LABORATORY FOR

MASSACHUSETTS

INSTITUTE OF
COMPUTER SCIENCE TECHNOLOG

Y

r

_

A Methodology for Debugging Data Flow Programs

Computation Structures Group Memo 219
12 December 1981
(Revised 15 October 1982)

Nena B. Bauman'

Robert A. lannucci?

lR&seaIch support provided by the National Science Foundation under grant MCS-7915255.

2Research support provided by the International Business Machines Corporation.

‘\

J

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Abstract

Data flow languages, being relatively new on the scene, have very little in the way of generally--
accepted programming methodologies. Most researchers still tend to think of operating data flow
machines in a sort of batch mode; that is, programs are compiled for later execution. The execution
takes place in a static environment; the running program does not change. Debugging has been
viewed as an activity carried out externally. Moreover, symbolic debugging is inherently difficult
due to the nature of data flow. Such languages are functional and, therefore, have no states in the
conventional sense. This is touted as a strength of data flow languages but becomes a hindrance
when program debugging is viewed in a traditional context. This paper presents an alternative
position.

We focus on the fundamental issues of "debuggability” as they relate to data flow. While
superficially it appears that the data flow paradigm is doing everything in itls power to hinder
interactive debugging, many characteristics of data flow can actually be used to advantage. We
exploit the differences.

Key words and phrases: data flow, debugging, functional languages, programming methodology

Table of Contents

1. Introduction
2. A Bug isa Bug is a Bug
3. The Problems of Debugging Data Flow Programs
3.1. The Data Flow Computation Model
3.2. Differences that Influence Debugging
3.3. Debugging Existing Functional Languages
4. Goals of a Data Flow D¢bugging Device
5. Proposals
5.1. Watching Execution
5.2. Simple Monitoring
5.2.1. Asynchronous Monitors
5.2.2. Input-Influence tracing
5.2.3. Error tracing
5.3. Intelligent monitoring
5.3.1. Daemons
5.3.2. Linguistic Extensions
5.4. Combined Program Development, Execution and Debugging
6. Conclusion

OO ND ND G0 O LA WD Lo N

Pt et et et kot
B R S R S

ii

List of Figures

Figure 3-1: Data Flow Program Segment with Graph Translation
Figure 5-1: Asynchronous Monitor

Figure 5-2: Daemon

Figure 5-3: Implementation of a Debugger as an 1D Manager

10
11
13

A Methodology for Debugging Data Flow Programs

1. Introduction

In the last ten years, a serious look has been taken at the fundamentai model of computation that
underlies most systems in use today [4]. This model (proposed by von Neumann in the 1940s) is
characterized by a central processing unit communicating in a more or less serial fashion with a
memory subsystem. This model describes computation as the sequential following of a list of
instructions {stored in the memory subsystem); these instructions are requested by the central
processing unit, and are returned via the serial communication path (we use the term serial to
describe a path which can carry only one datum at a time).

This deceptively simple set of assumptions about how computers should be constructed has had a
profound influence on the way we think about them. The von Neumann paradigm gives rise to two
very undesirable characteristics of program behavior:

L. Sequential Execution: The von Neumann model is, by definition, a sequential
processing of instructions.

2. Shared, or "Global" Storage: This manifests itself in many ways and has an implicit
sequentializing effect on programming (e.g., shared mutable data).

Data flow [3. 6] has been suggested as an alternative model of computation. In such an
architecture, rather than fetching data upon the availability of instructions (ie, when the program
- counter points to the instruction), instructions are fetched upon the availability of data (sometimes
referred to as data driven computation). Data flow has the potential to exploit the concurrency
available in highly parallel algorithms. To do this, however, the languages used to describe the
algorithms must be built around the concept of freedom from side-effects.

The concept of debugging (as a consequence of inherently flawed human systems) is not well
understood in the context of von Neumann systems. Unfortunately, even the small amount of
understanding we have of debugging on a von Neumann system is not directly applicable to data
flow systems; von Neumann debuggers work with sequential flow of control and global memory,
whereas data flow prohibits both of these. Hence, we must develop a better, and more
fundamental, understanding of what debugging is,

1Wc recognize the need to provide a hierarchy of debugging tools. This paper deals with that level of the hierarchy that
is associated with the construction of programs written in high fevet data flow languages.

2. A Bug is a Bug is a Bug
The following terms are used in the sequel:

- Bug: That which causes the behavior of a program or system to differ from its intended
behavior.

- Debug: The methodical process of identifying bugs and their causes: frequently
followed by appropriate modification of the associated program or system to remove
these.

- Erroneous: Something which is incorrect or incomplete.

- Specification: The formal description of the intended behavior of a program or system.
Such a description, to be considered complete, must describe said behavior under all
possible conditions.

- Debugging Device: A powerful and flexible execution monitoring mechanism.

Bugs come in many varieties and originate in many different ways, most of which can be traced
back 1o the actions of one or more humans. Bugs may arise from one or more of the following:
erroneous specifications, erroneous implementation of the specifications, erroneous encoding of the
algorithms into the programming language being used, failure of the language transiation/checking
process, failure of the hardware, or failure of the bug detection mechanism (nonexistent and
undetected bugs).

‘The obvious approach to.debugging would thus be to eliminate all sources of bugs. While this is
a noble goal, it is inherently unachievable due to the assumption that we, the flawed humans, would
be able to correctly identify and eliminate all the other flaws that we have introduced. With this
disconcerting fact in mind, we turn from the problem of bug elimination to the problem of bug
reduction,

Traditional approaches to bug reduction are part of what we call good programming
methodologies. The techniques include

1. Creation of a specification which is as complete as possible.
2. Careful algorithm development/proof.

3. Careful encoding in a programming language:

a. Selection of an appropriate language/proof system,
b. Compile-time checking (where appropriate).

c. Run-time checking (where appropriate).

-3-

Only when all else fails should the programmer resort to explicit debugging. Realistically, this is
unavoidable in some sitwations. Where it is appropriate, debugging tools should be made available
to assist in this process. It is very important to stress that any such tools should allow the
programmer to deal in the concepts with which he is familiar - at best, we believe, he should be able
to use the full power of the language in which the program is written during the debugging process
(reading a core dump does not adhere to this principle).

More often than not, a programmer will rely on his intuition and experience to decide on a
starting point when tracking down a bug. This usually begins with a probabilistic determination of
the most likely cause. A good debugging environment should not stand in the programmer’s way in
making this choice. [deally, the debugger could provide suggestions based on program state,
exception conditions reflected at a lower level, and so on.

3. The Problems of Debugging Data Flow Programs

The last section discussed bugs and debugging in an architecture independent context.
Unfortunately, our debugging intuition has been heavily biased towards von Neumann ideas. It is,
therefore, important to re-describe the problem of debugging in a data flow context.

3.1. The Data Flow Computation Model :

Programs written in data flow languages are somewhat like other modern programming
languages. The two data flow languages in use at M.IT., VAL (Value-Oriented Algorithmic
Language) and 1D (Irvine Dataflow). have guided our thinking. Examples are based on these
languages. The concepts presented here, however, may be applied to languages developed with the
same goals in mind (Ze., executing on a data driven machine).2

A discussion of data flow languages is given in [1). The salient features of any data flow language
are:

1. Freedom from side-effects: This is a characteristic of applicative (or functional)
languages such as pure LISP [8] or Backus' FP [4].

2. Data driven computation: Instructions are ready for execution when their operands are
available. This establishes strict equivalence between instruction sequencing and the
data dependencies inherent in the program.

3. Single assignment: These languages are definitional rather than imperative.

Data flow programs are compiled into directed graph form, making the explicit data

2VAL is a strongly typed language, developed for use in application areas with numerical computation that strain the
limits of high performance machines 12]. 1D is a non-strongly typed language, developed for general purpose use.

y

Egd

(if p(x) then f(x) else g(x,y))

Figure 3-1: Data Flow Program Segment with Graph Translation

dependencies apparent. Nodes in the graph are called actors; the interconnections between actors
are called links (see Figure 3-1). Execution of a data flow program is modeled by data values
(tokens) flowing across the links in the form of packets.3

It is the execution model that distinguishes data flow. While it is true that many compilers of von
Neumann style languages also use a directed-graph representation of the program at some point,
the executable result is a sequentialization of the graph for the base hardware. A data flow
machine, on the other hand, operates on the directed graph itself,

3In the VAL execution model, the only information that travels on a link from one actor to the next is value
information. In the ID execution model, a tag travels with a value. The tag uniquely identifies the context in which this
value is 10 be used. :

_3-

The mechanism by which this is done is relatively straightforward: the actors in the graph are
stored in the data flow machine’s program memory. Associated with each actor is the memory
necessary to contain the walues of (okens which sit on its input links. In its most simplistic form, a
data flow machine works by executing the instructions associated with any actors in the graph that
satisfv the condition that all inputs are known. These actors will, in turn. create new tokens (on
their output links) which are then distributed to other actors according to the connections in the
directed graph. '

In the cases of recursive applications of procedures and of program loops, it is desirable to use
the same actors to represent multiple invocations (this is roughly the same as the argument in favor
of reentrant code). It is necessary to provide a mechanism which will keep tokens from getting
"mixed up” - one such scheme involves tagging the tokens [3, 10]. The tags are constructed in such
a way that the only tokens which will have the same tag are the ones which should intentionally be
paired (e.g.. the two input tokens for a particular ADD actor). Thus, the token carries both data and
context information.

This model of computation is inherently deterministic; given the same set of inputs, a data flow
graph will always produce the same result independent of issues related to concurrency, timing, etc.
In this sense, data flow languages and purely functional languages do not differ. To interface a
programming language to the (inherently nondeterministic) real world. the capability to perform
nondeterministic computation must be introduced into these languages. One approach [3] is to
encapsulate the nondeterminism with a special data flow construct called a manager. A single
manager may be used by many fragments of the total graph: use of the manager constitutes sending
tokens to the manager's input. lt is at this point that nondeterminism arises - the entry to the
manager merges the tokens as they arrive, paying no attention to any specific ordering. The
manager then deals with these coalesced inputs as a stream.

3.2. Differences that Influence Debugging
Many notions of debugging that programmers have developed in their dealings with von
Neumann machines have no direct interpretation in the context of data flow machines. We

examine a few simple cases:

- Breakpointing and halting of execution: The idea of disrupting the normal control flow
when execution of a program reaches a certain well-defined state is strongly at odds
with the data flow model. First, there is no sense of control flow at all. Second, a
program in execution has no readily identifiable states.

- Examining memory: Data flow has exorcised all forms of global memory. Hence, there
is no strongly analogous concept. Journal information (described below) may be an
exception.

To further complicate matters, some data flow languages, including ID, provide a facility for
treating procedures as first-class citizens (ie, procedure definitions can be logically carried on
tokens). The procedure is then used in a specific context by a special actor called APPLY.

-6-

Another problem is that in order to debug, the user must reproduce the bug. Reproduction of
the same situation under which the bug occurred can be a difficult problem in data flow or in a von
Neumann machine in nondelerministic situations. In data flow, we have restricted the
nondeterminism to the nondeterministic merge actor. It is possible to keep a journal4 of the history
of each nondeterministic merge (e.g.,, a time-ordered log of its outputs). The journal will allow a
historical reconstruction of all the data flow tokens that have passed through the nondeterministic
merge. A linguistic extension is necessary (o make use of journal data.

There are two possible definitions of error values in programming languages [11];

1. "Error values may be defined as particular values within a larger type domain, and each
type domain contatns distinct error values; or

2. "Error values are defined as members of a distinct type domain.”

where larger type domain denotes INTEGER, REAL, BOOLEAN, etc. and distinct type domain
denotes the class of all errors. An example of the first alternative is an integer overflow or a
numeric zero-divide. This corresponds to the strong typing of VAL. In the second alternative, a
zero-divide is simply an error type. This corresponds to the lack of strong typing in ID.

Errors are aiso handled differently in data flow than in conventional languages in that occurrence
of error values does not stop execution. Since there is no global control, it is unclear what stopping
the computation would involve, or even that stopping the computation would be meaningful.
Further, if the value of the error is not related to the computation’s answer. there is no reason to
stop the computation. In the present implementations, the error value is propagated through each
operation where an error value was input. No attempt is made to keep track of where the error first
occurred.

3.3. Debugging Existing Functional Languages
One of the earliest operational functional languages was the pure LISP subset of LISP 1.5. its
debugging environment [9] was characterized by

- Explicit error messages: These were generated at compile time (for the LISP compiler),
assembly time (for LAP - the LISP Assembly Program), and run time (interpreter,
garbage collector, etc.).

- TRACE facility: Similar to the LISP TRACE function of today; it was useful in
displaying the behavior of recursive functions. It would print both the function name
and its arguments upon function entry and exit.

- OVERLORD: A simple run time monitor. Its primary user inputs came from switches

4'I‘he authors are grateful to William Ackerman for this idea.

-7-

and butions on the machine’s console. As stated in the LISP 1.5 manual [9]. "It controls
the handling of tapes. the reading and writing of entire core images, the historical
menmory of the system, and the taking of dumps.” This is hardly in line with the goal of
allowing debugging at the level of the language in which the program is written.

- Miscellaneous debug support: Other functions are provided for debugging: COUNT
(for breaking out of program loops; it generates an error after a user-specified number
of CONSes are created): ERRORSET (for user-handling of errors); TRACECOUNT
(allows tracing to be enabled afler a fixed number of function entrances - to limit useless
TRACE printout); and BACKTRACE (to control the backtrace display if an error
should occur).

A more recent system is the Experimental Formal Functional Programming system (FPX) of
Thomas [13] It aliows debugging at the language level (FFP), but the debugging and
environmental commands are metalinguistic rather than being part of the language itself. Simple
tracing (display of an application prior to evaluation on a named-function basis) is permitted, and
works with user-defined functions as well as the predefined FFP forms (eg., COND, INSERT,
ALPHA). Unfortunately, FPX is not a modeless system: debug mode is separate from non-debug
mode.

ID and VAL have simple debuggers as well. While both languages have sequential simulators
(with associated debuggers), neither has a defined debugging methodology on a data flow machine.
The debuggers are built into

-IDSYS: A compiler, simulator, and debugger for the Irvine Dataflow language which
supports tracing of non token-carried procedures by name,

- VALSYS: A simulator and debugger for the Value-Oriented Algorithmic Language
which supports tracing of procedures by name. Values of actual parameters can be
displayed upon procedure entry and/or exit. Classes of commands like all operations,
all errors, and all iterations can be traced also. Breakpoints occur when a traced item is
found. At the breakpoint, identifiers that are in the current environment or that are in
an active call of a procedure can be examined [5].

4. Goals of a Data Flow Debugging Device

It is important to determine the goals of the data flow debugging device before making any
proposals. Although many of these seem interrelated, and the level of specificity is not consistent,
each of them was considered in making our proposals.

- Give the user the information he wants. The programmer should not have to wade
through mounds of meaningless data to find information he is looking for, On the other
hand, he should not have to struggle to get enough data. The debugger should be
flexible enough to allow the programmer to get as much or as little information as he
needs. This implies that all information possible should be available to the

-8-

programmer, but he shouldn't need to look at it all.

- Allow the user to interact with the debugging device in concepts {and the language) with
which he is familiar. Learning a different language to communicate with the debugging
device is very inconvenient and. we believe. unnecessary. Extensions to the existing
languages should be minimal and will allow the user to easily learn to debug his
programs,

- Impose no debugging modes on the user. Debugging should be an extension of the
interactive environment. Debugging strategies should not be available only when in a
debugging mode. The debugging commands may be valuable for use in many
circumstances where the mode requirement would rule out their use>.

- Preserve the circumstances in which the bug occurred. Although the debugging device
itself may not be able to guarantee this, it is important that the device not violate this
goal. The bug must be duplicated while using the debugging device to most easily
debug the program.

- Preserve the semantic hase of the applicative system, even when debugging [11.] This
implies that activities must be considered to happen asynchronously, and the debugging
device should not change this view.

- Assist the user in finding bugs in his program. This involves human factors issues and an
understanding of the debugging process. All previous goals can be considered to be
subgoals to this goal. Rather than lose sight of the overall objective, it seemed safest to
list this, along with its subparts.

5. Proposals

This section details ideas for a good data flow debugging methodology. We have restricted
ourselves 10 the cases wherein the specifications, algotithms, and encodings may be in error; we
assume that the language translation process, the hardware, and the bug detection mechanism are
alt operating properly.

We propose a total, interactive environment as the preferred embodiment of the debugging tools
for data flow programs. This section describes the individual components of the environment (as
they relate to debugging). We conclude with a discussion of the total environment.

3The idea for lack of modes is parily based on [12].

3.1. Watching Execution

In sequential debugging. it is often valuable to single step through the program. or a portion of it.
In data flow. it might be desirable 1o simulate exccution for debugging purposes. The user should
have control over what is displayed and the rate at which the display occurs.®

We are very attracted by the window mechanism in Smalltalk [12]. and envision a similar
mechanism for use in our debugger. Graph-like flow on a statement-by-statement basis would then
be shown. Parallel execution of procedures could occur on several windows on the screen, headed
by information about what context the statement was being executed in. The user could select
which window he wished to examine at any given point. Because of the large amount of parallelism
that may be present. it might become necessary during execution to further restrict the amount of
information the user can see at one time to less than one procedure,

In addition to being a debugging aid, this could prove to be a conceptual aid for people who are
accustomed to imperative, sequential languages. Watching execution of a data flow program couid
aid in understanding the reasons for the difference between a data flow language and an imperative

language.

Much more development will need to be done on this approach to examine its desirability,
feasibility, and implementation.

3.2. Simple Monitoring
As we have seen, it is frequently sufficient to allow the programmer the ability to "look" at values

as they are created. Three simple techniques along these lines are described.

5.2.1. Asynchronous Monitors
Due to the single assignment principle, variable names in data flow programs denote the output

of a single actor in the data flow graph. All links emerging from this actor convey tokens associated
with the named variable in the data flow program. Hence. by adding an extra link to any actor (and
logically connecting this link to an output device), the programmer could monitor the values of
tokens being created by the actor without disrupting the normal operation of the graph (Figure
5-1). It will be necessary to associate uniquely specified variable names with the actors in the
program graph to facilitate this. This information is available from the compiler’s symbol table.

5.2.2. Input-Influence tracing

To aid in problem isolation, it may be convenient to identify which, if any, input values influence
certain output values. We may view the technique of tracing the ancestry of a token in an inverse
way, ie, "given an input value, which outputs does it influence? This kind of value tracing is
simply effected by marking the chosen input token in a special way (ie., make it "radioactive"), If
the semantics of token propagation are changed slightly (for any actor, its output will be radioactive

6Infonnalion would be displayed regarding any statements that had been optimized out by the compiler.

-10-

>
-

3

Output
Device

Figure 5-1: Asynchronous Monitor

if any input is radioactive), the input token will generate a radioactive history which can be sampled
and monitored using the other techniques presented here.

5.2.3. Error tracing

Because of the error-propagation method of error handling, it is a very complex task to discover
where an error first occurred. It is, therefore, important to discover through the debugging device
when an error value is generated (e.g., integer underflow, integer overflow, etc.) for the first time,
and possibly to trace its progress, This could be done by examining the values on links in the graph
associated with variable names.

As an extension to this idea, specified errors could be traced. The user could select tracing of all
error values that occur, or tracing of only specific error values.

-11-

5.3. Intelligent monitoring

Unfortunately, while such simple techniques can be helpful in restricted cases, they can also
create lots of useless information (viz the LISP TRACECOUNT function) in the process. Hence,
we propose some slightly more sophisticatcd techniques for extracting only that information that
the programmer deems as "useful”, to wit, daemons and linguistic extensions,

Figure 5-2: Daemon

5.3.1. Daemons

To extend the concept of simple, asynchronous monitoring, it should also be possible to allow the
user o create an arbitrary program (compiled into a directed graph. of course) which is dynamically
linked into another graph in much the same fashion as the simple monitor. If the user wishes to
look at all executions of a loop, an error, or a procedure, that information should be easily accessed.
If, however, he wishes to look at only a particular execution, that flexibility should be available to

-12-

him. Since this "debug" program is written in the same fanguage as the program being debugged,
the user has the full flexibility of the language in sifting through the sampled tokens to extract those
which are of interest (e.g.. looking only at the values of loop variables on the 1000th iteration but
ignoring all others). This will permit not only the identification of loop-instances and error-
instances, but also the identification of procedure applications at arbitrary nesting levels, Figure
5-2 demonstrates the attachment of a very simplistic daemon which is acting as a filter (ie., only
values that are Jess than 1 will be passed to the output device).

It may also be valuable to allow values of these variables 1o be changed, and to continue
execution of the program with the variable’s new value. This would require that the original value
not be sent to the next operation. This could be done by redirecting the output of the actor creating
the value.

5.3.2. Linguistic Extensions

A mechanism like CLU's exception handler [7] is desirable to allow the programmer to deal with
errors as they arise (in a hierarchical fashion). While not explicitly a part of a debugger, it is an
inherent part of the total bug-reduction process. Such an exception handler was proposed by
Ploufle [11] for a value-based applicative semantic model. Although his exception handler has
many desirable traits, handling an exception may impose both sequencing constraints and
processing overhead. The claim is that such overhead is unavoidable in a distributed processing
environment.

The daemons mentioned above will require careful extension of the language to allow the
programmer to deal with context-identifying information. In VAL, this can be done by carrying
this information as a part of the argument list or environment that is available to operations. In ID,
this information is already carried as a part of the token (the <.c.5.i> tag of [3]).

5.4. Combined Program Development, Execution and Debugging

It is our contention that any general purpose computer system (data flow or otherwise) should be
capable of interacting with a human user in a manner that can be considered as an extension to his
thought processes. No fictitious boundaries or limits should be visible [12]). To this end, we have
developed our notions of a data flow debugger with a strong adherence to elimination of modes.
Further, we believe that all tasks that involve the creation, encoding, translation, execution, and
debugging of a program should be consolidated into a single environment (e.g., debugging tools
should be built into the language rather than being separate from it).

Figure 5-3 is a model for a data flow debugger. Although the concepts used are oriented toward
ID, they are only meant to be suggestive of a method, not an implementation. The interpretation of
the model is that the user himself becomes a part of the directed graph; his nondeterminate
behavior is encapsulated as a manager.

Referring to the figure, we see mechanisms provided for the gathering of tokens from various
parts of the graph (used for asynchronous monitoring) and the ability to return values from the

Debugger Tokens
]

, , | I , Journal I/Q Requests

Nondeterministic
Merge

Communication with

Display Console

User
Interface
Manager
(Debugger)

Manager

\ Exit
\ RERE

Exit

T T \ [11

NRER N/
\tilii I/0 Responses

Returned Tokens

Figure 5-3: Implementation of a Debugger as an iD Manager

manager (as is necessary when value modification is desired). The user-written parts of this
manager can be used for daemon definition (intelligent monitoring). Functions like display screen
manipulation (SMALLTALK-like windows, etc.) can also be performed wholly within the
language. This manager will, in tum, communicate with yet another manager to perform the actual
input/output. It should be understood that this user interface has the responsibility for mediating
all communication with the user (not just for debugging); editing, compiling, and other related
functions are all provided by this manager.

-14-

6. Conclusion

Interactive debugging environments are still being addressed for von Neumann-dependent
programming languages. In the course of researching this paper, it became apparent that little
information is published on debugging environments. Only a paragraph here, a sentence there,
could be gleaned from publications on programming languages and programming environments.
We drew largely on our experience as programmers {and debuggers) to determine what information
would be useful to the user of a data flow debugging device. We believe that the methods we have
proposed will be valuable for data flow debugging, but little experience has vet been gained in
debugging a data flow program on a data flow machine, Further experience with data flow
languages on data flow machines is necessary.

We have proposed a general implementation scheme for our proposals, but there are many
detailed implementation questions yet to be answered. Other questions about how much these
schemes will hinder efficiency have yet to be addressed. We did not abandon powerful tools on
efficiency grounds, although we did try to weed out the most impractical schemes.

Since it is early in the history of data flow and since debugging issues that arise in this context are
oniy beginning to be addressed, experience will best answer many of the questions this paper raises.

_15..

References

1. Ackerman, W.B. Data Flow Languages. In AFIPS Conference Proceedings, Volume 48:
Proceedings of the 1979 National Computer Conference, AFIPS. 1979, pp. 1087-1095.

2. Ackerman, W.B. and Dennis, J.B. VAL-A Value - Oriented Algorithmic Language:
Preliminary Reference Manual. Tech. Rep. 218, Laboratory for Computer Science, MIT,
Cambridge, Mass.. December, 1978.

3. Arvind, K.P. Gostelow, and W. Plouffe. An Asynchronous Programming Language and
Computing Machine. Tech. Rep. 114a, Department of Information and Computer Science,
University of Californiav, Irvine, California, December, 1978.

4. Backus, J. Can Programming Be Liberated from the von Neumann Style? A Functional Style
and Its Algebra of Programs. Comm. ACM 21,8 (August 1978), 613-641.

5. Brock, J. D. Val Big Doc 2. Unpublished, MIT, 1981

6. Dennis, 1. B. First Version of a Data Flow Procedure Lan guage. In Lecture Notes in Computer

Science, Volume 19: Programming Symposium: Proceedings, Colloque sur la Programmatrion,
B. Robinet, Ed., Springer-Verlag, 1974, pp. 362-376.

7. Liskov, Barbara, et, al. CLU Reference Manual. Tech. Rep. TR-225, Laboratory for Computer
Science, MIT, Cambridge, Mass., October, 1979.

8. McCarthy, J. Recursive functions of symbolic expressions and their computation by machine,
Part1. Comm. ACM 3,4 (April 1960), 184-195.

9. McCarthy, J., Abrahams, P. W, Edwards, D.J, Hart, T.P. and Levin, M.1. LISP 15
. Programmer’s Manual. MIT Press, Cambridge, Mass., 1965.

10. Miranker, G.S. Implementation Schemes for Data Flow Procedures. Memo 138-1,
Computation Structures Group, Laboratory for Computer Science, MIT, Cambridge, Mass., May,
1976.

. Plouffe, W.E. Exception Handling and Recovery in a Dataflow System. Ph.D. Th,
Department of Information and Computer Science, University of Californiav, Irvine, California,
1979

12. Tesler, L. The Smalltalk Environment, BYTE (August 1981), 90-145.

13. Thomas, R.E. The Experimental Formal Functional Programming Language Interpreter
(FPX). Massachusetts Institute of Technology, Cambridge, Mass., April, 1981.

