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A, INT RODUCTION

In the solution of ﬁroblems by means of a digital computer a
principal activity is the design of programs and their encoding in a

auitable programming language..

During the past years there has been s great deal of interest and
regearch in the area of asutomatic programming. This interest has been
centered in the degign of programming languages and the congtruction of
processors for sutomstic translation of programs written in these languages
into programs in some target language suitable for execution by a given

machine or interpreter.

As the complexity of problems whose golution is tackled increases
with increased sophistication in the use of digital computers, so the size
and complexity of the resulting programs grows accordingly, This has
given rise to programming systems formed by sub-systems interacting

moye ot less heavily upon each other.

In the absence of systematic procedures of program analysis it
becomes very difficult to determine the nature of these interactions as
well as their effect upon total system behavior. With increased use of
multi—frngramming and the advent of multi-processar computing systems
another dimension is yet added to the interactive behavior of programming

subsystems as well ag whole independent pProgramming systems.

Thus there arises a growing need for systematic methods of
program analysis and synthesis which can be profitably applied at the
design stage in order to optimize in some sense the nature of the inter-
actions among program and system components. Potentially such techniques
can be profitably used at evervy level of the programming activities by the
program designer, the program encoder, and the translator or compiler
which can in turn supply relevant information relating to the particular
characteristics of the program to the supervisary system in charge of
administering the program execution and sllotment of the computing

system resources.

We approach the problem of developing systematic procedures of
program analysis by first formulating =2 model for computer programs and
then studying the properties of the model with the hope that we will gain



an understanding of the properties of the actual programs. We require

such a model to be sufficiently close to actual programs, as we know them,

so as to make its comstruction naturzl, e.g., there should be a reasonably
simple procedure for expressing an actual program in a standard program-

ming lsnguage in terms of the model; this of course does not imply that the
moGel be bound by current programming languages. Consequently such

things as sequencing requirements, interdependence amomg computations

and powerful contrpl structure should be easily expressad in the model; we
should also be able to express independence among computations in a simple
way, a facility not present or available in a rud imentary form in current
programming languages. On the other hand the model shali not be bound

by any ad-~hoc assumption on the structure of machines or particular imple-
mentations. We may say that the model represents a program in an 1deal

way, i.e., without ties to any specific form of imﬁlementatinn. The reason
for this requirement is fairly clear, a great number of thelpossible varis-
tions of a program arise from different forms of implementation such as
choice of data structures, cholce of what to put in the data structure and what
to compute when needed, etc. These different implementations can be

compared only if their effect shows explicitly in terms of structural changes
in their respective model representations and this could hardly be done if

the differences are hidden behind some implicit behavioral property.

From the foregoing it 1ls clear that the developments in the mathema-
tical theory of computability such as Turing machines; Markov slgorithms
and recursive function theory are too crude a representation of programs
(when so viewed) to be useful in applications to actual programs. Similar
remarks can be applied te the developments of mathematical machines theory

17,18

McCarthy's work is a first step towards the goal of studying program

equivalence and progrem transformatilon.

The ‘Applicative expressions’ of Landinlobased on the A-calculus
constitute a model in which program behavior is well defined only by the
syntactic properties of the expressions involved. Landin'e intent is to
provide a vehicle suitable for formalizing the sematics of programming
languages. In subsequent uurkllhe proceeds to express Algol-60 in terms

of an elaboration of the original applicative expressions.
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Lanovs’ﬁ’yhas studied the pequential and logical strucéurc of
what he calls 'program schemita’. In his work he shows that the cquivalence
problem for 'program schemata’ is solvable and gives algorithms for reducing
them to a canonical form as well as a complete sets of rules for transforming
a scheme into any of its equivalent schemsta. Iasnov's schemata are very
simplified models for actual programs, and his definition of equivalence
among schemata turns out to be much stronger than onme would desire in that
many prograﬁs that we would like te consider equivalent, are not upon
representing them as program shcemata. In s sequel, Rutledgezlhas
shown the equivalence between lanov's schemata and finite automata.
Lunkham,lzLuCkham and Har:l.ll13
programs using a basic language together with interpretation rules. A form

and Hhrilllshave given a model for

of equivalence is defined and it is shown by Luckham and Park 14that the
equivalence problem is undecidable even for this model. Bules or trans-
formation with the intent of simplifying the programs have beun glven by
Marill for the case where there are no "branches' and by Luckham for programs

involving non-intersecting loops.

The type of simplifications congidered by Marill are the removal of
'vacuous statements' (e.g., those statements whose presence or absence do
not affect the program) and the reassignment of variable names so as to
minimize the number of names (and conaequently storage locations needed.
Luckham is concerned with removal of 'vacuous statements' as well aa 'loop
vacuous statements' from within loops {e.g., these statements inside a loap
which only depend on gtatements outaide the loop or which only influence

stutements outside the loop).

Both Tanov and Luckham, et. al., disregard the interim structure of
the operators or functiona used to represent the computations. McCarthy
on the other hand relies on the known properties of functions in order to show
equivalence by means of the recursion induction principle. A similar |

approach 1s taken by Cooper. 2

Prosaer 20 and Karp 8 have used a2 flow chart representation of I
programe and developed techniques for analysis of the structures of thege flow

charts.



B. SUMMARY

OQur aims are to develop methods of program analysi: and subsequently
develop rules which can be applied to a given program so as to obtain another

program which is in some sense equivalent to the original.

We start by presenting a model suitable for expressing a large class
of programs and giving a set of rules which specify the manner in which these
programs are executed. Since we are primarily interested in the behavioral
equivalence of programs it is necessary to define a suitable criterlon for
comparing the behavior of two programs or the same program under different
conditions; once such a criterion is obtained it becomes clear that two
exceutions of the same program may not show the same behavior due to the
possibility of concurrent computations during the execution of the program
as represented by the model as well as the freedom to express through it
all kinds of 'nonsense’' programs. The concept of a deterministic program
is precisely defined and analysis tools are presented which allow us to

establish sufficient conditiong for a program to be deterministic,

We subsequently consider the problem of obtaining rules for equivalence
transformations and establish the validity of some relatively simple traas-

formations.

The propesal concludes by indicating directions of further investigation.

C. THE MODEL

We will represent a program by meana of a class of directed graphs

which we will call program graphg.

We will distingush 3 types of nodes and 2 types of links in a program
graph. Nodes may be operators, selectors or junctioms; links may be
control links or data links.*

¥ Nodes and links correepond to the vertices and branches in the literature
of graph theory. We prefer the name link since a"branch' has an
established meaning in the programming field. We reserve the words

vertex and branch for the definition of dynamic ancestry tree later on.
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An operator is 3 node which has two or more input connectars and

vne ot more output connactorg. The set of input connmectars of an 0pplator

shall be considered to be ordered so that we may uniquely identify g
connector by its ordinal number in the set. Similarly for the set of output
connectors. Operators will be represented in g program graph bv a

circle: (0}

A selector is a node which has two or more input connectors and
precisely 2 oukput connectors. The sets of input connectors and the sct
of output connectors of a selector are also ordered sets. In particular
one output comnector of a selector will be labeled + aad the other will he
labeled -, Selectors will be represented in & program graph by a dismond-
shaped symbol. («») Operators and selectors have a zeroth input c¢onnector
winich is distinguished in ‘hat it can only be the tip of s control link, further-
more it 1s not required for such a link to exist at all. All zeroth input

connectors which remain unlinked are called free zeroth connectors.

A Junction is a node which has two or more input connectors and
one output comnnector. The set of input conmnectors of g Junction is not

ordered. Junctions will be represented in a program graph by a
rectangle. ( E]}

A link is a directed line segment having & root and a tip. The direction
specified in a link by means of an arrowhead is from the root to the tip.

In a program graph a link always connects an output connector of a
node to an input commector of some other node, That is to say that the root
of a link lies at some output connector while ita tip lies at some.input

connector,

A control link is one which ig rooted at ap output connector of a
selector: or at the output connector of A junction whose input comnectors are

tips of control links.

A dats lipk is one which is rooted at an output connector of an
operator or at the output connector of s Junction whose input connectors are

tips of data links.



A propram graph is & finite set of operators, selectara and junctions

interconnected by means of control and data links according to the following
rules:
a. Bvery input coumector of an operalor or selector must be the
tip of one data link except for the zeroth connector which may

only be the tip of ome control link.

b. Every input comnector of @& junction is the tip of onec data link
or one control link. However, for any given junction all iaput
connectors must be tips of the same type of link. We shall
sccordingly distinguish between data junctilons and control

junctions.
¢. Any output connector may be the root of any numbir of 1inks.
For identification purpases we shall assoclate namcs with nodoes
as follows:

Operstors will be denoted by subscripted ‘£ 1.e., £, £,-
selectors will be denoted by subscripted 'g' i.e., By ﬁz.
Junctions will be denoted by subscripted 'g' 1i.e., 81> By»

Input connectors will be denoted by s double subscript, thus the

thizd input comnector of f1 is fl’ 3°

Qutput connectors of selectors we denote by superscriplLing the
selector name with + oy - i.e., 52 *
We shall now give an interpretation for the elements of a program
graph together with a set of rules which impose a well-defined dynamic
behavior upon the graph imterpretation. We shall require every program

graph to contain a aet of input terminals and a set of putput terminsls such

that the input terminals are roots of data links but have no ancestors, while

the output terminals are tips of data oT contrel links but are roots of no links.
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The followiag graphs aro examples of program graphs:

e

d) e) )

Figure 1. Examples of Program Graphs
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We sscociate with input terminals, cutput temminals and vutput
connectars of nodes the property value, and with loput conmeclors of nodes

we associata the property status. Links are capable of transmitting the

value of a terminal or output connector to the iaput comnecbors at their
tips.

The status of am input connector may assume 2 possible conditions
which shall be denoted O and 1. Operators and nodes are interpreted as
functions which are applied to the values associated with imput connectors 1
through n, The process of spplying an operator or selector yields a set
of new values to be associated with the output connectors of the operator
or scilector. The application of an operator or selector 1s determined by

the sistas of its input connectors as follows:

An operator or selector is applied only if all its input connectors

are in status 1.

When this condition is met, we shall say that event A has occurred
for the operator ox selector. The effect of event 4 in addition to application
of the function is to place all input connectors in status 0, except the zeroth
cornector (control link) which is placed in status O if a link to it exists and

left updigturbed othetrwise.

Event B occurs when the application of the operator or selector has
yielded a new set of values. .Event B has the gdditional effect of placing
in status 1 all input connectors directly linked to output commectors in the
case wf an operator while in the case of a selector only those input
connccbors dirgctly linked to one of the two output connectors are placed

in status 1.

A junction 1s zpplied (e¢vent A) whenever one or more of its input
connectors are in ststus 1. Event A for a junction has the effect of placing
all input connectors in status 0. The application of a junction consists in
associating with its output connector upen occurrence of event B the value
of one of the input connectors in status 1 at the time of application.

In additiom all input connectors linked to the junction are placed in status 1.

Under the interpretation, events may occur only at discrete time
jntervals as determined by an independent clock. We shall associate with
cach operator, selector and junction an integer tiit 1 specifying tiie number
of intervals elapsed between the occurrence of event A and the occurtrence

of event B for the node.
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A program graph is executed as follows:

. initially all input connectors are placed in status G except
for free zeroth connectors of operataors and delectors which

are placed in stptus 1.

b, Arbitrary values are placed at the input terminals and oli
input comnectors linked to these terminals gre placed in

status 1.

¢ The clock is started.
The execution terminates when event A has occurred for all data ountput

terminals and some coptrol terminal.

Let fl-... fr be the names associasted with the operators of a
pProgram g{aph, and BI tea ﬁq phe nameg assoclated with irs selectors
Uy s ap the names of the input terminals and W .- we the names of
the output terminals. No two nodes have the same mame. The cxccntinn
sequence associated with the execution of the program graph 1s a srriug

defined as follows:

At time O write down, in any order, the ngmea of the input terminals
of the graph.

At time 1, write to the right of the string in any order the names
essociated with all operstors and selectors for which event B occurred
et time i and the names asscclated with output terminalg for which event A
accurred.

Example 1
Consider the program graph in Figure 2.

Figure 2. Program Graph used in Example 1
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These are possible execution sequences for this graph
D o 658,555 5P 5
2) @ f 8,5, |
We illustrate the interpretation rules by applving them to the examples
of Figure 1.

Congider the program graph of Figure la.

.,/d ’ {q -
5 £.5a

i - Numbers next to the nades
aijg ' N \ denote the time intevrvals
fsl'3 5 \ which elapse betwecn cccurrence
; - of events A and B for the
: . node .
TN }
vy 2 "
Al S S
FCRN T
e
: 2
L
Wy

Figure la. (Repeated)

There are free zeroth input connectors in fl’ fz. f3 and Bl’ these conncctors
are placed in status 1 and will remsin in that statug for all time. Initially
the values of “1’“2 (inputa) are established and the input comnectors of

f. and £, are placed in status 1, all ather input comnectors avc in status 0.

1 2

We assume that no new al and Gz values are established until after execution

terminates. The clock is started.

At the first clock event A occurs for both f1 and fz, the input values
for f1 and f2 aTe obtained. The corresponding inmput commectors are placed
in status O both fl and f2 are applied. At the next cloek, event B accurs

for fl placing input connector 1 of f3 in status 1 and malking its output value
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Available. At clock 3 event B occurs for f2, placing input connector 2
of f3, input connector I of Bl and f5 in status 1. At clock & covent A
oceurs for both f3 and Bl and they are applied. Event DI for Bl occurs at
the next clock. Since ﬂl is a selector & value zppears only at one oulput

connector, say it 18 the + comnector placing the zeroth conncctor of f&

in statua 1. Note that the zeroth connector of f5 remains in stabus O and

fs will never be applied during this execution. Execution continues by

application of f4 and later By finally causing event A to occur for W, and

thus terminating the process.

Let us now consider briefly the remaining program graphs
A

of Figure 1.

_ 4Ll
Figure lb. (Repeated)

The graph of Figure 1b is peculiar on two counts. First, there is a
sequence of dats links starting et an output comnector of f1 and Lerminating
at an input comnector of the same mode. Clearly f, will pever be applied
but fl cannot be applied until all ite input connectors are in status 1. In
this particular case no other node will ever be applied either. We may

say that f1 is ‘hung-up’.
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A similar situation shows for Es (independently of flj but for a
different resson. There since selector 31 produces a value at one output
connector or the other, either f3 or f& may be applied but not both,
consequently f5 which is linked to both f3 and f4 will never be applied.

Clearly in our study of program graphs we like to eliminate
these pathological cases.

The program graph of Figure lc shows a scquence of links starting
and ending at a junction. This is a satisfactory situation since a junction

needs only one of its inmput connectors in status 1 in order to be applicd.

The xamples of Fig. 1d and le show progrem graphs without
selectors and with both control and data junctions respectively. The
graph of Fig. 1f illustrates another type of patholegical condition. In Lhis
case function 8y ig so conditioned that for the time intervals assigned to

3
clock, consequently upon application -f the junction we arc faced with the

f2, f. and Bl’ both input connectors of 8y will be in status 1 at the same

dilemma of picking one of the input values as the output value of the junction.

This is a simple example of a non-deterministic progrem.
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The dynamic_ancestry tree* of an instance of an operator,

selector -or output temminagl in an execution sequence of g program graph

is constructed as follows:

&

Lzbel the loweat vertex of the tree with the name of the

chesen instance of operator, selector or output teminal,
say h.

Draw up from this vertex as many branches as there are

input connectors of h excluding the zeroth connector.
Label thece branches as follows:
Let branch i correspond to input connector i of h,

1. If branch i is directly linked to an input terminal ﬂj

label it aj

2. Xf branch 1 is directly linked to output comnector Ik
of operator ij, label it fij’k

3. If branch i is directly linked to g junction construct
the set of Immediate ancestors of &g in the following
manner: ayl operators, commectors, selector commectors
and input terminals directly linked to g; are immediate
ancestorg of By All operator connectors, selector
connectors and input terminals which are immediate
ancestors of a junction which is a direct ancestor of gy
are immediate ancestors of 8¢+ In order to label
branch i, scan the execution sequence from right to left
startiné at h uetil an input temminal aj Or an operator or
selector fj with output comnector fj,k' is found such that
&, or £ are immediate ancestors of g4+ Label the branch. -

A i,k

a;‘ or f;,k accordingly,

If the label of a branch corresponds to an operator or selector
output connector fj,k’ eppend at the end point of the branch .
the dynamic ancestry tree of the first instance of fj found by
scanning the execution sequence from right to left starting at h.

* Luckhaﬁuu

Tree'.

introduced a very similar concept which he calls an 'Ancestry
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Example
The dynamic ancestry trees of W, in the sequences of the

previous example are shown in Figure 6.

oy a;
E'!
(a) Sequence } ¢(b) Sequence 2

Figure 6. Dynamic Ancestry Trees for
Sequences of Example 1

Tn the construction of programs it is useful to introduce an identity
operator i.e., an operator having one input connector (in addition to the
zeroth one) and one output connector and such that its application results
in associating with the output connector the same value associated with

the input comnector. We shall denote the identity operastor by I.

A minimal dynamic ancestry tree is a dynamic ancestry tree which
does not contaim any branches labelded with the name of the identity operator.

Two dynamic ancestry trees Tl end T2 are isomorphic if there is
a one to.o.e correspondence between the vertices of Tl and T2 which preserves

the incidence relations and all branches so paired have the same label.

Two dynamic ancestry tree for an instamnce of a node in an execution
sequence corresponding to & program graph P represents the precise
sequence of operstors and Jor selectors applied to the input velues of the
program graph which yield the values agsociated with the inputs used in

the chosen application of the node.
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Under the assumption that all applications of a ncde yield the
same output values whenever the values at the input connectors are the
same, the concept of congruent dynamic ancestry trees provides an

effective test for the equality of any value arising during the execution

of a program graph.

We formalize this observation by means of Theorem 1 and a
definition. An operator (selector)is deterministic if every application
of the operator (selector) to the same set of input valuea yields the

same set of output values.

Theorem 1:

Let T1 and T2 be two congruent dynamic ancestry trees derived
from execution sequences generated by a program graph P whose operators
and selectors are deterministic. If the values associated with the input
terminals at the endpoints of the tree are the same for T1 and T2, then
the output value associated with the Instance of the aperator, selector or

output terminal at the root of the tree are the same for Tl and T2.

Proof:

Take the dynamic ancestry trees of any output terminal for any two
execution sequences, the fact that they are congruent implies that we can
plece the minimal trees gide by side, and estgblish n levels where n
is the length of the longeat path such that at level 0 is the set of vertices
corresponding to input velues, at level i+l is the set of vertices having at
least one incident branch connected to one vertex in level i-1. Because
the trees are congruent for every vertex at level i in one of the trees,
there is a corresponding vertex in the other tree such that the labels of
all branches from vertices in level k < i to the specified vertex are the
same for both trees. This in turn fmplies that the labels of the branch from
this vertex to a vertex in level j » 1 are the same in both trees. Since
vertices at level 0 < i < n represent operators or selectors, we can
establish the identity of input values for the application of an instance of
an operator or selector by induction as follows: At level 0, all Input values
are the same by hypothesis. Thus the finput values to operators and

selectors represented by vertices at level 1 are the aame for both Etrees.
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Consequently, since these vertices represent deterministic nodes, the
output values of such operators or se lectors are the same and the input
values for the vertices in level Z at2 jdentical for both trees. Now er
rupeat the same argument until a1l levels are exhausted and couclude that
all input values to the only vertex at level n are the same for both trees

and consequently both output valves are idenmtical. Q.E.D.

A program graph is deterministic if any two aprlications of the

graph to the same set of input values yields execution sequences such that
the dynamic ancestry trees of all output terminals are congruent for all

time interval assignments to nodes of the program graph.

We start the development of the analysis of program graphs by
defining the class of totally ¢yclic consistent graphs by eliminating all
program graphs which shows some undesirable pathologicél condition in

the formation of the graph cycles. For this purpose we develop the

concept of N-cycle, N-cycle decomposition and N-cycle structure.

We then proceed to establish sufficient conditions for s cycle free
program graph to be deterministic {theorem 5), and reduce the problem
of determining sufficient conditions for an arbitrary program graph to
conditions on a particular cycle free graph and the N-cycle structure

associated with the given progrem graph {theorem 6).

We establish some termminology by the following definitions where
nodes will be denoted by al, ., ... and links by &, £2,-..

A set of links £ , £ ,.... &, 1s a path of a greph P if there |

1 kz ™

aTe nodes ak s Uk ,...ak Jlk in P such that;fk is & 1link from an
1 2 m ml 1

putput connectot of o to an input connector of a, . We say that the

path ik ,....ék pass%s through the nodes o ...akb+1
1 m 1 w1

ic a path . from &, Lo . Ifa = we say thet the path is a
Ky 5 P R

, or that there

cycle.

A data path (cycle) from oy to is a path (cycle) consisting
™

1

of dats links only.
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A control path {(cycle) from a, to a is a path (cycle) consisting

1 m

of control links only.
A mixed path (cycle) is ome containing both data and control links.

A path P1 is contained within a path PZ if all links of P1 are also
links of PZ'

A graph is cycle free if it does not have any cycles.

*
An N-cycle K iz a set of nodes 81, 8y...a such that for all i,j<m
if a, aj €K, then there 1g¢ a cyele of the graph which passes through a,

and aj. The order of an N-cycle K is the number of nades contained in K.
A maximal N-cycle of a given graph is an N-cycle K such that

a, K, Ej £K implies that no cycle of the graph passes through 2, and ai.

Two N-cycles are equal if they contain the same nodes.

Two N~cycles Kl, Kz are disjoint £f no node a is in both K1 ang
Theorem 2:
Let Kl’ K2 be N-cyclea of a graph. Then if KI ¥ Kz and

Kllj'Kz £ # there exists amother N-cycle K,, which properly contains
both Kl and K2'
Proof:
>

let a, €K, ajekz and a_ Klnxz.

By the dtfinition of N-cycle, there is a cycle of P passing through
aj and a, and some other cycle passing through a, and a . Therefore
the path passing through (ai a aj a ai) 18 a cycle through a, and aj.
Using a similar reasoning it follows that there is a cycle passing through
a EKI, an eKz for all m and n and therefore the sets of nodes
KfJKE is also an N~cycle. Q.E.D.

*
The term N-cycle has been used by Simﬁes-Ptreira.ZB His definition
corresponds to our 'maximal N-cycle'.
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It follows from Theorem 2 that a graph P can be uniquely decoumposed

in disjolnt maximal N-cyclea and a set of nodes through:which no eyele of

*
the graph passes.

In the sequel, N-cycle shall always denote maximal N-cycle.

A node a, is an ancestor of aj 1f there is a path from a, to

a. . 1If the path consists of exactly one 1liok. then a; is a direct ancestorl

A program graph is cyclic comsistent if for every HN-cycle K there

is at least one data junction 84 € K which has one or more direct
ancestors not contained im K and no node of K which is mot a data
junction has a direct ancestor not contained in K. These junctions will

be called the loop junctions generated by K. Intuituvely, the conditions

for a cyclic consistent program graph imply that every data cycle of the
graph passes through a junction which is not selely dependent upon itself.

In programming terms this is equivalent to require every loop in the
program to be 'initialized'. The other implication of the cyclic consistency
conditions is that a value which remains unaltered by any node of an

N-cycle and is used repetitively must show as such explicitly in the program
graph. This property is useful in obtaining simplifying transformations
which *¢lean up' the lcope of a program &mong other things. Its main

reason for existence however, is the simplificatiom of the interpretation

rules of the model.
Theoyem J3:

Let P be a program graph, X,, Kz,...ﬁnlits N-cycles and
Gl’ G ,...Gu the corresponding sets of generated loop junctions.

Let Pl be the program graph obtained by deleting from P all links
(data links) from direct ancestors of g € G1 contained in Kl and comnecting
these links to a new junction g'. The newly created junction does nmot have

any links rooted at its output conmector. We will say that g and g' are

*
This result is the same as the uniqueness of the decomposition of a
separable graph into its components applied to directed graphs. See
for example Seshu amd Read Th, 3-6 and 3-7, page 38.
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conjugate., Then
‘Pl is cycle free

or the following is true.

1 1 1 1
Ilet t‘.he H""CYC-]-ES of P be KI » Kz ’."KB

then every N-cycle of Pl is properly contained within some N-cycle of P,

i.e., for every 1 there existe a } such that Kklti Rj

snd for every N-cyele of Kj, of P, the union of N-cycles of P1 contained

in Kj is properly contained in Kj.
L.e., for every ]

1
LJ{i < Kj where the union 1{s taken over all i such that

Proof:

Since all links from aj € Ki to g, € Ki have been removed, there is
no path in P froma ¢ Ki ta B> thua no cycle of Pl passes through gy the
cumber of cycles of PI is less than the number of cycles of P, and Pl

may be cycle free,

1
If P is not cycle free, Kiliz Kj for some } since no new links

have been added and thus every cycle appearing in P1 also appears in
P. 'The inclusion is proper because at least one node contained in Kj

is not Iin Kil namely the junction g -

The second part of the theorem followe from the fact that all
N-cycles of Pl are disjoint. Q.E.D.

Corollary 1.1

The sum of the orders of the N-cycles of P1 is less than the sum
of the orders of the N-cycles of P,

1
Let P and P be as in Theorem 3. Total cyclic conslstency is

defined recursively as follows:
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P is totally cyclic consistent if P is cyclic consistent and Pl is

cycle free or totally cyclic consistent.

The definition is effective since there is a finite number of nodes
and at every step of the process the sum of the orders of the reaulting
N~cycles is less than the sum of the orders of the original N-cycl.

The process af obtaining the N-cycles of a program graph by
quccessive application of the procedure of Theorem 3 will be called
N-cyele decomposition. The serles of N-cycles obtained by N-cycle
decomposition will be called the N-cycle structure of the program graph.

The N-Cycle can be represented by a forest, where the N-cycles
of P constitute the root of the trees In the forest and the N-cycles of Pl

are the nodes of branches emanating of the roots, simitarly for Pz, ect.,

R *3
4\"; | K

Figure 7. Example of an N-cycle Structure
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Example

We illustrate the N-cycle decomposition with the following example;

‘f. " / f“'r b : l }E:’s‘
e !

A \ f . 'ﬂuL“QHf'g i
5 b
hs . ; J;:k/ ' ﬁ"[/ ’ \‘\ /

Fl -FM
JZ) : u)t

!
4

- {?5?:?-3a‘=ﬂ’-ﬁia~;é’ jﬁq}'Jaj;;L;-;vJ E}H-;b";ao’ ?3315?¢’xytjdb;-}

k Ot 7 o / . g -:)'d'u I 'i‘-l - o “;‘
:{85'; }:;2,:".3 )J"'r#)-ﬁ:?.j:'j Kl = VAL TS ~
Figure 8. Example of N-cvele Decomposition ’
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Theorem &:

Every cycle of a totally eyclic consistent program graph passes

through a loop junction.

This is just a re-statement of total cyclic consistency gince by
definition all cycles of such a graph can be removed by deleting selected
links to input conmectors of loop junctions which implies that such links
are in the cycles and therefore the cycles pass through the loop junction.

Let P be a totally cyclic congistent graph, P = Pp I']L P2 sl PF

the sequence of graphs generated by the N-cycle decompoaition of P. Pr
ie the cycle free graph generated by F.

So far we have dealt with modes of program graph and established
some concepts involving nodes and paths through them. Now we turn Our
attention to the connectols of the nodes insésmuch as our main concetn 1s
to study the velues that arise during the executiom of a program graph,
and such values Teside or sppeat at the ocutput and input connectors of
nodes.

In particular we will consider input connectors for, es we shall
see., the properties of output connectors relevant €O our program graph
analysis can be deduced from the properties of the inmput connectors of the
corresponding node. lLet ¢, and <, denote any two cormectors of a
program graph.

y is an g-ancestor of €y 1€ thare is a path from ¢, to c, which
does not pass through any junct ion.

c. is exclusive with ¢, if any of the following conditions are met.

af ey is the '+ outiut commector of a selector B and c, ig the
'.' output commector of B.

b. There exists at least two exclusive connectors ci and cé
in P such that ci and cé are a-amcestors of c, and ¢,
respectively.

e, & and ¢, are the output commectors of junctions 8, and 8y in P

such that every input connector of 3 ig excluaive with all input

connectors of 32.



-29-

Note that the given definition of exclugive comnmection ls recursive.
The following lemma guarantees that the definition is effective for the

class of cycle free program graphs.

Lemmg 5.1 If P is a cycle free program graph it is always
possible to determine whether or not amy two connectors of P are

exclusive.

Proof Omitted
Roughly speaking, the concept of exclusive connectors means that values
cenmot be 'simultaneously' available at both connectors during execution of

a program graph. We formalize this notfon by means of the'following

17:mma .

Lemma 5.2 If cy and c, are exclusive connectors of a progrsm graph
P, then there is no execution of P during which values are associated
with both c1 and cz.

Proof Omitted
The following definition will be useful in the subsequent theorems:
A set of connectors C is mutually exclugive if for all
ci’cj ec"Fi ie exclugive with cj.

Theorem 5:
A cycle free program graph im deterministic 1f
g. P doea not have any junctions.
or b. P has junctions and for every junction the gset of its input

connectors 1s mutually exclusive.

Froof:
Assign a upnique name to every noda of P. Place all nodes P in levels

as follows:
Level O contains the input terminals
Level i contains all nodes such that every input connector of the
node linked to nodes in levels j<< i1 and at least one link comes from
a node in level i-1.
The number of levels, n, is the length of the iongest path of P.
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Assume P doas not have any junctions, then every node of P
appears at most once in gny execution sequence of P if the nodes atk

level 0 (input terminals) appear only omcs.

This is clear for the input connectors of nodes at level 1 are
plsced in statuws 1, and thus the nodes applied, only once; this in turn
implies that the input connector of nodes at level 2 satisfy the same
condition and so on. If g node at level 1 >0 is a selector, these nodes
at level j> i commected to one of the outputs of the gelector will not be

applied.

Since every input connector of a node has precisely one link
directed into it, the name of the node which iz the root of this link can
be wuniquely identified in any execution sequence and comsequently the
dynamic ancestry tree for any node, including the cutput terminals, are
tsomorphic for all execution sequences and P is determiniastic. |
Assume P has junctions. We show that condition (b) is sufficient for
P to be deterministic. 8ince all junctions have mutually exclusive sets
of input connectors, nc junction is directly linked to an input terminal,
There is a set of junctions G° such that no g€ 6G° has a junction as one
of its ancestors. Therefore we may copsider the sub-graph consisting
of those operators and seélectors which are ancestors of members of
¢° a5 a program graph whose output geminsls are commected to the input

copnectors of the junctions in c°.

By part (a) this sub-graph is deterministic. By Theorem 1, for
s fixed set of input values, the values available at the input connectors of

the junctions in ¢® 1a the same for all executions of the sub-graph.

Becpuse the junctions in ¢® do mot have any function asm an ancestor,
if input connectors €y and c, of gEGO are exclusive for any given execution
either ¢, or ¢, or neither may be placed in status 1. If any of ¢, or ¢,
are so agctlvated, it occura only once by part a. Since by hypothesis the
set of input connectors of all 3£G° is mutually exclugive, et most one
{nput comnector of g may be placed in status 1 and the value of the
junction 1s deterministic. Now we repeat the same argument as above,

using the set of junctions G1 whose only junction ancestors sre members

of G°.
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In order to show the validity of this iterative step, we note that
since for a fixed sat of input values the same input conmector of g &°
will always be placed in status 1, the direct ancestors of all other input
connectors of g will never appear in any of the corresponding execution
sequences and therefore do net appear in any dynamic ancestry tree.
Consequently as far as the¢ member of Gl are concerned, all links from such
aodes to g may be deleted and g nodes replaced by one ideﬂtitz operator.
With this construction Gl satisfies the same conditiong as G°, Q.E.D,

Throughout the proof of Theorem 5 we assumed that every operator
and selector of the program graph hed a unique name associsted with 1it.
This was malnly for:convenience. The proof applies with minor changes
whenever there appear duplicate names provided the ancestries of any

two nodes with the same pname are congruent (in addition to being of the

dame type).
Thecorem 6: .

Let P be a totally consistent. program graph P* the cycle free
graph generated by F, K the N-cycle structure obtailned by the N-eycle
decomposition of P and let K be any N-cycle in K.

P 1g deterministic 1f
& P¥ i5 determiniatic

b. Let g be a loop junctiom of P generated by the H-cycle K,
gl its conjugate in P* and @ any node of P contained in K
(thus @ cannot be the conjugate of a loop junction). If
there 1s a path from g to @ in PY, then there is g path from &

to gl in Pi.
c. let al, az be any twe nodes in P such that al X, az 'K,
1f there is & path in PT from &, to &, then some input

1 2
connector of @, is exclusive with all input comnectors of the

conjugate of the loop junctions of K.



-2 6~

We first show that (a), (b) and (c) taken together are sufficient to
render 2 program graph deterministic. Clearly we are only concerned
with program graphs which contain cyclea for otherwise (b} and (¢} do

not apply and (a) says nothing.

So we assume that P contains some cycle. Condition (a) guarantces
that for all possible time intervals assignment the yalues in the forward
and ffeedback’ portions of a cycle.are the same for all executions. The
fact that P has cycles opens up the possibility of a given opcratoT ovr
selector appearing more than once in an execution sequence even with
condition (a) satisfied. 1f P is not properly conditioned, there may be
time intervals assignments to the nodes of the graph for which the number
of occurrences of events A (start of a process) and B (termination of a
proceas) differs from one assignment to the other. Clearly if this occurs

the corresponding dynamic ancestry tvees of some results will not be

congruent .

Conditions (b) and (c) guarantee that this situation can never occul.
Condition (b} imposea requirements on nodes contsined within some N-cycle

while condition (c) constrains nodes outside every N-cycle.

Note that the basic problem is to prevent the occurrence of event A
at n node while the node is being applied to a previous set of input values

(i.e., before the occurrence of event B corresponding to a previous event A)

If condition (b) is satlsfied, the re-accurrence of event A for a loop
junction g implies that event B has occurred for all nodes of the associated
N-cycle which have the loop junction as an ancestar (and for which event A
had occurred). The re-occurrence of event A for g in P is the same as
the occurrence of even t A for 31 in pY. Since P’ ig deterministic the sub-
trees of dynamic ancestry trees corresponding to every repetition of the cycle
are congruent. For nodes a outside an N-cycle K, condition {c¢) guarantees
that if there is a path from a pode in K to &, tﬁen gome input connector
of g is exclusive with all input comnectors of the conjugate of the loop
junctions of K in P'. Consequently the occﬁrrence of event A for

precludes the occurrence of such an event for gl which is sufficient. Q.E.D-
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The converse of theorems 5 and 6 could be obtained by requiring
certain auxiliary conditions to hold on a program graph; roughly speaking
vhat is needed is to guarantee that all posgible combinations of paths be
#llowed to occur; this seems to be s rather strong requirement since
often this is not the case; we offer two typical situations. For specific
wperators and selectors in g program graph there exists some known
relationshipg among them with respect Lo gsome body of data whiclh precludes
some combinatlons from occurring under all circumstances. As a
tonsequence some connectors which sre not exclusive on the light of
topological conditions slone become exclusive when these relationships
{which acrue from detailed knowledge of what the specific operators and
selectors 'mean') are also considered., It transpires from the previous
remark that Theorems 5 and & carry naturally to this situation by

appropriately re-defining the concept of exclusive connectors.

Another situation of interest is the case where the agsignment of
time intervals to the nodes of the'graph is npt completely arbitrary (as it
is assumed in Theorems S and 6) but either they are completely known or
can be suitably bound for all pllicationg of interest. For exsmple we may
know that operator 'add.two' slways takea 1 time interval, operator
'add. matrix' may require 1, 4, 9,...12 time intervals, operator 'do.this'
may require time intervals bound by a double series like 1 to 3, 4 to 6,

12 to 12 + 2, etc. When such knowledge of actual time interval assignments

is available, it may be posgible to relax the conditilons of Theorems 5 and 6.

We now turn our attention to the problem of obtaining program pgraphs
which are equivalent to a2 given program graph. We assume hereafter that

the given program graph is determiniatic.

We start out by defining one form of equivalence among program
graphs, which we ghall call l1-equivalence as follows:

Let P1 and P2 be program graphs, Let mlz P mrz the output teminals

of P2'
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Pl iz l=equivalent to Pz if for every execution seguence, Sluof

Pl there is some execution sequence, 82' of Pz. such that the dynamic
ancestiry tree of wil generated by 31 is congruent with the dynamic ancestry

tree of wiz gencrated by S2 and vice versa.

In order to make this definitlon effective, we must be assured that
all data output terminals names and one control terminal name appea1
precisely once in all terminating execution sequence cof P and P . For
this purpose we restrict the class of deterministic program graphs and

considered only well-formed graphs which are defined a5 follows:

The deterministic program graph P is well formed if the follawing

conditions are satisfied.
a. No output terminal is contsined within an N-cycle of P.

b. No data output terminal is exclusive with any outputb comnertor

of any selector.

¢. The set of control output terminals is mutually exclusive:
furthermore if this set is considrred as the get of output
connectors of a junctiom g., then the output cornector of g

satisfles conditiom (b).

There are seversl types of equivalence preserving transformations
‘which may be considered of interest, some of them will be the subject of
future work, in this section we indicate the nature of one of the simplest
type of transformations, namely those modifications of a well formed
programed graph which add snd Jor delete control links, control junctions
and identity operators, resulting in snother well foimed program graph.
In general, we are interested in discovering rules which when mechanically
applied to a program graph there regults an eguivalent graph. The process
of finding such rules involves looking for a property of the graph whose
jmvariance under the application of a rule 1s sufficlent to guarantee the
equivalence between the original and the transformed graphs; in addition

it is of interest to know what other properties of the graph change and how



they change by virtue of the transformation since generaliv we are

interested in measuring what is gained or lost by such an oppration.

Upon considering the type of transformations mentioned ahave,

we conjecture that invariance of the exclusive relations of data junction

connectors preserves l-equivalence under thesge transformations.

In order to obtain some insight into the nature of such transformations

we consider several simple examples., Figure 9 depicts a program

graph P1 and an equlvalent graph P2 obtained from P by altering thte
control links Bl y Bl and 52 - By way of compar1son possible flow

charts for P1 and P2 have been drawn next to the program graphs.

The flow charts show clearly that the effect of the trausformations is,

as we may have guessed, to redistribute operation boxes witl respect

to decision boxes. In actual progrsme this kind of redistribution affects
both execution time and storage requirements. Considering execution

time, there is a simple test to determine whether or not an operator

may be applied but its results never used. Clearly all such situstions
contribute to execution time without affecting the results of the
computations and their elimination is desirable. We agsert that by adding
or deleting control links, control junctions and/or identity operators,
4ll such situationa may be eliminated from a program graph; we also

note that in other representations not admitting parallel computations
such as flow charts there are circumstances which force us to duplicate

some operator(s) or selector(s) in order to achleve the same effect,

In Figure 9, f3 in graph PI and f,, f? in graph P2 are examples
of operators which may be applied without having any use for their values.
This condition can be remedied by connecting PI to f4 in P2 The graph
in Fig, 10 is an example of a program which 1f represented by a flow
chart, we must duplicate operator fB or someé arrangement of selectors in

order to reduce it to the 'minimal' form.
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n. RELATION WITH PREVIOUS WORK

Representation of computer Programs by means of directed
graphs have been proposed in the pasC. In this section we will consider
the relstionship between program graphs and other graph representations,
namely flow charts the graph schemes of Kaluzh*ning and the graphs

of Estrin and Turn.

Flow charts are widely known and have been used by Prosser,
Karp and others to analyze flow of control in programs. Essentially
the nodes in a flow chart represenlt sequence of commands while the
brenches indicate transfer of control from one node to another either
undconditionally or conditional depending on the kind of node. Flow charts
thus are intrinsically sequential, furthermore the data flow is not
explicity but can only be deduced by a total analysis of control flow with
sdentification of names of variables. Note that as it is generally used,
g flow chart does not introduce any new elements in the representation of
a program but instead it sdopts the syntactic and semantic units of some
other language, generglly a l1inear language, and merely uses the graph
as a means of showing explicitly che transfer of comtrol relations.
K&luzhnin has proposed a representation of algorithms by means of

what he calls graph schemes which are defined &s folluws:*

Met there be given a finite set of objects
224f = {LEQ;, :a(ln Poe =g 2z’n..}

called operators, ond a second finite set of objects
~

T ‘C ﬂf; l?’;.l., T o

called discriminators. A graph schemezh,or. more precisely, a

2{- @graph acheme {with the given operator-sets r?(’and discriminator-

sets (/) is a finite, connected and directed linear complex [i.e., a finite
nunber of points (vertices), some of which sre linked by directed line
sagments {grrows), and such that, atarting from any point, we cam reach

any other, following the commected line segments (not necessarily in the

direction of the arrows), satisfying the following conditions:

whn
w

The quoted text is taken verbatim from Kaluzhnin's paper.
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1. One vertex of the complex is identified as the input(B):
the input is a unique vertex, which is not the end-peoint of

any arrow, snd only one arrow starts from it.

2. The complex has one specified vertex, called the output

{ Ea ): no arrow starts out from the output.

3. To each vertex, other than the input and the ouﬁput, corresponds
uvnequivocally either a certain operator Ui’ in which case
the vertex will be called a U-vertex, or a discriminator,
‘5_1’ in which case it is 3;35 =vertex. (It is not necessary
that each operator Ui and each discriminator éﬁj should
correspond to a certain vertex; on the contrary, some operators
or discriminators may correspond to several different vertices).

Meaowhile: .

(a} Ife-is & U-vertex, then exactly one arrow starts out

from it.

(b) Ifa& if aﬁvertex, then exactly two arrows start out
from it, marked with plus and minus signs respectively,

An interpretation of a graph scheme is a set M, mapping U —>» A
and 8 mapping ’a—B-F, where members of A are mappings from M into M
and members of ¥ correspond to properties of elements of the set M.

The operation of executing a2 graph is carried out as follows:

"Let the element mgM appear at the input of the scheme: then it
runs through the scheme following the arrows, and 15 transformed each
time whenever it ﬁasses through a U-vertex. This passage takes place
according to the fellowing rules:

{(a) Let the initial element, slready transformed into the
glement m', enter, following the arrows, the vertex
éarrespanding to the operator Ui; then on emerging from
d, the element follows its path indicated by the single arrow
issuing from the vertex a, as m"='Ai(m').



{b) Again, as above, let the transformed element m' enter

a certain vertex , corresponding to the discriminator
gjj; then this element m' leaves thils vertex along that
arrow matked either by a plus or minus signm, depending on

whether m' has the property Fj or not.

{c) 1f at a certain stage the cransformed element m is the result
of applying the Ujﬁa:algorithm; defined by the U-;??graph-
s.:-::l'ns:rne,l—1 with the interpretation {H: U—>A: a‘-»r}..."

Upon study of these operating rules it becomes evident that
graph schemes are a simplified Fform of flow charts. The key is
rule {b) =nd conditions 3a and 3b which specify that the trans formed
element has to move through discriminator vertices and therc is only
one possible path out of any vertex. graph schemes as extended by

Ershov3 have precisely the same structure a8 standard flow charts.

Estrin and Turn (apparently following en earlier suggestion of
Marimont) have used a graph representation of programs closely
related to program graphs. Conceptually, the significant difiference
between this model snd program graphs, lies in the introduction of
junctions in program graphs. That the concept of junction 1s a non~trivial
one seems to be supported by the results of Theorems 5 and 6 which specify
gufficient conditions for a deteministic program graph based on cetrtain
simple properties of the graph junctions. In addition, the concept of
N-cycle structure which seems Lo provide a good bandle on the analysis
of the loop structure of & program i{s a direct by-product of the

introduction of junctioms.

E. DIRECTION OF FURTHER RESEARCH

It is proposed to continue this research along two main avenues
namely on the atudy of transformations of program grephs which preserve
equivalence (l-equivalence or others) and on the analysis of program

graphga.
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On the tépic of program graph transformations we can enumerste

various types of tramsformations which are of interest:

(a) Simplification of the graph by removal of 'vacuous statements'
and 'lcop vacuous statements' in the sense of Luckham ot., al.
Vacuous stalements are easily recognized in a program graph
as non-terxminal nodes whose output connectors are nat 1oots
of any links and there is g simple iterative procedure to
remove all such nodes from the graph. 'Laop vacuous
statements’ are also easily recognized and extracted from

the pertinent N-cycle(g).

(b) Transformations which merge duplicate nodes., This is a
generalization of the problem of recognizeing ' common

subexpressions'.

(c) Transfomations which introduce duplicate nodes. This type
of transformations are useful when altering the contrcl
structure of the program graph as one may do when attempting
to minimize expected execution time given the relative
frequencies of control brancheas or when one is interested in
partitioning the program graph into sub-graphs as in the

gegmantation problem.

(d) Transformstions which modify the N=cycle structure of the
graph. Such transformstions in conjunction with the merging
and introduction of duplicate nodes are useful in the study of

programs with intersecting loops.

On the subject of program graph analysis we are roughly interested
in finding useful properties of the graph and establishing effective tests
for ascertaining the presence or abgence of such properties in specific
graphs as well ae relating such properties to patterns of behavior during
the program grsph executfon. In particular we hope to study in further
detsil the property which has been called s 'deterministic graph', when
there is ¢ knowledge of the possible time interval assignment of some or
all nodes of the graph,
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Finally, some effort will be applied to extend the program

ude data structures which at the present stage

graph model to inel
In thia comnection

of development have been deliberately omitted.

some results of automata theory, particularly those concerning

multitape gutomata might prove helpful.
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