In otlict words, bit positions in the mask equal to zero correspond to don’t care
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bits in the BDR.

By this mechanism, many types of multiway branching can be performed.
Simple 2-way branching is done whenever there is exactly one "1" bit in the
Mask. Likewise, 4-way branching corresponds to two "1" bits, and so on. The
limiting case is 256-way branching with all bits in the Mask (8 of them) as "1".

Two-way branching on hardware status conditions is handled by a separate mechanism.
In the above, branching is performed by computing a new uPC from the old pPC, a Mask,
and an arbitrary 8-bit quantity. More frequently, the microprogrammer will want to
branch based on some boolean staius condition. Traditionally, this is done by selecting the
condition (ALU overflow, etc.) and using it as one of the address signals for the

microprogram memory.

We adopt a similar scheme here, but implement it in a way that serves to put fewer
constraints on the microprogrammer. In the traditional approach, using the status bit as an
address line meant that the status condition had to be available early in the microcycle
(since the availability of the next microinstruction depends on accessing the control storage,
and accessing control storage depends on the status bit). If the bit is to be developed during
the current microcycle, as would be the case in any arithmetic status, the microprogrammer
must do one of two things:

1. Extend the microcycle to accommodate the total required delay. This is likely
to be nearly twice the normal cycle time, slowing down the overall performance

accordingly.

2. Set the status condition one cycle ahead of time (ie., do the operation which
sets the bit, execute another unrelated cycle, then perform the branch). This
type of microcode is typically very hard to write, debug, and maintain.

To avoid this problem, we adopt the strategy of fetching rwo microinstructions per cycle
as in a two-way interleaved memory. The fetched instructions form an even/odd pair
(addresses i and i+ 1, where i is even). Conditional branching is done by selecting, late in
the cycle, one of these two microinstructions. In effect, we are still using the status bit as

the low-order address line; the primary difference is that the settling of this line goes on in
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parallel with the array access rather than in serial.

The microprogrammer is given the ability to sclect among a number of status conditions.
A ficld in each microinstruction is reserved for this purpose. When decoded, it identifies
one of these possible conditions which then, in cffect, becomes the low-order address bit.
Note that, in the case of non-conditional instruction processing, we still necd some ability

to indicate fixed branching., Two special decodes denote the always-even and always-odd

Cascs.

4.2.3. Main Storage
The main storage is configurable as 256K or IM 8-bit bytes (single error

corrected/double error detected - SEC/DED) organized as 64K or 256K 32-bit words.
Several basic cycle types are possible:

- Read: Initiated whenever the address register (MAR) is set: crror-corrected
data are available in the data register (MDR) after the fixed access time.

- Write: A full write cycle requires setting of the MAR and MDR. The error-
correction circuitry will compute check bits for the MDR data, and the write

will be initiated.

- Partial  write:  Writing of Jess than 32 bits requires prefetching
(Read/Modify/Write).  The prefetch operation is under microprogrammer
control (using an explicit Read cycle). Modification of less than 32 bits of the
fetched data is assisted by a data alignment network which connects the MDR
to the system bus. This permits the modification of 8-bit items on 8-bit
boundarics and 16-bit items on 16-bit boundarics. Again, the error-correction
circuitry computes the new check bits. The length information is specified in
the microinstruction; the offset information may be specified by the
microinstruction or by the Jow 2 bits of the MAR.

- Refresh: Similar to a Read cycle, it is initiated by setting the MAR. Only the
Row Address Select lines (RAS) 1o the memory are asserted. A Refresh cycle is
shorter than a normal Read cycle.
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4.2.4. Maintenance Subsystem

The maintenance subsystem is designed to deal with the issues of debugging, testing,
initialization, error-handling, and host input/output. It is made up of a commercially-
available microprocessor, volatile and non-volatile memory, input/output interfaces,

timing facilitics, interrupt handling logic, and a gateway to the primary micromachine bus.

At power-on, an initialization program in the non-volatile memory will initialize the
maintenance subsystem and the micromachine (control storage, main memory, registers,

clocking). It will also attempt to establish communication with a host computer (file

service, etc.).

4.3. Microinstruction Format
The microinstruction is made up of many orthogonal fields, some of which are encoded.

They arc described here in broad outline only.

- A-Source: Selects a 16-bit immediate constant or one of the 32 GPRs as the
input to the A-side of the ALU.

- B-Source: Selects one of the 32 GPRs or one of the 32 bus sources as the input
to the B-side of the ALU.

- Destination: Sclects one of the 32 GPRs or one of the 32 bus sinks as the target
for the current operation.

- Write-enable: Allows for concurrent writing into several destinations (special
cases that occur frequently). These fall into three categories:

1. Register/Bus sink
2,BDR
3.MDR
Any combination of these three groups is permitted.
- Length/Offset: The operand length (2 bits) and offset (2 bits) may be explicitly

specified. These fields play an essential role in manipulating memory for items
less than 32 bits in length. Length/offset resolution is to the byte (8-bit) level.
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- ALU function: Controls the operation of the AMD 2903 As.

- Hardware scheduler command: Enables or disables task switching, queries the
current tasking status, requests or masks a particular task, etc. '

- Cycle length: Controls the clock gencrator by adding time (in increments of 50
nanoseconds) to the basic cycle. Useful for allowing the machine to operate at
a cycle length appropriate for a particular operation; it eliminates the need to
run the machine always at the "slowest"” cycle speed.

- Odd/even select: Allows the specification of the branch condition,
- NA/Constant/Mask: Specifies one of the following:

1. Next microinstruction address

2. Mask for computing the next address

3. A 16 bit arithmetic or logical constant

4.4. The Microassembler '

Thomas [8] has built a flexible, general-purpose macro assembler which wil] be adapted
for use with the micromachine. Microinstruction syntax is equational, with some limited
use of keywords for branching and other controls, Definition of the syniax is beyond the

scope of this paper and will appear separately.

One of the major issues in the design of such a microassembler is the problem of
assigning microinstructions to control storage addresses. Due to the regular nature of the
microinstruction addressing (we have not used a blocked control storage structure), this is a

containable problem. Assignment can be done quite effectively as a three step process:

1. Select cells for the targets of all multiway branches starting with 256-way, then
128-way, then __.

2. Select cells for all fixed odd/even pairs:
- 2-way branching using the odd/even select mechanism

- Subroutine linkages
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- Microinstructions using immediate constants and their successors

3. Assign the remaining microinstructions freely to the remaining cells.

5. Conclusion

This paper has attempted to provide an overview of the thought processes that led our
group to the current projects. We reviewed six major proposals and evaluated each one

according to a set of fixed goals.

Onc of the proposals, a multitasking micromachine, was examined in great detail. It is
our intent to construct this processor as a single logic card and to replicate it (64 copies) for
the purpose of building a large data flow research vehicle.

Our preliminary goals call for the following milestones:

- Design: completion of the design (to the point that a wire-wrap list and a parts
list have been generated) by August 31, 1932

- First machine: by December 31, 1982
- First version of the microcode: by March 31, 1982
- 64 machines: by October 31, 1983

- Full operation: by December 31, 1983
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