MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

COMPUTATION STRUCTURES GROUP MEMO 224

LOCATING MIGRATORY OBJECTS IN AN INTERNET
by

CECELIA E. HENDERSCN

Submitted to the Department of Electrical Engineering.and
Computer Science, M.I.T., on August 18, 1982, in partial fu}-
fillment of the reguirements for the degree of Master of Science.

JANUARY 1983

Locating Migratory Objects in an Internet 18 August 1982

Locating Migratory Objects
in an Internet

by
Cecelia E. Henderson

Submitted to the
Department of Elcctrical Engineering and Computer Science
on 18 August 1982 in partial fulfillment of the rcquirenients
for the Degree of Master of Science

Abstract

An abstract object is composed of a name and a value and exists in the memory of a
single node. Historically, an object was confined to a single node: created,
manipulated and destroyed. Finding an object’s location was simple if its location
were incorporated in its name.

Consider allowing an object to leave the node on which it was created. An object
allowed to move from one node to another is called migratory and its movement is
called migration. Migration is not the same as copying an object, since the identity
of an object migrates with it. Finding an object’s location is no longer as simple as
looking at its name. In a broadcast or multicast network, a broadcast query could be
“used to find an object. In an internet composed of several types of networks, a
broadcast query is impossible. This thesis addresses the problem of finding a
migratory object’s location in an internet given the object’s name. K

Locating Migratory Objects in an Intcrnet . 18 August 1982

Chapter One

Introduction

Distributed processing has prospered in recent years both in research and in
applications of rescarch results, Management of distributed databases has
contributed to this prosperily. Another contributor has been the unbundling of
processing from a single, expensive, large, shared mainframe to many cheaper,
small, personal workstations connected through a network. New language designs
have brought the ideas of abstract user-defined objects and distributed processing
together. This thesis was writien to investigate how to manage movable abstract

uscr-defined objects in a distributed-processing environment.

This chapter presents a high-level description of the thesis problem and proposes
a solution. It discusses design criteria which the developer of a solution should
consider and compares the solution with a rival. Rescarch related to the thesis
problem is discussed to illustrate approaches to similar problems. The last section of

the chapter explains the structure of the remainder of the thesis.

1.1 Problem Description

In this section, a few basic terms are defined and used in a bricf description of”*
the thesis problem, Operating conditions assumed for the proposed solution are

presented. A short explanation of the proposed solution closes the section,

Locating Migratory Objects in an Internet 18 August 1932

1.1.1 Definitions and Descriplion

A node o site is a physical processor with computing capability and with access
to stable and volatile memory. Data stored in stable memory survive crashes; data
in volatile memory do not. A node may be connccted to other nodes to form a
network, which may be connected to other networks to form an internet. Individual
nodes have a location in the internet and communicate wmnong themsclves by
sending messages through the internet. A network partition occurs through
selcctive network component failure which divides the nodes of a network into two

or more subsets which cannot communicate.

An abstract object is composed of a name and a value which exist in the memory
of a single node. Historically, an object was confined to a single node: created,
manipulated and destroyed at that node. Finding an object’s Jocation was simple if

its location was incorporated in its name.

Consider allowing an object to leave its birthsite, the node on which it was
created. This might occur because the node is no longer willing to support the
object, or bechusc physical constraints required by the object are no longer met. In
this paper, an object allowed 10 move from one node to another is called migraiory
and its movement is called migration. Migration is not the same as copying an
object, since the identity of an object migrates with it. How an object migrates is an

interesting problem which this thesis will not address.

This thesis addresses the problem of finding a migratory object’s location in an
intcrnet given the object's name. Once an object can migrate, finding an object’s
location is no longer as simple as looking at its name. In a broadcast or multicast
network, a broadcast query could be used 1o find an object. In an internet
composed of scveral types of networks, a broadcast query is impossible at the

hardware level. In this thesis, no assumptions are made about the network topology.

Locating Migratory Objects in an Internet 18 August 1982

1.1.2 Operating Assumptions

Migration is rare. The great majority of objects spend their entire existence at
their birthsite. An object which has migrated is unlikely to migrate again. An object
which has migratcd more than once is likely to spend a long time between
migrations. Migration is atomic, guaranteed to be cither successful or not. An

object is never left in a state of partial migration.

Crashes are infrequent. The mean time between failures for any particular node
is long. The great majority of nodes spend days or weeks executing between crashes,
Stable storage survives crashes with extremely high probability but is expensive

[Lampson 79].

An internet may lose, duplicate or interminably delay messages but may never
undetectably scramble a message. A scrambled message is detected and thrown out.

A node knows its own location in the internet and the locations of a subset of other

nodes.

1.1.3 Proposed Solution

In this paper, the facility which tracks migratory objects is known as a registry. It
maps a unique identifier (uid) of an object to the object’s location. A registry is
composed of a database, containing entries for objects, and processes to maintain
the database. When an object is created, its name and birthsite are added to the
registry. “The object’s birthsite is incorporated in a unique identifier for the newly
registered object which the registry returns. Migration is coordinated with the
registry. When an object is destroyed, the registry is notified. To acquire an object’s
location, the object’s uid is given to the registry. The object’s location is returned, if

possible,

Locating Migratory Objects in an Internet - 18 August 1982

A registry is fully distributed across an internet. That portion of a registry
maintained by a single node is called a nodal registry, At a minimum, a nodal
registry contains information about objects existing at its node. When an object is
registered or destroyed, an interaction with a nodal registry takes place quickly
without involving other nodes. When an object migrates, coordination is required
only between the registries of the two nodes involved in the migration. A nodal
registry tries to return local information when an object’s location is wanted. 1f this
is inadequate, the nodal registry searches for the object's location by asking other
nodal registries. Through migrations and scarches, a nodal registry can obtain
information on objects cxisting clsewhere, but this cached information may be

inaccurate and the nodal registry is not required to keep it past its immediate use,

‘The approach is novel in performing a search on a fully distributed registry of
abstract migratory objects in an intcrnet, [Accctta 80) and [Halstcad 79] rely on a
central registry, [Kahn 78] and [Shoch 80] keep track of other kinds of special
objects. [Birrell 80] uses a broadcast network. [Lindsay 81a] relics on the birthsite to
be available and have refiable information. [Lindsay 814 is discussed more fully

ater in this chapter in the section on related research. [Oppen 81] imposes a
structure on the components of its analog of a registry whereas the nodal registry
space in this thesis is flat. [Oppen 81] also allows the registry analog to store much

more information than a location. [Oppen 81] 1s discussed more fully in the section

on related research.

1.2 Design Considerations

The first half of this section discusses requirements for the proposed solution’s

reliability and robustness. The second half discusses the question of ensuring that

the proposed solution terminates.

Locating Migratory Objects in an Internct 18 August 1982

1.2.1 Retiability and robustness

A rcliable algorithm produces accurate information, never false information.
Accurate information can be cither an expected result (for instance, a sorted list) or
notification that the algorithm cannot produce the expected result (for instance,

bceause the input is not in the correct format).

In this thesis, a registry returning accurate information produces an object’s
current location or says that the object no longer exists. A registry may return
slightly inaccurate information because an object can migrate between the time the
registry returns the object’s former location and the time this information is used. A
registry may also fail to find an object’s location because of a crashed node or a
persistent network partition. For these reasons, a registry is not strictly reliable.
However, a registry will ncver convey completely false information. A registry will
never report that an object has been destroyed if the object still exists nor produce a
tocation for an object that was destroyed before the registry began scarching for the

object.

A robust | algorithm performs gracefully in the face of adverse conditions,
providing a gradually degrading quality of service until a breakoff point is reached
past which no service is offecred. For instance, a retrieval algorithm, given a unique
key, will return that key's corresponding record. Given an ambiguous key, it may

return a set of records. Given no key, it may refuse to attempt retrieval.

A robust registry functions despite transitory disappearance or duplication of
messages, node failures and network partitions. Its performance should degrade
gracefully in the presence of persistent disappearance or duplication of messages,

node fatlures and network partitions.

Locating Migratory Objects in an Internet 18 August 1982

1.2.2 Guaranteed termination

The proposed solution should be guaranteed to terminate under all
circumstances. [Francez 80] uscs a spanning tree to control termination of disjoint
processes by propagating success or failure information up the spanning tree and
propagating termination information down. [Martin 81] uses a broadeast mechanism
to control termination of an algorithm to determine a dirccted path from a source
node to a destination node in a strongly connected directed graph. When a nodal
registry is forced to scarch for an object's locution, the search must terminate if the
registry Icarns the object’s location, if it learns that the object is destroyed or if it
cannot be sure of either. Termination cannot depend on a broadcast mechanism or

on an internet remaining strongly connected or on a sought object standing stili.

1.3 Distributed Update vs. Distributed Search

A rival solution to that proposed by the thesis is to use a distributed registry kept
accurate through distributed updates to a small sct of known copies of registry
information. Scveral of the approaches discussed in the next section use distributed
updates. It was decided that a distributed search would be used as a rescarch vehicle
1o find out whether the space required for replicate entries could be traded for time

and cffort spread across the nodes of the internet. The final chapter will return to

this question,

1.4 Related Research

A problem quickly encountered in managing objects in distributed processing is
that of naming the objects so that different objects may be distinguished and
particular objects found and manipulated. Catalog management for a distributed

database management system presents many problems similar 1o management of

Locating Migratory Objects in an Internet | . 18 August 1982

abstract user objects. A database relation becomes the object whose location must
be found, though such an object moves very rarely and is usually replicated for
speed of access and reliability, The first section below discusses how one distributed
database management system, R*; performs catalog management. (SDD-1 [Rothnie

79] and distributed INGRES [Held 75] are other ecxamples.)

A distributed message-handling system must keep track of the location of
possible recipicnts of messages. Historically, a recipicnt’'s move from one location to
another has been done by hand and the message system notified afterwards. The
sccond section below describes how Grapevine [Birrcll 80] locates message

recipients.

The Xerox clearinghouse [Oppen 81} grew out of research on Grapevine. The
clearinghouse maps names to sets ol properties, a much richer mapping than the one

supposcd for this thesis, The third section below describes the clearinghouse.

Packet handling in a conventional packet-switched network can rely on static
location tables augmented by dynamic performance information in routing packets
from source to destination; not so a network composed of mobile nodes. The fourth
scction below describes the packet radionet, which relies on dynamic path-finding

mechanisms to discover the current location of portable packet radios.

1.4.1 Catalog management in a distributed database management systcﬁl

R* is a distributed version of System R [Astrahan 76, Lindsay 81b), a relational
database management system. It was designed to support graceful growth, preserve
local administrative autonomy and provide transparent data distribution. Its
environment is a homogeneous set of refational database management systems or a

nonhomogencous set with the same external interface and a common

10

Locating Migratory Objects in an Internet 18 August 1982

communication protocol. The network interconnecting the database management
systems may be slow, unreliable and expensive. Site autonomy is ensured through
isolation and controlled access to shared information. Data accessability depends
only on site availability. The entry of a new site is done by hand by the database
administrators at the mutually agreeable sites. Objects (that is, database relations)
can be created at any site and may infrequently migrate from one site to another

site. A particular object is stored entirely at one site.

The designers of R* [Lindsay 81b] wished to allow a user the greatest possible
freedom in choosing a print name, the name by which an object is manipulated in an
application program. At the same time, they wished each object to have a uid within
the distributed database management system which would be user-visible and
indicate where a catalog entry for the object could be found. To resolve a print
name into a uid, a System Wide Name (SWN) is used. An R* SWN has the
following format:

(uscr@uscr_sitc.object_namé@object_site)
where wuser is the userid of the user who created the object; user site is the network
site of this creator; and object site is the network site at which the object was created.

The database catalog for R* [Lindsay 8laj supports a mapping from user-
specified object references to low-level object identifiers and object locations. [t is
represented as a relation in its own database, taking advantage of the available
concurrency control and recovery facilities. Each site maintains its own piece of the
distributed catalog. The catalog at an object’s birthsite will always know the object“s'“
current location. Each Jocal catalog contains an entry for each locally stored object.
A site may cache a catalog entry from a remote site in order to improve response,
but these cached entries are not maintained consistently, Version numbers are used
to detect discrepancies. The version number of catalog entries at an object’s birth

and storage sites are changed only when the object’s location or access paths

11

Locating Migratory Objects in an Interpet 18 August 1982

changes. No provision is made for locating an object if the local cache has no entry

and the birthsite s unavailable.

The names handled by this paper’s registy are abstract objects which users of the
registry cannot cxamine. No structure such as that built into R* SWNs is apparent,
A registry name is a uid, associated with an object when a user requcsts that the
object be registered. Thereafter any request made by the user to the registry

concerning that object must be accompanicd by the object’s registry uid.

1.4.2 Grapevine

Grapevine [Levin 76, Birrcll 80] is a distributed message transport and registry
system built in an internet environment with high bandwidth local networks
[Metcalfe 76]. It allows for naming recipients of messages and an explicit mapping
from names 10 current locations. A user may move from one naming authority to
another provided he makes the move himself. Grapevine will not move a user by

itself,

Recipients of messages are located in a multistep procedure. A broadcast
reference locates a name lookup server which recognizes the naming authority of the
recipient. The name lookup server supplies the network address of a registration
server for the naming authority. The registration server supplies the network
address of a message server willing to store the message for the recipient. When a
user wishes to read his mail, he logs in at any workstation and asks the message\

server for his mail.

In contrast, this paper’s registry recognizes that objects move and provides a
mechanism for an object to report that it has moved. This mechanism requires

coordination only between the two nodes involved in the migration, the source node

12

Lacating Migratory Objects in an Internet . 13 August 1982

and the destination node. No attempt is made to explain how an object migrates

other than requiring this notification to the registry.

1.4.3 The Xerox clearinghouse

The Xerox clearinghouse [Oppen 81] is a sort of supercatalog of any person,
device, service or resource that some one or some program might want to know
something about. In addition to an object’s location, the clearing house also knows
what the object represents (a person or a printer, for example) and individual
attributes (the person’s phone number or the printer’s linespeed). As such, it goes

beyond the task set for this thesis of keeping track solely of an object’s location.

In structure, a clearinghouse is a hierarchy of clearinghouses for (at the top)
organizations and (next down) domains. Beneath domains are local names of
objects. An object has a three-level name of the form:

localname@ domain@organization
which is unique across the internet and is assigned by a system administrator. A
client of the clearinghouse, requesting the location of a named object, may cause a
hierarchical search of clearinghouse servers; first its own domain server, then the
server of the named object’s organization, and finally the server of the named

object’s domain, which will know the object’s location.

By way of contrast, the name space of nodal registries and registry uids in this paper
is flat. Registry uids are assigned in a distributed manner by the registry rather than '

by a system administrator. A registry cannot perform a hiecarchically-structured

search the way the Xerox clearinghouse doces.

13

Locating Migratory Objects in an Internet 18 August 1982

1.4.4 The packet radio network

The packet radio network [Kahn 78, Shoch 78a] is composed of three types of
entities: stations, packet radios, and repeaters. Stations initiate all network control
protocols which can have a global effect. Packet radios originate and reccive
messages and are slowly mobile. Repeaters are essentially relay links and will be
ignored in the following discussion because the radios are able to subsume their

functions.

In a small radionet, there is a single station that is aware of all radios in the
network and determines the best route from one radio to another. 1t discovers new
radios as they enter the range of the network and determines when radios leave the
network. Best routes minimize cost and complexity. Each packet radio collects
information on those radios within its broadcast range, summarizes this information
and sends it to the station. The station uses this information to deduce overall
conncectivity, It determines a good route to itself from each radio and distributes
this information. When a packet radio wishes to send a message, it requests a route
from the station. On receiving the routing information, the radio broadcuasts a route

sctup message, followed by the message.

If the number of radios in the network becomes large enough, a single station is
no longer sufficient. Each station individually controls a group of contiguous radios.
Each packet radio can rcmember any number of stations which try to gather it into
their respective domains. A station is a neighbor of another station if they share at™
least one radio. Stations communicate directly only with neighboring stations.
Stations do not coordinate with each other to adjust apportionment of radios to

stations.

Routing a message to a radio outside the local station’s domain begins when a

routing query is sent from an originating packet radio to its local station. The local

14

Locating Migratory Objects in an Internet 18 August 1982

station asks its ncighbor stations if they own the destination radio. These stations in
turn ask their neighbors, building a route as the queries progress. The same query
seen twice by the same station is discatded. The destination station passes the
rotiting query to the destination radio, which initiates a route sctup. The message is
then sent from the originaling radio dircetlly to the destination radio. Thus the
packet radionct uses dynamic source routing with relatively frequent updating of
routing tables. The message source specifies all of the intermediate routing

decisions.

This method of routing is analogous to one of the search methods used by a

nodal registry to find the location of an object when the local information is

inadequate,

1.5 The Remainder of the Thesis

Chapter Two introduces terminology on which discussions later in the thesis are
based. A procedural interface for the registry system is presented followed by a
description of two strategies that a nodal registry could use when seafching for an
object. Why guardians werc thought relevant to the thesis problem, a model of a
guardian and how the model effected the structure of a nodal registry are explained.

Chapter Two closes with a description of two lower level system, a routing system

and a neighbor system.

Chapters Three and Four present immplementations for each of the two search
strategies introduced in Chapter Two. Simple search conditions begin each
presentation. Conditions grow more complicated as they allow for changes in

neighbors, an unreliable network, object migration, concurrent searches, and crash

recovery.

15

Locating Migratory Objects in an Internet | . 18 August 1982

Chapter Five summarizes the thesis work.

16

Locating Migratory Objects in an Internet : 18 August 1982

Chapter Two

Environment

The first section of this chapter introduces common terminology on which to
base the discussion of later scctions. The sccond scetion presents a procedural
interface for the registry system. The third section describes two strategies that a
nodal registry could use when scarching for an object. The fourth section explains
why guardians were thought relevant to the thesis problem, gives a model of a
guardian and explains how this model effected the structure of a nodul registry. The

final section describes two lower level systems on which the registry depends, a

routing system and a neighbor system,

2.1 Terminology

A handle is a registry-wide unique identifier returned by the registry when an

object is added to the registry. The object’s biithsite is incorporated in its handle.

An object is registered if an entry exists for it in a nodal registry. State
information is kept on registered objects. A resident object exists wholly in the
volatile or stable memory on the registry’s node. All manipulation of the object takes
place at that node. A nonresident object may exist on a different node. A migrating”
object is migrating to or from the registry’s node, existing wholly on neither node.
An object may be sought, to determine its location, A destroyed object exists

nowhere.

An object resides on a node if and only if the nodal registry contains an entry

17

Iocating Migratory Objects in an Internet 18 August 1982

marked as resident. ‘This implics that a registry will know for certain, when asked, if
a particular object resides at its node. [t will neither give an incorrcct negative
answer, responding that the object is not resident when it is, nor give an incorrect
positive answer, responding that the object is resident when it is not, nor be unable

fO answer.

A nodal registry contains an object entry marked as nonresident and giving a
location if and only if the object currently resides at the given location or the object
resided at the given location at some past time and has not resided at the registry’s
location between that time and the present. No more recent information on the
object has been received. This mcans that any information on a nonresident object
will at worst not advance a search, may help a search, but will never sabotage a

search.

A pair of nodal registries cach contain an object entry marked migrating if and
only if the object is currently migrating from one of the nodes to the other. The
entry location is the object’s location before migration and the entry migration

destinaton is the ubject's location after successful migration.

An object is sought if and only if the registry is conducting a search for the
object’s location or the nodal registry was asked for the object’s location by another

nodal registry at some point in the past.

An object entry is marked destroyed if and only if the object was resident an(i"‘
destroyed on the registry’s node, or another nodal registry, when asked, responded
that the object is destroyed. This guarantees that record of the destruction of an
object may be obtained only from its last residence or in a chain of information

exchange which originates with its last residence.

18

Locating Migratory Objccts in an [nternet | , - 18 August 1982

No entry at all may exist for an object, The object is nonexistent from the
viewpoint of the registry. A nonexistent object may have entries in the database, but
all these entries must be marked nonresident. Such object entries can exist in the
fully distributed registry if and only if the object has been registered, destroyed and

all records of its destruction removed.

A sceking node is a node the registry of which has initiated a scarch for an object.
A sought object is an abject of a scarch. A queried node, in relation to a seceking node
and a sought object, is a node whose registry has been asked for the location of the
sought object during the scarch initiated by the secking node for the sought object.
A wonmnhole is an entry in a nodal registry for a nonresident sought object giving a
(possibly out-ol-date) location for the object. A search perimeter is conceptually the

dynamic bounds of a scarch for a migratory object. Expansion is asking new nodes

about the location of a sought object.

2.2 Interface to the Registry

To find an object, the object must be registered. Thereafter, until the
registration 1s rescinded and the object destroyed, location requests are resolved by
consulting a nodal registry., When asked for the location of an object, a nodal
registry examines its database. If an entry exists for the object, and a location is
given in the entry, the nodal registry will return that location. [f no entry exists or

no location is given in an cxisting entry, the registry will return the object’s birthsite.

Having the registry’s first answer, an attempt will be made to use it. [f the
attempt is successful, the registry’s task is complete. 1f the attempt is unsuccessful
either because no response is received or because the object is no longer resident at

that location, there must be some standard policy for deciding what is next to be

19

Locating Migratory Objects in an Internct 18 August 1982

done. One choice is to request the registry Lo conduct a scarch for the object. In
answer to such a search request, the registry may respond with a new location,
answer that the object has been destroyed or is nonexistent, or say that it has failed

to locate the object but has no sure knowledge that the object does not exist.

The external interface to a registry is composed of a set of procedures which
send a message to the registry requesting information or an action and wait for a
response. The eight registry interface procedures are Register, IsResident, Destroy,

GetLocation, Search, Moving, Moved and NotMoved.

Register accepts the name of a resident object and returns a handle. It requests
that the registry crcate a new entry in its database pairing the handle with the name,
The entry is marked as resident. [t will signal /solared and refuse the registration
request if the node has no ncighbors. Note that registering an object is not
idempotent: registering the same object twice will result in the object having two
uids associated with it. Multiple registration may occur due to a fortuitous crash,
resulting in the loss of the response containing the handle. Under this circumtaricc,
multiple registration causes no problem other than wasting space. An old
nonresident entry, unused for a long time, will be delcted by the registry as part of
normal housecleaning. However, if an object is deliberately registered more than
once, the registry database may become inconsislenf if the object migrates. Since the
registry has no contro! over this, it is up to the users of the registry to correctly

handle the multiple notification of the registry required to prevent errors.

IsResident accepts a handle and requests that the registry check if the object’s
entry is marked as resident. True is returned if the object is resident. No(location) is
signalled if the object is not resident and a location is given in the object's entry.
Unknown is signalled if no location is given or no entry exists. Destroyed is signalled

if the object’s entry is marked as destroyed.

20

Locating Migratory Objects in an Internet 18 August 1982

Destroy accepts the handle of an object and requests that the registry mark its
entry in the registry database as destroyed. Nonresident is signalled if the object is
not resident. If no crror is signalled, the entry 1s marked as requested and will be
removed during normal housccleaning at some indeterminate later time, when all

local record of the objcct will be lost. Note that only resident objects may be

destroyed.

GetLocation accepts a handle and requests that the registry return the object’s
location. If the object is resident, the vatue returned will be the registry’s location.
If the object is nonresident and an entry exists with a location given, the value
returncd will be the location given in the entry. f the object is nonresident and no
cntry exists or no location is given in an existing ¢ntry, the value returned will be the
object’s birthsite. No guarantee is given that a nonresident object stili resides at the

location returned. Destroyed is signalled if the object is found to have been

destroyed.

Scarch accepts the handle of an object and requests that the registry conduct a
search for the object. The object’s registry entry is assumed to be incorrect unless it
says that the object is resident. Otherwise a search is conducted. If the object is
found, the value returncd will be the object’s location at the time the scarch
concluded successfully. If a rccord of the object’'s destruction is found, the
procedure will signal destroyed. If the object is not found but may be unreachable
the procedure will signal not found. 1f the object is not found and all nodes have.

been reached without finding it, the procedure will signal nonexistent. The object’s

registry entry is updated according to the search results,

The previous procedures enabled an object to be registered, sought and
destroyed. The three interface procedures Moving, Moved and NotMoved provide a

way to coordinate an object’s migration with the registry. When migration begins,

21

Locating Migratory Objects in an Internet - 18 August 1982

the two nodal registries involved are notified through separate calls (o Moving,
Examination of the object’s entries at the two nodes is blocked for the duration of
the move. 1f the migration succeeds, the two nodal registries are notified that the
object now resides on a new node through separate calls to Moved. I the migration
fails, the two nodal registries are notified that object remains at the same node

through separate calls to NotMoved.

Moving accepts a handle, an origin and a destination. 1t requests that the registry
mark the object's entry as migrating to the destination, If no entry exists, not
registered will be signalled. 1f the origin is the registry’s location, and the object is
not resident prior to the call, origin error will be signafled. If the destination is the
registry’s location and the object is resident prior to the call, destination error will be
signalted. If neither the origin nor the destination is the registry’s location, third
party migration will be signalled. The object’s entry is marked as migrating only if |

no error is detected.

Moved accepts a handle, ar origin and a destination. 1t requests that the registry
update the object’s entry to reflect a successful migration. An entry must exist in the
databasc and be marked as migrating from the origin to the destination prior to the
call. If no entry exists, not registered will be signalicd. If an entry exists but is not
marked as migrating, then not migrating will be signalled. If the origin does not
match the location given in the entry, origin error will be signalled. {f the destination
does not match that in the entry, destination error will be signalled. If the entry,
location is the same as the registry’s location, then the object is now nonresident.
The entry is marked as nonresident and the location is set to the destination. If the
entry location is not the same as the registry’s location, then the dbject is now
resident. The entry is marked as resident and the location is sct to the destination.

The object’s entry is changed only if no error is detected.

22

Locuting Migratory Objects in an Internet 18 August 1982

NotMoved accepts a handle, an origin and a destination. It requests that the
registry update the object's entry to reflect unsuccessful migration. An entry must
exist in the database and be marked as migrating 1o the destination from the origin
prior to the call. 1f no entry exists, not registered is signalled. 1f it is not marked as
migrating, not migrating is signalled. 1If the origin is not correct, origin error is
signalled. If the destination is not correct, destination error is signalled. If the entry
location is the same as the registry’s location, then the object has failed to migrate
from the registry's location. The entry is marked as resident. 1f the entry location is
not the same as the registry's location, then the object has failed to migrate to the

registry’s location. The entry is marked as nonresident. ‘The object’s entry is

updated only if no error is detected.

2.3 Search Strategies

~ ‘This paper investigates two types of searches which differ in how expansion of
the scarch perimeter is controlled. In a centralized search, the decision to expand is
made by the registry of the secking node. Quashing a search is simple: the registry
of the sceking node ceases sending out queries. A centralized search works the
seeking node hard, may be slower than a distributed search and comes to a halt if
the secking node crashes. In a distributed search, the decision to expand is made by
the registry of each queried node after the registry has established that the sought
object is nonresident. Quashing a scarch is no Jonger simple. A distributed search‘
spreads the work of the search across the nodes of the network, may be faster than "

performing a centralized search, and can continue even while the seeking node is

crashed.

Important more for defining the set of nodes on its inside and jts outside than for

itself, a search perimeter is the set of nodes which have been or soon will be queried

23

Locating Migratory Objects in an Internet 18 August 1982

and have not yet replied. A node is within or inside a search perimeter if it has
rephied to the search query. A node is ourside a search perimeter if it is neither on
the search perimeter nor within the search perimeter. The concept of a search
perimeter becomes important when a sought object migrates from a node outside its
scarch perimeter to a node inside its search perimeter, Since its new node has

already been queried, the object could conceivably elude the search.,

Each new search is assigned a uid when it is initiated to distinguish it from every

other search.

Either of the types of scarch may be used, but it is here presumed that only one
type is used at any time. 1f both scarch methods were to coexist in the same
internet, differing ways of initiating scarches would be necessary as well as differing
types of communication among searching nodes. It was not considered as part of

the thesis to indicate how any of this could be done.,

1.4 Guardians and the Structure of a Nodal Registry

The design of a fully distributed registry of infrequently moving objects was
instigated by the idea of allowing guardians to move from one node in an internet to
another as external resources and policies changed or as a guardian’s internal state
required. The structure of a nodal registry is based on a model of guardians. This
scction explains that model by closely following the discussion in fLiskov 80]] . The.

model is then related to the registry’s design.

A guardian resides completely on a single physical node and provides controlled

IThiS is not the current mode! of guardians under rescarch. Sce [Liskov 82] for the current model
of guardians, '

24

Locating Migratory Objects in an Internet A . 18 August 1982

access o a resource. A guardian contains processes and data objects. A process is
the exccution of a sequential program. The processes do the actual work of the
guardian, manipulating the data objects and communicating with one another

through shared data objects,

A guardian is an abstraction of a physical node of the underlying network. It
Supports one or more processes sharing private memory, and communicates with
other guardians only by sending mcessages. Activity within a guardian is local and
inexpensive because it takes place at a single physical node. Activity between

guardians may be more costly. Each guardian acts as an autonomous unit, guarding

its resource as it sces fit,

Each guardian definition can declare a set of permancnt variables. The
guardian’s permanent state consists of these variables and all data reachable from
them. This permanent state is guaranteed to survive crashes and is updated
atomically. A guardian may also have volatile variables that comprise its volatile

state. A guardian’s volatile state does not survive crashes, nor do the guardian's

processes.

A guardian definition has two code sections. The first js the inil section, the
purpose of which is to set the permanent state to a consistent initial value. This
section runs whenever a new guardian is created. The second is the start section.
This section runs when init is complete or when the guardian is restarted after a

crash. It first initializes the guardian's volatile state and then performs the

guardian’s actual work.

Messages contain the values of data objects. To insurc that the address space of a
guardian remains local, it is impossible 1o place an address of an object in a message,

Instead, a 1oken for an object may be sent, which can be returned to the object’s

25

Locating Migratory Objects in an Internet 18 August 1982

guardian to request manipulation of the object. Any object which is transmissible
may have its value placed in a message {Herlihy 80]. Messages are sent to ports.
Fach port has a type that completely determines the set of messages it can receive
and the responses to thosc messages. A guardian definition lists one or more port
types to be provided for communication. Porls arc globally available names with
associated queues for recciving messages. Messages are not sent through ports; they
are sent fo ports. A port is owned by a unique guardian, which is the only guardian

to reccive messages on that port. Portnames are transmissible, but ports are not.

A nodal registry is a pair of cooperating permanent processes which maintain a
database of object locations. Viewed as a guardian, a nodal registry's resource is its
database, protected and manipulated by its processes. State information kept by
thesc processes to control searches does not survive crashes. This information is
reconstructed from a registry's database and from information supplied by other
registrics when a nodal registry is restarted after a crash. Each process executes in a
large loop, reading a message from its message queue, processing it and returning to
read another. Processes are distinguished with process uids included in the message
so a response may be sent. The resident server process handles requests originating
locally through calls to Register, IsResident, Destroy, Moving, Moved, NotMoved,
and GetLocation. The search controller conducts searches on behalf of local
requests made through calls to Search. [t answers other nodal registrics in a
centralized search and conducts subsidiary searches for other nodal registries in a

distributed search.

A registry database object entry contains an object handle, location, and

disposition. A smmple representation of an entry might be:

26

Locating Migratory Objects in an Internet 18 August 1982

entry = record [obh: handle,
loc: location,
rft: date,

dp: disposition]

A disposition may be sought, resident, nonresident, migrating, or destroyed,

reflecting the states that an object may assume from the viewpoint of a2 nodal

registry,

Rt is used for database housekeeping: it is the date and time the entry was last
examined or modified. Its initial value is the date and time when the entry was
created and is updated whenever an entry is consulted. A nodal registry pcriodically
removes old entries for nonresident and destroyed objects. Entries for sought

objects can be deleted if the nodal registry knows that the search has terminated.

A copy of a nodal registry’s database is kept on stable storage and a new copy is
written during the execution of Register, Destroy, Moving, Moved, NotMoved and

Search. This stable copy is used 10 restore searches when the registry restarlts after a

crash.

2.5 Lower Level Systems

The registry depends on the behavior of two lower level systems, a routing,
system and a ncighbor system. The routing system constructs messages, transmits
them across the internet and decomposes them for their recipients. The neighbor

system constructs and maintains a logical neighboring relationship among the nodes

of the internet.

27

Locating Migratory Objects in an Internet . 18 August 1982

2.5.1 Routing System

The interface to the routing system is composed of two procedures. Each
constructs a low-level internet message from a high-level registry message and
transmits it to an internct location where the high-level 'registry message is extracted
and placed on the message queue of the appropriate registry process. The registry
process can then read the high-level message from its message queue, determine its
type and process it. SendResidentMessage accepts a location and a high-level
message directed to a resicent server. SendSearchMessage accepts a location and a

high-level message directed to a scarch controller.

Exactly how a message is routed between a sending node and a receiving node is
transparent to the nodal registry. [f a path becomes unavailable, the routing system
reroutes the message. A message dirccted to a location in a separate network
partition is discarded. Messages may be lost, duplicated or intcrininably delayed,

but never undetectably scrambled. A detectably scrambled message is discarded.

2.5.2 Neighbor System

The neighbor system supplics a nodal registry with the locations of a subset of
other nodes which the registry can use as a basis for conducting searches for
nonresident objects. A design for a neighbor system is an interesting problem which
this thesis does not address. The three interface procedures to the neighbor system
which are of interest to a nodal registry are AreNeighbors, MyNeighbors and~

Neighhors.

AreNeighbors accepts two locations and returns rue if a neighboring
rclationship exists between them; false otherwise. The neighbor relation is

Synmmetric.

28

Locating Migratory Objects in an lnter‘net 18 August 1982

Neighbors accepts a location and returns a list of the locations which have a
ncighboring relationship established with it. If the location is not in the neighbor
system, unrecognized location will be signalled. If no neighboring relationships exist

for the location, an empty list will be returned,

MyNeighbors returns a list of the locations which have a ncighboring
relationship with the location at which the procedure is executed. If the location is
not in the ncighbor system, wunrecognized location will be signalled. If no
ncighboring relationships exist, an empty list will be returned. Calling

MyNeighbors is equivalent to calling Neighbors with the location at which the

procedure is executed.

The neighbor system caches information for some time Tmhe, where it is
assumed that searches never take longer than TCach c-Asy nche Tcach o 1s very large, for
example a week or a month, longer than any search reasonably takes. Asyn ch is a
small increment to make up for any lack of synchronization of clocks at different
locations. The cached neighbor information is stable, but there is not a lot of it since
changing neighbors is rare. Any information returned by the three interface

procedures AreNeighbors, MyNeighbors and Neighbors incorporate this cached

information.

The concept of neighboring nodes is above the level of the internet hardware,
Neighboring nodes need not be on either end of a piece of wire. They nced not be.
in the same subnetwork of the internet. A unique routing path need not exist‘.
between neighbors. As long as the underlying physical network is connected, the
imposed network of neighbors should remain connected. Adding or removing a
new node to the neighbor system, like adding or removing a new node to the
intcrnet, is a rare event. Changing neighbors is more common, and never isolates a

node. The change is assumed to be atomic. The answer returned is correct at that

29

Locating Migratory Objects in an Internet 18 August 1982

moment but may be invalidated afterward.

30

Locaiing Migratory Objects in an Internet | . 18 August 1982
Chapter Three

Controlling a Centralized Search

This chapter presents an implementation for a centralized search. A centralized
search is conducted by a single nodal registry by sending messages to other nodal
registries, recciving their replies and expanding the search perimeter. Simple search
conditions begin the presentation. Conditions grow more complicated as they allow
for changes in ncighbors, an unreliable network, object migration, concurrent

scarches, and crash recovery.

3.1 Simple Search Conditions

This section presents how a centralized search is controlled under simple search
conditions. Only one nodal registry is looking for the object. No nodes crash and
the network transmits messages perfectly without loss, duplication or delay. The
sought bbject does not migrate while the scarch is being conducted. The

configuration of the neighbor system remains constant.

A search is initiated by cailing the registry interface procedure Search which
sends a Search request 1o the nodal registry's search controller. A Search request

contains an object’s handle and a uid of a process making a search request.

Information on current searches is kept by a search controller as a set, with an
element of the set for each search. Fach clement contains a sou ght object’s handle, a
uid for the search, a uid for the process which requested the search by calling the

registry interface procedure Search, the set of nodes on the scarch perimeter, the set

31

Locating Migratory Objects in an Internet | 18 August 1982
of nodcs inside the scarch perimeter, and the current state of the scarch.

On reading a Search request, a search controller first checks the database to see
if the object is resident; the object may have migrated here since the registry was last
asked for its location. If that is the case, the current Jocation is returned as the value
of the Search request. Otherwise, the search controller initializes a new element and
adds it to its set of current searches. The sought object's handie and the uid of the
requesting process are taken from the Search request. A new uid that incorporates
the start time of the search is created for the search uid. The initial set of nodes on
the scarch perimeter is the node's neighbors, acquired through a call to the neighbor
system interface procedure MyNeighbors, plus the sought object’s birthsite,
acquired from the object’s handle, plus an outdated residence, acquired if it exists
from the sought object’s registry entry. The initial set of nodes inside the search
perimcter contains only the seeking node. The initial state of the search is notfound.
Figure 3-1 illustrates the information kept by a centralized search controller under

simple search conditions.

search = record [sought_object: handle,
suid: search_uid,
requesting_process: process_uid,
outgueries: locset,
inqueries: "~ . locset,
state: search_state]
Tocset = setfTlocation]
search_state = variant [found: location,
destroyed,
not_found: null]

Figure 3-1: Information Kept by a Centralized Search Controller
Under Simple Search Conditions

32

Locating Migratory Objects in an Internet 18 August 1982

Each location in the initial sct of nodes on the search perimeter is sent a
GetLocation request. A search controller teceiving a GetLocation request examines

its registry database for information on the sought object.

If a sought object is resident, a queried node’s search controller returns a Found
response. On receipt of a Found response, the scarch state is sct to Jound. The
requesting process is notified of the sought object's location and the registry’s

database is modified to show the object as nonresident with the quericd node’s

location,

Il a sought object’s entry is marked destroyed, a queried node’s scarch controller
returns a Destroyed response. On 'rcceipt of a Destroyed response, the search state is
sct to destroyed. The requesting process is notified of the sought object’s destruction

and the registry’s database is modified to show the object as destroyed.

If a sought object is not resident or destroyed, a queried node’s search controller
returns & NotJ'ound response. A NotFound response contains the responding node’s
location, the search’s uid, and a set of locations. This set is created by calling the
neighbor interface procedure MyNeighbors. 1f a wormhole location exists for the
sought object in the queried node’s registry database, it is added to this set.
(Remember that a wormhole is an entry in a nodal registry for a nonresident sought

object giving a (possibly out-of-date) location for the object.)

On receipt of a NotFound response, a secking node’s search controller finds the -
search’s record in its set of current searches. The queried node's location is removed
from the set of nodes on the search perimeter. If the scarch state is Jound or
desiroyed and the set of nodes on the search perimeter is now empty, there will be
nO more responscs to this search. The scarch’s record is removed from the set of

current searches. If the scarch state is not found, the set of locations returned in the

33

Locating Migratory Objects in an Internet . 18 August 1982

NotFound response is screened against the scts of locations on and within the search
perimeter. Any location from the NotFound response that is found in either set is
discarded. If both the set of locations on the search perimeter and the sct of
screencd locations are cmpty, every node has been asked without finding the sought
object. The requesting process is notified that the object is nonexistent. The
search’s record is removed from the set of current scarches. Any entry for the object
in the registry database is removed. If either set is nonempty, the queried node’s
location is added to the set of locations inside the search perimeter, the screened
locations are added to the set of locations on the scarch perimeter and a

GetLocation request is sent to each of the screened locations.

3.2 Changing Neighbors

In this scction, the ncighboring relations between nodes are allowed to change.
Such a change causes no problem if it occurs while no search is in progress. The
change in configuration is picked up naturally when a seeking or queried node uses

the neighbor interface procedure MyNeighbors.

If a neighboring relation is dropped but each node retains other neighbors, the
change does not cffect a search in progress. At worst it might take longer for one of
the nodes to receive a search query. If dropped neighbor relations result in a
disconnected neighbor network, searches will be confined to the separate networks.

This is assumed never to happen unless the change is purposeful and permanent.

If a neighboring relation is added but each node was not previously isolated, the |
change does not effect a search in progress. At worst it will give the searching node

one more node to screen against its sets of already-querted nodes.

If a node becomes isolated in preparation to leaving the neighbor system, it may

34

Locating Migratory Objects in an Internet 18 August 1982
‘ ;

be overlooked by a scarch in progress. This will cause a search for an object resident

on the isolated node to report the object as nonexistent. This is acceptable because

the node is removing itself from the internet and all objects rcsident on it will

become unreachable,

If a new node is added to the neighbor system while a search is in progress, it
may also be overlooked. This is acceptable because objects resident on the new

node cannot be the object of a search started before the new node joined the

ncighbor system.

A node might still be overlooked if it changes neighbors on or outside the scarch
perimeter for neighbors inside the search perimeter. Being overlooked under these
circumstances is prevented because the ncighbor system caches old neighbor
information. When a former neighbor asks for its neighbors to return this

information to the secking node, the might-have-been-overlooked node is included.

3.3 An Unreliable Network

In this section, a network is admitted to be unreliable, Messages can be lost,
duplicated or interminably delayed, although not scrambled. The routing system
detects imperfect messages and discards them. Partitions can occur, To handle an
unreliable network, a timeout mechanism is introduced for retransmission of
queries. Retransmission of queries introduces the possibility of duplicate queries,-.
forcing each request and response ta be idempotent. A message may still be
interminably delayed and could arrive after its search has terminated. Recognition

and correct handling of such delayed messages is required.

Two new pieces of information are kept for each search: the last time a response

was received; and the number of times requests have been resent since the last

35

Locating Migratory Objects in an Internct 18 August 1982

search = record [sought_object: handle,
suid: search_uid,
requesting_process: process_uid,
outqueries: locset,
inqueries: locset,
Yast_response: date,
timeout_count: int]

locset = set[Jocation]

Figure 3-2: Information Kept by a Centralized Scarch Controller
Assuming an Unreliable Network

response.

Last_response is the date and time when the last response for a search was
received. When the search record is initialized or a response is received,
last_response is set to the current date and time. Periodically, the search controller
checks last_response for each search. 1f last_response is beyond a tolerable limit,

new requests are sent to each location in outqueries.

Timeout_count is the number of times requests have been renewed since the last
response. When a search record is initialized or a response received, timeout_count is
set 10 zero. The timeout count is incremented when requests are renewed. If the
timeout count surpasses a tolerable limit, the search controller assumes that the
remaining outstanding Cjuerics will not be answered. The search is terminated by
removing the search record and notifying the requesting process that the object was

not found.

Each GetLocation request received is now checked for age. The search’s start
time, incorporated in the search vid, is compared against T_, ; -4 synch’ the length of

time the neighbor system has ached information. If a greater period has passed since

36

Locating Migratory Objects in an Internet | . 18 August 1982
the search started, the request is discarded as too old.

It is not surprising to find no record of a scarch when a response comes in. This
means that the search has terminated. The response can be discarded, This makes it
unnecessary to keep the search record afier receiving a Found or Destroyed

response, which in turn makes keeping search state information superfluous.

Special handling of duplicate Found and Destroyed responses is unnecessary
because the first Found or Destroyed response removes the search’s record. Special
handling of duplicate NotFound responses is unnecessary because the set of
locations is screcned against the set of nodes on the search perimeter as well us the

set of nodes inside the scarch perimeter,

A network partition is an aggravated case of an unreliable network. Depending
on when the partition occurs and its duration, the residence of a sought object may
never be queried or may never be able to respond to a query. No special handling

beyond the timeout nechanism discussed above is proposed.

3.4 Migration

In this section, objects are allowed to migrate. This introduces no new problem
unless an object migrates across a search perimeter, from the outside from a node
which has not been queried to the inside to a node which has already becn queried.

To solve this problem, evidence of the search must be stored at queried nodes,

Note that if an object migrates in the other direction, from the inside from a
node which has been queried to the outside to a node which has not been queried,
the answer returned by the search will be out-of-date, Since migration is rare, it is

always possible to catch up with a migrating object.

37

Locating Migratory Objects in an Internet 18 August 1982

As part of the processing of a GetLocation request by a queried node's scarch
controller, an entry is created in the registry database for the sought object. The
entry is marked as sought and the seeking node and search uid stored. When an
objcct migrates to a queried node, the resident server sends a Fureka response to the
sceking node. In reaction, a search controller sends a EurckaAck. A Eurcka
response contains a sought object’s handle, a scarch uid and a location. The location
is the sought object’s new residence. A FurekaAck consists of a scarch uid and a

location. The location is the responding secking node.

Because the sought object’s new residence is unlikely to be qucried again about
its new resident, notification is sent repeatedly until an acknowledgement is received
or until it times out. ‘To support this, a resident server keeps a set of records for each
newly migrated resident that it knows to be the object of a search. Each record
contains the object’s handle, the uid of the search, the location of the secking node,
the time when the last notification was sent, and the number of times that a

notification has been sent. (See Figure 3-3.)

eureka = record [sought_object: handle,
seeking_node: location,
suid: search_uid,
when_sent: date,
timeout_count: int]

Figure 3-3: Information Kept by a Centralized Resident Server
Assuming Migrating Objects

Periodically, a resident server checks the time when a Fureka response was sent
for each record in its set. If the time passed is beyond a tolerable limit, a new
Eurcka response is sent and the timcout_count is incremented. If the timeout_count

surpasses a tolerable limit, the eureka record is removed and the corresponding

38

Locating Migratory Objects in an Internet 18 August 1982
search information in the object’s registry entry is deleted.

On receipt of a Eureka response, a scarch controlter always sends a EurekaAck to
the location in the Furcka response. If the search has terminated, that is all the
scarch controller must do. If the search has not terminated, the search controller
removes the search’s record from its set of current scarches and notifies the
requesting process of the object's location. It marks the object’s registry entry as

nonresident with the location in the Fureka response.

On receipt of a EurekaAck, a resident server finds and removes its eurcka record.,
The search information stored in the object’s registry entry is also removed. If a

cureka record is not found, the EurekaAck is discarded.

Some synchronization between the operations that move an object and send

eureka messages is required to ensure that an object is not missed by a search. This

synchronization is discussed below.

34.1 A closer look at migration

When an object attempts to migrate, both nodal registries are notified through
scparate calls to the interface procedure Moving. Examination of the object’s entry
at these two nodes is blocked. If migration is unsuccessful, separate calls to the
interface procedure NotMoved notify both nodal registries and unblock the object’

entry.

If migration is successful, both nodal registries are notified through separate calls
to the interface procedure Moved. There are three major cases of successful
migration to consider: migration to nodes outside the search perimeter; migration to
nodes on the search perimeter; and migration to nodes inside the search perimeter,

Each major case has three subcases, one each for the origin of the migration: inside,

39

Locating Migratory Objects in an Internet - 18 August 1982

on or outside the search perimeter, The following subsections will treat each of the

subcases.

3.4.2 Migration from inside the search perimeter to outside the search perimeter

This is a null category: if a node of residence is inside the search perimeter, then
the scarch has terminated. This kind of migration has no effect on the terminated

search; no extra messages are gencrated.

3.4.3 Migration from the search perimeter to outside the search perimeter

This occurs when a GetLocation request arrives at the destination while the
object’s entry is blocked. Once the object's entry is unblocked, the GetLocation
request is processed normally, A NotFound response is sent which includces a list of
neighbors with the node’s new residence added. The node’s new residence will be

naturally included in the next expansion of the search perimeter.

3.4.4 Migration completely outstde the search perimeter

If migration completes before the search perimeter overtakes either the origin or
destination, this case is the same from the viewpoint of the seeking node as that of

no migration taking place,

3.4.5 Migration to the search perimeter from inside the search perimeter

This is a null category: if a node of residence is inside the search perimeter, then
the search has terminated. However, a delayed GetLocation request may arrive
while examination of the entry is blocked at the destination. Once the block is

removed through a call to the interface procedure Moved, the GetLocalion request

Locating Migratory Objects in an Internet 18 August 1982

will be processed normally. A Found response will be sent to the secking node.

This Found response will be treated as a duplicate response and will be discarded.

3.4.6 Migration from the scarch perimeter to the scarch perimeter

This occurs when a GetLocation request arrives at both the origin and
destination while the object’s entry is blocked at each. Once the object's entry at the
origin and destination is unblocked through a call to Moved, each processes the
GetLocation request normally. The origin sends a NotFound response to the

secking node. The destination sends a Found response to the secking node, which

terminates the search.

3.4.7 Migration to the scarch perimeter from outside the search perimeter

This occurs when a Getlocation requiest arrives at the origin while examination
of the object’s entry is still blocked. Once the block on the object's entry at the
destination is removed through a call to Moved, the GetLocation request will be
processed normally, causing a Found response to be sent to the seeking node This

‘Found response will be treated as a normal Found response, terminating Lhe search.

3.4.8 Migration completely inside the search perimeter

This ia a null category: if a node of residence is inside the search perimeter, then
the scarch has terminated. However, the destination nodc would not realize thls‘"
because success in searching is not anounced. If the destination still has the object
in its database as soughy, it will send a delayed Eureka response to the seeking node.

The seeking node will acknowledge and discard it.

It should be pointed out that an object might migrate to the seeking node, by

41

Locating Migratory Objects in an Internet 18 August 1982

definition inside the search perimeter. The resident scrver sends a Eureka response
to the search controlier without having 1o notice that the search controller is at the
same node. The object’s migration does not interfere with the search because the

scarch information is scparate from the database entry.

3.4.9 Migration from the scarch perimeter to inside the scarch perimeter

This occurs when the destination has alrcady answered a GetLocation request
before the object’s entry is blocked at the destination, and the origin receives a
GetLocation request while the object’s entry is blocked at the origin. Care must be
taken about the order in which the object’s entry is unblocked at the origin and

destination.

If the origin is unblocked first, the pending GetLocation request will be
processed normally. A NotFound response will be seat that includes the destination
in its set of locations. Because the destination is inside the search perimeter, its
location will be discarded during the screening process and the search may

terminate Incorrectly.

To prevent this, the destination must be unblocked first. At this point, during
the execution of the interface procedure Moved when the resident server is marking
the object’s entry as resident, the resident server discovers that the object has
migrated across the search perimeter. The resident server creates a eureka record,
enters it in its set of cureka records and sends a Eureka response to the seeking node.\"
The Moved procedure call does not return to allow a subsequent Moved call for the

origin until the Eureka is acknowledged or times out.

42

Locating Migratory Objects in an Internet _ . 18 August 1982

3.4.10 Migration from outside the search perimeter to inside the search perimeter

This case has a timing problem similar to the preceding case. If the origin is
unblocked before proper notification of the seeking node by the destination, then it
is passible that the search perimeter may overtake the drigin and cause the search to
terminate incorrectly. Unblocking the destination, followed by the origin, should be

handled as explained in the previous case.

3.5 Concurrent Searches

In this section, more than one nodal registry may conduct a search for the same
object at the same time. Separate searches overlap when their search perimelers
cross. To support concurrent searches, the scarch information stored in the registry
entry is expanded from a single (seeking node, search uid) pair to a set of (sceking
node, search uid) pairs. To support concurrent searches by a single node for a si ngle

object, the rcquésting_proccss field is changed from a single process uid to a set of

process uids,

When a search controller initiates a search, it marks the object’s registry entry as
sought by itself, storing the search uid and its own location as secking node. A
subscquent GetLocation request to the resident server will report that the object is

being sought. A subsequent Search request to the search controller will add the

requesting process to the set of requesting processes

When a search controller receives a GetLocation request from another node, it
examines the registry database as before. If the object is nonresident, a NotFound
response Is sent to the sceking node in the GetLocation request and the ncw seeking
node and search uid are stored. A GetLocalion request is still idempotent because

the (seeking node, search uid) pairs are stored in a set, which filters duplicates.

43

Locating Migratory Objects in an Internet 18 August 1982

Concurrent searches require a minor modification in the behavior of a node after
a successful migration. If the node is the destination of a successful migration and is
inside the scarch perimeter, a Eurcka response is sent to each secking node. To
ensure retransmission of the Eurcka until an acknowledgement is received or a

timeotit occurs, a eureka record is created for each (sceking node, scarch uid) pair,

3.6 Crash Recovery

In this section, it is admitted that physical nodes crash. To enable recovery of
scarches, the registry database must be copied to stable storage whenever the
disposition of an object changes. To restart a nodal registry, a single process is

started which in turns starts the resident server and search controller,

The resident server scans the database to houseclean and to recover information
on newly migrated residents. It looks for old entries for nonresident objects which
may be thrown out and for entries marked both sought and resident. The latter will
be for recently migrated objects. For each such entry, a ncw cureka record is
created, initialized and inserted in the resident servers eurckaset. The
sought_objecet, suid and secking node ficlds are set from information in the registry

entry. A Eureka response is sent to the secking node.

The search controller scans the database to recover information on objects
sought by itself and by other nodes. It looks for entries marked nonresident and -
sought by some other node. For each such entry and each (search uid, seeking
node) pair, a StillSearching? request is sent to the sceking node. A StillSearching?
request contains a sought object’s handle, a search uid, and the location to be
answered. When a search controller receives a StillSearching? request, it checks its

sct of current searches and responds with a SearchReport response. A SearchReport

Locating Migratory Objects in an Internet - | 18 August 1982

response contains a sought object’s handle, a search uid and a boolean value, [f the
boolecan value is trice, the search is still being conducted and its (search uid, sceking
node) should be kept. If the boolean value is Jalse, the search is no longer being

conducted and its (search uid, seeking nodc) pair may be discarded,

To rebuild its set of current scarches, a search controller also scans the registry
database for entries marked as sought by itself. For each such entry, a new search
record is created, initialized and inserted in the scarch controller’s srchset, The
sought_object and suid fields are sct from the registry entry. The last_response ficld

is set to the current date and time. The timeout_count is zeroed.

The requesting_processes ficld does not survive crashes. Processes are revived
from breakpoints and reissue registry requests, so it is reasonable o make the

requesting_processes field empty and attcmpi lo restart the searches in anticipation

of reissued requests.

The outqueries ficld does not survive crashes and is initialized as for a new
search. Responses from nodes on the old search perimeter will be processed
normally as they come in, resulting in a new search perimeter growing in three
directions, One, it will grow outward fiom the seeking node toward the old search
perimeter, querying nodes inside the old search perimeter. Two, it will grow inward
from the old search perimeter toward the seeking node, querying nodes inside the
old search perimeter. These two will eventually meet and stifle each other. Three, it‘
will grow outward from the old search perimeter, querying nodes outside the old ‘.

scarch perimeter,

The inqueries field does not survive crashes and is reinitiatized with the seeking
node as its only element. A possibly large number of duplicate queries will be sent

because the screening mechanism will be shortcircuited.

45

Locating Migratory Objects in an Internet . 18 August 1982

3.7 Housccleaning

Some provision needs to be made to cleanse the registry database of out-of-date
search information and unused entries. This can be handled by a process which
slecps most of the time, awaking heriodic:dly to make a cleaning sweep through the
database. For each cntry marked as sought by another node, the housekecper
process can send a StillSearching? request. The SearchReport will be handled
normally by the search controller. For each entry marked as nonresident, the
housckecper process examines the date and time the entrj/ was last used. If the date

and time arc beyond a reasonable limit, the entry is removed.

Alternatively, the resident server and search controller can periodically scan the

database as they do for crash recovery.

3.8 Discussion

A centralized search is reliable under simple search conditions. It will never say
that an object has been destroyed when it still exists or give a location for an object
that was destroyed before it started searching. Slightly outdated information may be
returned when an object migrates just after it was found. A centralized search may

report that it couldn’t find an object if the network is unreliable or nodes crash.

A centralized search functions robustly in the face of lost, duplicated or delayed
messages, node failures ;mq network partition, It will return a correct answer if the"'
object’s location is not in a separate partition or on a crashed node which remains
down for the duration of the search. If the seeking node becomes isolated, reliable
information is still available on resident objects and cached information is available

on nonresident objects.

Locating Migratory Objccts fn an Internet 18 August 1982

A centralized search always terminates. 1f no positive answer s received, it will
terminate when all nodes have been asked. A scarch will time out if responses are
persistently lacking. Crashes of the secking node reset the timeout mechanism but

are rare and will not cause a search to be restarted indefinitely,

.47

Locating Migratory Objects in an Internet 18 August 1982

Chapter Four

Controlling a distributed search

This chapter presents an implementation for a distributed scarch. As in the
previous chapter, search conditions are at first simple then grow more complicated
to allow for changes in ncighbors, an unreliable network, migration of a sought

object, concurrent searches and crash recovery.

A distributed search, like a centralized search, is initiated at a single nodal
registry. Unlike a centralized scarch, it is conducted as an expanding ripple of
subsidiary Scarches. The seeking node asks each of its neighbors for the location of
the sought object. Before responding, each neighbor asks ifs neighbors about the
sought object. An already—qucricd node responds immediately that it has already
been queried to any subsequent querying node. A newly-queried node responds
immediately to both the sccking node and its querying node only if the sought
object is resident or known to be destroyed. Once all a node’s neighbors have
answered, a node answers its querying node, propagating information back toward
the sceking node. A distributed search terminates when the seeking node receives
notification of the sought object’s location or destruction, or when all its neighbors

respond negatively to its original request.

4.1 Simple Search Conditions

This section presents how a distributed search is controlled under the same
simple search conditions as in the previous chapter. Only one nodal registry initiates

a scarch. No nodes crash and the network transmits messages perfectly without loss,

48

Locating Migratory Objects in an Internet . . 18 August 1982

duplication or delay. The sought object does not migrate whitc the search is being

conducted. The configuration of the neighbor system remains constant.

A distributed search is initiated in the same manner as a centralized search, by
calling the registry interface procedure Search, which sends a Search request to the

nodal registry’s search controller. A Search request contains the same information

as for a centralized scarch.

Information on current scarches is kept by a secarch controller as a set, with an
element of the set for each search, just as for a centralized scarch. Additionally the
location of the querying node and the secking node are stored to enable a node to

propagate scarch information back towards the seeking node,

On reading a Seareh request, a scarch controller first checks the database to see
if the object is resident; the object may have migrated here since the registry was last
asked for its location. If that is the case, the current location is returned as the value
of the Search request. Otherwise, the scarch controller initislizes a new clement and
adds it to the set of current searches, The secking node and the querying nodc are
set to this location. Qutqueries is the list of nodes which have been sent queries but
have not answered. It is initialized to contain this node's neighbors. The initial

search state is noffound. Figure 4-1 illustrates the information kept by a distributed

search controller under simple search conditions.

A search perimeter is created by sending a GetLocation request to each location”
in outqueries. A GetLocation request now contains two locations: the querying and
seeking nodes. A search controller receiving a GetLocation request examines its set

of current searches for a search with the same search uid.

If a search record exists with the same search uid, it means that this node has

49

Locating Migratory Objects in an Internet 18 August 1982

search = record [sought_object: handle,
suid: search_uid,
requesting_process: process_uid,
seeking_node: location,
querying_node: location,
outqueries: locset,
state: search_state]
search_state = variant [found: location,
destroyed,
notfound: nullj
locset = set[location}

Figure 4-1: Information Kept by a Distributed Search Controller Under
Simple Search Conditions

already been queried and a subsidiary search is alrcady underway. The scarch
controller immediately sends a NotFound response to the querying node, On receipt
of a NotFound response, a scarch controller finds the search record and removes the
responding node’s location from outqueries. 1f this leaves the set empty, the search
record is removed. If the search state is noifound and all nodes have responded, it
means that the subsidiary search has concluded unsuccess ully. The search

controller sends a NotFound response to its querying node.

Only if a subsidiary search is not underway does the search controller examine

the registry database for information on the sought object,

If a sought object is resident, a queried node’s search controller sends a Found
response to both its querying node and the secking node. On receipt of a Found
responsc, a search controller finds the search record and removes the responding
node from outqueries. The search state is changed to found. If this leaves the set

empty, the search record is removed. The search controller propagates the search

50

Locating Migratory Objects in an Internet 18 August 1982

information back towards the seeking node by sending a Foun response to its

querying node.

I a sought object’s entry is marked destroyed, a scarch controller scnds a
Destroyed response to both is qucerying node and the sceking node. On receipt of a
Destroyed response, a search controller finds the search record and removes the
responding node from outqueries. The search state is changed to destroyed. 1f this

lcaves the sct cmpty, the search record is removed. The search controller sends a

Destroyed response to jts querying node,

Otherwise a queried node’s search controller initiates a subsidiary search. A new
clement is initialized for its set of current scarches. The sought object’s handle, the
scarch uid, the querying node’s location and the seeking node’s location are taken
from the GetLocation request. The requesting process ficld is set nuil. The initial
sct of locations is the set of the node’s neighbors plus an outdated residence,
acquired if it exists from the registry database, minus the locations of the querying
and sceking nodes. The initial search state is notfound. A scarch perimeter is
expanded by a queried node scnding a GetLocation request to the search controller

at cach location in the set of locations for its subsidiary search. The qucried node

then awaits responses,

'The seeking node collects responses just like any queryi ng node, but reports the

result of its search to the requesting process rather than another node. It discards

the scarch record when the search terminates,

51

Locating Migratory Objects in an Internet ' . 18 August 1982

4.2 Changing Neighbors

The discussion in the previous chapter on changing neighbor relations during a
centralized scarch pertains to changing ncighbors during a distributed search and

will not be repeated here.

4.3 Unreliable Network

In this section, a network is admitted to be unreliable, Messages can be lost,
duplicated or interminably delayed, although not scrumbled. Partitions can occur.
To handle an unreliable network, a timeout mechanism is introduced for
retransinission of requests. This mechanism is the same as that introduced in the
previous chapter to handle an unreliable network for a centralized scarch. F igure 4-
2 shows the two new pieces of information kept for cach scarch: the last time a
response was reccived: and the number of times requests have been renewed since
the last response. The discussion of last_response and timeout_count in the previous
chapter pertains as well to their use in a distributed search and will not be repeated
here. Also previously discussed is the determination of a GetLocation request as old

enough 1o be discarded.

As before, a delayed response arriving after a scarch’s record is removed would
not be rare. These delayed messages which arrive after their search has terminated
are simply discarded. This mak.es it unnecessary to keep the search record after
receiving a Found or Destroyed response. This in turn makes the search state

superfluous.

Special handling of duplicate Found and Destroyed responses is unnecessary
because the first Found or Destroyed response removes the search’s record. Special

handling of duplicate NotFound responses is unnecessary because rcinoving the

52

Locating Migratory Objects in an Internet 18 August 1982

search = record [sought_object: handle,
suid: search_uid,
requesting_process: process_uid,
seeking_node: location,
querying_node: location,
outqueries: Tocset,
last_response: date,
timeout_count: int]

locset = set[location)

Figure 4-2: Information Kept by a Distributed Search Controller
Assuming an Unreliable Network

responding node’s ocation from outqueries more than once doesn’t causc an error.

As mentioned in the previous chapter, a network partition is an aggravated case

of an unreliable network and no special handling beyond the timeout mechanism js

proposed.

4.4 Migration

In this scction, objects are allowed to migrate. This introduces no new problem
unless an object migrates across a search perimeter, from the outside from a node
which has not been queried to the inside 10 a node which has already been queried.,

As in the previous chapter, to solve this problem evidence of the search must be

stored at queried nodes.

As part of the processing of a GetLocation request by a queried node's search
controller, an entry is created in the registry database for the sought object. The

objeet’s entry is marked as sought and the secking node, querying node and search

53

Locating Migratory Objects in an Internet 18 August 1982

uid stored . As before, when an object migrates 10 a queried node, a Furcka
responsc is sent to the secking node and a FurekaAck is sent in reaction. Also as
before, notification is sent repeatedly until an acknowledgement is received or until

it imes out,

On receipt of a Eureka response, a scarch controller removes the search’s record
from its set of current searches and notifies the requesting pracesses of the object's
Jocation.]t marks the object’s registry entry as nonresident with the location in the

Eureka response.

On receipt of a FurekaAck, a resident server removes its curcka record. The
search information stored in the object’s registry entry is also removed. If a eurcka

record is not found, the FurekaAck is discarded.

The search controller of the same node may be conducting a subsidiary scarch
for the newly migrated resident. It need not be notified because the search will
eventually terminate when all its queried nodes respond. The search controller can
then check the registry database to see if the object migrated to its location during

the search,

4.5 Concurrent Scearches

In this section, more than one nodal registry may conduct a search for the same
object at the same time. Separate scarches overlap when their search perimetcrs.
cross. To support concurrent scarches, the search information stored in the registry
entry is expanded from a single (secking node, querying node, search uid) triple to a
set of (seeking node, querying node, search uid) triples and the requesting_process

field is changed from a single process uid to a set of process uids.

54

Locating Migratory Objects in an Internet . . 18 August 1982

When a scarch controller initiates a scarch, it marks the object’s registry entry as
sought by itself, storing the search uid and its own location as secking node. A
subsequent GetLocation request to the resident server will report that the object is
being sought. A subscquent Search request to the search controller will add the
requesting process to the set of requiesting processes. If an object is alrcady sought
by another node when a search controlier tries to initiate a search, a new search is

started scparatcly which will be independent of the one being conducted by the

other node.

When a scarch controller reccives a GetLocation request from another node, it
examincs the registry database as before. If the object is nonresident, a NotFound
response is sent to the seeking node in the GetLocation request and the new seeking
node and search uid are stored. A GetLocation request is still idempotent because

the (secking node, querying node, scarch uid) triples are stored in a set, which filters

duplicates,

When a sought object successfully migrates from outside the search perimeter to
inside the scarch perimeter, the resident server discovers its newly migrated resident

is sought. A Farcka response is sent and a esrek record is created for each (secking

nede, guerying node, search uid) pair.

4.6 Crash Recovery

In this section, it is admitted that physical nodes crash. To enable recovery of
searches, the registry database must be copied to stable storage whenever the
disposition of an object changes. To restart a nodal registry, a single process is
started which in turns starts the resident scrver and search controller, The resident

server scans the database to houseclean and to recover information on newly

55

Locating Migratory Objects in an Internct 18 August 1982

migrated residents. The search controller scans the database to recover information
on objects sought by itself and by other nodes. A StiliSearching? request is sent to
the seeking node for each object sought by another node. A SearchReport is sent in

rcaction.

A resident server scans the registry database looking for old entrics for
nonresident objects which may be thrown out and for entries marked both sought
and resident. The latter will be for recently migrated objects. For cach such entry, a
new eureka record is created, initialized and inscrted in the resident server’s
curckaset. The sought_object, suid .:md secking_node ficlds are set from information

in the registry entry. A Eureka response is sent to the sceking node,

A search controller scans the registry database for entries marked nonresident
and sought by some other node. For each such entry and each (search uid, querying
node, secking node) triple, a StillSearching? request is sent to the sccking node. A
StiliSearching? request contains 1 sought object’s handle, a search uid, and the
location to be answered. When a search controller receives a StiliSearching?
request, it checks its sct of current searches and responds with a SearchReport. A
SearchReport contains a sought object’s handle, a search uid and 2 boolean value. If
the boolean value is fulse, the search is no longer being conducted and its (search

uid, querying node, sceking node) triple may be discarded.

If the boolean value is true, the search is still being conducted and its (search uid,‘
querying node, seeking node) triple should be kept in the queried node’s registry |
database. A subsidiary search record is created, initialized and inserted in the search
controller’s srchset. The sought_object. suid, querying node and secking_node ficlds
are set from the registry entry. The Jast_response field is set to the current date and
time. The timeout_count is zeroed. The requesting processes field is set null. The

outquerics field is set as for a new subsidiary search,

56

Locating Migratory Objects in an Internet 18 August 1982

A search controller also scans the registry database for entries marked as sought
by itself. For cach such entry, a new search record is created, initialized and
inscrted in the search controller's srehset, The sought_objeet and suid ficlds are set
from the registry entry, The last_response field is set to the current date and time,

The timeout_count is zeroed,

The requesting_processes field does not survive crashes. Processes are revived
from breakpoints and reissue registry requests, so it is reasonable to make the
requesting_processes ficld empty and attiempt to restart the searches in anticipation

of reissued requests. The outqueries field is inttialized as for a new scarch.

4.7 Discussion

The distributed-scarch scheme must be analyzed in the same terms as the
centralized-search scheme: for reliability, robustness and guaranteed terniination.
Because control is not centralized, g distributed search must also handie the prbblcm
of a GetLocation request delayed past the duration of its search, causing an

‘orphaned” subsidiary scarch,

4.7.1 Reliability

A distributed search, like a centralized search, is reliable under simple search
conditions. It will never report that an object cxists if the object was destroyed .
before the search started. It will never report that an object is destroyed if the object
stilf exists. Outdated information may be reported if an object migratcs soon after it
is found. If a partition is persistent or the residence of the sought object remains

crashed for the duration of a search, the search will report that it could not find the

object.

57

Locating Migratory Objects in an Internet _ . 18 August 1982

4.7.2 Robustness

A distributed search functions robustly in the face of Jost, duplicated or delayed
messages, nonpersistent node failure and transient network partitions. If the sceking
node becomes isolated, reliable information is available on resident objects and

cached information on nonresident objects,

4.7.3 Termination

Unless a GetLocation request is delayed beyond the termination of its search, a
distributed search always terminates, The case of a Getlocation request delayed
beyond the termination of its search is discussed below. If the sought object is not
found, it will terminate after all subsidiary searches have terminated and reported
their failure. 1t will time out if responses arc persistently lacking. Crashes of the
sccking node reset the timeout mechanism, but are rare and will not cause a search
to be restarted indefinitely. There is, however, no way to stop a search once an

object has been found other than letting the search run its course.

_ 4.7.4 The prohlem of delayed queries

One of the operating assumptions presented in Chapter One was that messages
may be interminably delayed. 1fa GetLocation request is interminably delayed’, it
could finally arrive at its destination after all record of its scarch has been removed
through normal housecleaning. This could cause the completed and forgotten-,

search to be resurrected,

To prevent this, a timestamp is required in all GetLocation requests. It could be
incorporated as part of the search uid or stand on its own as a piece of the query.
The nodal registry, receiving a GetLocation request and finding no record of the

search in its database, checks the timestamp. If the timestamp shows that the query

58

Locating Migratory Objects in an Internet 18 August 1982

is ‘old’, the query may be discarded. Alternatively, a StillSearching? request may be

sent to the seeking node, and the "old’ query held pending a SearchReport response,

‘This changes the problem to deciding what ‘old’ is. A nodal registry housecleans
at regular intervals and whenever the node crashes. I the timestamp shows that the

scarch started more than a regular housccleaning internal ago, it is "old’.

This definition requires that the interval between housecleanings be long in
relation to the time it takes to conduct a search. The desire to keep the database
clean works to shorten the intcrval,” Less than an hour would risk falsely identifying
a query as old, and involve significant overhead in frequent housecleaning. More
than a several hours would risk a search resurrecting itself unnecessarily, The

interval would remain the discretion of policy-makers at each network location.,

‘This mechanism can use the timestamp already incorporated in the scarch uid
for enforcing the timing restraint of cached neighbor information. The two

definitions of ‘old” do not coincide: T cach c~ASymh should be much longer than the

interval between housecleanings,

59

Locating Migratory Objects in an Internet 18 August 1982

Chapter Five
Final Words

This final chapter discusses a simulation of the search mcthods, compares the
two scarch methods, summarizes the thesis work and presents problems unsolved by

the work.

5.1 Simulation of the Search Methods

A separate simulation of the two search methods was programmed in CLU on a
TOPS-20 machine. The simulations accounted for crashing and recovery of nodes,
lost or delayed messages, network partitions, multiple searches for the same or
different objects, and migration of sought objects. They did not take into account
dynamic reconfiguration of the neighbor system or garbage collection of the registry

database.

Simulated time was based on a sweep through all the nodes of the internet, with
- every node touched during each sweep. During a sweep, nodes were'picked at
random to process messages already arrived, so that anomalies due to a consistent
processing order were eliminated. (Aberrant message propagation is an example of
a possible anomaly due to processing order. If during every sweep nodes were "
picked in the same scrial order to process their messages, propagation of search
queries and replies would proceed faster in the direction of the serial order.) After a
node was picked, the simulation randomly decided whether it should crash and for

how long. The downtimes were muitiples of one sweep,

Locating Migratory Objects in an Internet _ . 18 August 1982

Messages were arbitrarily picked to be lost or duplicated or delayed by the
simulated message transport system, with the delays again a multiple of one sweep.

Network partitions were simulated by consistently discarding messages intended for

nodes in separate partitions,
Objects were picked to migrate before, during and after searches for them.

Under the conditions of the simulation, searches for existing objects mostly
succeeded in correctly reporting the object’s current location at the time of the
scarch, regardless of the object’s migration history. When a search failed (returning
not found' for an existing object), it was due to expiration of the timeout
mechanism in the face of a persistent network partition or opportune crashes of

mdividual nodes (i.e., the seeking node or the node of residence),

5.2 Comparison: Centralized vs. Distributed

A centralized search requires a seeking node to retain information about the
nodes that have not yet responded to its queries, but is casily ended. There is small
fear of it being erroncously resurrected, it may take longer than a distributed scarch

under similar conditions because all queries must be send and all responses must be

precessed by a single seeking node,

A distributed search sends more messages since no screening is done for already-
queried nodes by querying nodes. Time is saved because the messages are sent in
parallel by all the querying nodes rather than by a single seeking node. Ensuring

that a distributed search ends is not straightforward.

Both search strategies require the queried node to remember that it has been

quericd in case the sought object migrates there during the search. ‘They also both

61

Locating Migratory Objects in an Internet 18 August 1982

require positive acknowledgement from the current node of residence,

5.3 Scarching vs. Multiple Updating

In working out the details of making the search methods work, it became clear
that the original thought of trading exccution time for storage space when choosing
a scarch method rather than multiple updating would not stand up, given a network
of arbitrary topology. Queried nodes need to save information on sought objects,
though perhaps not as much information as for a distributed update scheme. The
latter would cache information at each node. This cached information may or may
not be stable. At least two complete copies of the entire database must be kept
(stable) so that the database could be highly available. Thesc copies would likely be
partitioned among many locations. Some of the stable information kept for the
scarches is not needed. 1f it is decided that a node should not continuve searches
begun before a crash, search information need not be stable. If the number of
seaches in progress at any time is small, remembering scarch information requires

less storage than duplicate location information,

Although some space is saved in the searching methods, this is done at a
prohibitive cost in searching under the assumptions in the thesis. The search
strategies could each be more efficient if more was known about the network
topology and if that topology had a good structure. The Xecrox Clearinghouse
[Oppen R1] has a three-level hierarchical structure reflected in the names of*
Clearinghouse objects which speeds its searches, A spine topology being discussed
at MIT would make searches practical. In the spine topology, gateways form a long
thin communications line through a Jonghaul network. OIT these gateways hang
local networks such as ring nets. Such a topology could be searched in a distributed

manncr in three hops, using broadcast at each point,

62

Locating Migratory Objects in an Internet | 18 August 1982

5.4 Evaluation of Thesis Work

The thesis problem as proposed was to devise a2 method of tracking user-defined
objects that are allowed to move from one machine to another in an intcrnet.
Tracking these objects is a support mechanism facilitating the use of the objects
without requiring a prohibitive penalty from the object's users in the form of

possible program reconstructuring or tracking of the objects by the users themselves.

Search methods were cxplored to investigate whether exccution time could be
traded for the storage used in distributed updating in previous research. In
particular, the two scarch methods, centralized and distributed, explained in detail

in the forcgoing chapters, were promoted as alternatives and tested under conditions

simiulating some conditions of a real internet,

The two scarch methods seem impractical for use under current conditions for
three reasons. First, the searchcs-arc expensive, as discussed in the previous section.
Second, termination is a problem for the distributed Search. cspecially terminating a
search when the answer has already been discovered, ‘Third, because of the nature
of the scarches, an object could never be considered found unless a positive
acknowledgement was received from the current node of residence. This condition
could result in a "miss™; that is, the object could be reported to the sceking process
as "not found™ whereas the actual residence was known but not directly verifiable
because temporarily unreachable, A distributed update scheme would give lhe

location without requiring the residence be currently available.

Future research should investigate alternate strategies. Until a distributed
update scheme is worked out in detail, a clear evaluation of its performance and cost
IS not possible, Working on new network topologies might be very interesting.

Further work on termination of distributed scarches would be useful.

63

Locating Migratory Objects in an Internet 18 August 1982

Refercnces

[Abraham 80]
S.M. Abraham and Y.K. Dalal.
Techniques for Decentralized Management of Distributed Systems.

In Twentieth IEEE Computer Society International Conference (CompCon),
pages 430-437. 1EEE, February, 1980,

[Abramson 70]

N. Abramson.

The Aloha System. :

In AFIPS Conference Proceedings, FICC, pages 281-285. 1970,
[Accetta 80]

M. Accetta, G. Robertson, M. Satyanarayanan, and M., Thompson.
The Design of a Network- Based Central File System.

Technical Report CMU-CS-80-134, Carncgie-Mellon University, August,
1980.

[Astrahan 76)
M.M. Astrahan et al.

System R: Relational Approach o Databasce Management.
ACM Transactions on Database S Ysiems 1(2):97-137, June, 1976.

[BBN 76]
Bolt, Beranek and Newman, Inc.

MSG: The Interprocess Communication Facility for the National Software
Works.

Report 3237, Bolt, Beranek and Newman, Inc., January, 1976,

[Binder 75] . .
R. Binder, N. Abramson, F. Kuo, A. Okinak, and D. Wax.
Aloha packet broadcasting - a retrospect.
In AFIPS Conference Proceedings, NCC, pages 203-215. 1975.

[Birrell 80)
A. Birrell, R. Levin and M. Schroeder.
Grapevine: A Distributed Electronic Mecssage System.
Submitted to the Workshop on Fundamental Issues in Distributed

Computing, ACM/SIGOPS and ACM/SIPGLAN, Pala Mesa Resort,
December, 1980.

Locating Migratory Objects in an Internet 18 August 1982

[Clark 80]
D.D. Clark and L.. Svobodova.
Design of Distributed Systems Supporting Local Autonomy.
In Twentieth IEEE Computer Society International Conference (CompCon),
pages 438-444. 1EEE, February, 1980.

[Cook 80]
R.P. Cook.
Abstractions for Distributed Programming.
Submitted to the Workshop on Fundamental Issues in Distributed
Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort,

December, 1980.

[Cullum 76]
P.G. Cullum.
The transmission subsystem in Systems Network Architecture.

IBM Systems Journal 15(1):24-38, lanuary, 1976.

[Cypser 78]
R.J. Cypser.
Communications Architecture for Distributed Systems.
Addison-Wcsley Publishing Company, Inc., 1978,
Uses IBM’s SNA as major example throughout text.

[Davies 80]
C.T. Davies Ir,
Position Paper on Fundamental Issues in Distributed Computing.
Submitted to the Workshop on Fundamental Issues in Distribuited
Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort,

December, 1980.

[Dijkstra 79]
E.W. Dijkstra.
Termination Detection for Diffusing Computations.

EWD-687a

[Finke] 81]
Finket.
Distributed Breadth-first Search Algorithm.
Submitted to IEEE Transactions on Software Engineering

65

Locating Migratory Objects in an Internet 18 August 1982

[Francez 80] -
N. Francez.
Distributed Termination.
ACM Transactions on Programming Languages and Systems 2(1):42-55,
January, 1980.
Spanning tree used to control termination of disjoint processes.

[Fricdman 78]
D.U. Fricdman.
Communication Complexity of Distributed Shortest Path Algorithms.
Master’s thesis, Massachusctts Institute of Technology, December, 1978.

[Gray 78]
J. Gray.
Notes on Data Base Operating Systems.
Research Report R12188(30001), IBM San Jose Rescarch Laboratory,
February, 1978.

[Gray 80]
4. Gray.
Minimizing the Number of Messages in Commit Protocols,
Submitted to the Workshop on Fundamental Issues in Distributed
Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mcsa Resort,
December, 1980. '

[Halstead 79]
R.H. Halstead.
Reference Tree Networks: Virtual Machine and Implementation.
Technical Report MIT/LCS/TR-222, Massachusetts Institute of Technology,
July, 1979,

[Haminer 80]
M. Hammer and D. Shipman,
Reliability Mechanisms for SDD-1: A System for Distributed Databases.
ACM Transactions on Database S ystems 5(4):431-466, December, 1980.
Description of reliable network substrate for SDD-1.

[Held 75]
G. Held, M. Stonebraker, and E. Wong.
INGRES: A Relational Data Base System.
In AFIPS National Computer Conference. AF IPS, 1975.

66

Locating Migratory Objects in an Internet 18 August 1982
[Herlihy §0]

M.P. Herlihy.

Transmitting Abstract Values in Messages.

Master's thesis, Massachuselts Institute of Technology, April, 1980.

[lohansson 80]
C. Johansson and B. Liskov,
Catalogs in a Distributed System.
DSG Note 74, Massachusetts Institute of Technology, C

[Kahn 78]

R.E. Kahn, S.A Gronemeyer, . Burchfiel, R.C. Kl.mzcim
Advances in Packet Radio T cchnology.

Proceedings of the IEEF 66(11):28:1-6, November, 1978,

ambridge, MA

an,

(Lampson 79]

Butler W. Lampson and Howard E. Sturgis.

Crash Recovery in a Distributed Data Storage System.
Xerox Palo Alto,

[L.ampson 80]
B.W. Lamipson.
Replicated Commit.
Submitted to the Workshop on Fundamental Issues in Distributed

Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort,
December, 1980,

[Lauer 80]
H.C. Lauer.
Decentralised Assignment of Nuames in Networks.
Submitted 1o the Workshop on Fundamental Issues in Distributed
Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort,

December, 1980,
[Levin 76)

R. Levin and M. Schroeder.
Teleinformatics 79.

North-Holland Publishing Company, 1976, pages 29-33.

In the chapter entitled "Trq nsport of Electronic Messages Throu gha
Network’,

67

Locating Migratory Objects in an Internet 18 August 1982

[Lindsay 80]
B. Lindsay.,

Authorization and Site Autonomy in Distributed Database Management
Systems,

Submitted to the Workshop on Fundamentat Issucs in Distributed

Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort,
December, 1980,

[Lindsay 81a]
B. Lindsay.

Object Naming and Catalog Management for a Distributed Database
Manager,

Technical Report RJ2914, International Business Machincs, 1981,

[Lindsay 81b]
B. Lindsay and P.G. Selinger,

Site Autonomy Issues in R*: A Distributed Database Management System,
Technical Report RJ2927, International Business Machines, 1981.

[Liskov 79]
B. Liskov et al.
CLU Reference Manual,

Technical Report MIT/ L.CS/TR-225, Massachusetts Institute of Technology,
Oqlobcr, 1979. '

{Liskov 80]
B. Liskov.
Linguistic Support for Distributed Programs: A Status Report.

Computer Structures Group Memo 201, Massachusetts Institute of
Technology, October, 1980,

[Liskov 82]
B. Liskov and R. Scheifler,

Guardians and Actions: Linguistic Support for Robust, Distributed Systems,
In Proceedings of the Ninth Annual ACM S yimposium on the Principles of
Programming Languages, pages 7-19. January, 1982,

.68

Locating Migratory Objects in an Internet | 18 August 1982

[Lomet 80]
D.B. Lomet.
The Ordering of Activities in Distributed Systems.
Submitted to the Workshop on Fundamental Issucs in Distributed

Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mcsa Resort,
December, 1980,

[Lunn 81]
K. Lunn and K.H. Bennett,

An Algorithm for Resource Location in a Loosely Linked Distributed
Computer System.

ACM Operating Svstems Review 15(2), April, 1981.

Superficial explanation of centralized directory with local resource directory
in a superimposed ring structure,

[Martin 81)
A.J. Martin.

A Distributed Path Algorithn and its Correctness Proof.,
‘To appear in TOPLAS.

[McFadyen 76]
1LH. McFadyen.
Systems Network Architecture: An Overview.
1BA! Systems Journal 15(1):4-23, January, 1976.

[McQuillan 77)
IM. McQuillan,
Routing Algorithms for Computer Networks - A Survey.

In Proceedings of the National Telecommunications C onference, pages 28:1-6.
1971.

[McQuillan 80] :
LM, McQuillan, 1. Richer, and E.C. Rosen.
The New Routing Algorithm for the ARPANET.
IEEE Transactions on Communications 28(5):711-719, May, 1980.

Description of new routing algorithm and comparison with former routing
algorithm,

69

- Locating Migratory Objects in an Internet . 18 August 1982

[Metcalle 76]
R.M. Metcalfe and D.R. Boggs.
Ethernet: Distributed Packet Switching for Local Computer Networks.
Communications of the ACM 19(7):395-404, July, 1976.
General discussion of design, topology, mechanism, implementation and
performance of the Ethernet.

[Needham 80]
R.M. Needham.,
Current Rescarch in Distributed Computing,.
Submitted to the Workshop on Fundamental Issues in Distributed
Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort,
December, 1980.

[Nelson 80]
B.J. Nelson.
Remote Procedure Call.
Submitted to the Workshop on Fundamental Issues in Distributed
Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort,
December, 1980.

[Oppen 81]
Derck C. Oppen and Yogen K. Dalal.
The Clearinghouse: A Decentralized Agent for Locating Named Objects in a
Destributed Environment.
Technical Report OPD-T8103, Xerox Office Products Division, October,

1981.

[Rashid 80a]
R.F. Rashid.
An Inter- Process Communjcation Facility for Unix.
Technical Report CMU-CS-80-124, Carnegie-Mellon University, March,
1980.

[Rashid 80b]
R.F. Rashid.
" Research into Loosely-Coupled Distributed Systems at CMU.
Submitted to the Workshop on Fundamental Issues in Distributed
Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort,
December, 1980.

70

Locating Migratory Objects in an Internet 18 August 1982

[Roberts 72}
L. Roberts and B. Wessler,
Computer Communication Networks.
Prentice-Hall, Englewood Cliffs, N.J., 1972, .
In the chapter entitled “The ARPA Computer Network',

[Rothnie 79)
J.B. Rothnie et al.
SDD-1: A System for Distributed Databases.
Technical Report CCA-02-79 (Revised), Computer Corporation of America,

August, 1979,

[Rowe 79]
L. Rowe and K. Birman.
Network Support for a Distributed Data Base System,
In Proceedings of the Fourth Berkeley Conference on Disiributed Daia
Management and Computer Networks, pages 337-352. August, 1979.

[Rudin 76]

H. Rudin,
On Routing and Delta Routing: A Taxonomy and Performance Comparison

of techniques for Packet-Switched Networks,
1EEE Transactions on Communications 24(1):43-59, January, 1976.

[Schwartz 77}
Mischa Schwartz,
Computer-Communication Network Design and Analysis.

Prentice-Hall, Inc., 1977.

[Shoch 78a)
J.F. Shoch.
A Note on Inter-Network Naming, Addressing and Routing.
Internet Experiment Note 19, Xerox Palo Alto Research Center, January,

1978.

[Shoch 78bj
J.F. Shach. _
Internetwork Naming, Addressing, and Routing.
In Seventeenth IEEE Computer Society fnternational Conference
(CompCon), pages 72-79. IEEE, September, 1978.

1

Locating Migratory Objects in an Internet 18 August 1982
[Shoch 80]
J.F. Shoch and J.A. Hupp.

Notes on the "'Worm’ programs - some early expericnee with a distributed
compultation, '

Submitted to the Workshop on Fundamental Issues in Distributed

Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort,
December, 1980.

[Stonebraker 79}
M. Stoncbraker.

Concurrency Control and Consistency of Multiple Copics of Date in
Distributed INGRES.

1EEF Transactions on Software Enginecring SE-5(3):188-194, May, 1979.

[Sturgis 80]
H.E. Sturgis. :
Notes on Current Research,
Submitted to the Workshop on Fundamental Issues in Distributed

Computing, ACM/SIGOPS and ACM/SIGPLAN, Pala Mesa Resort,
December, 1980.

[Svobodova 79]
L. Svobodova, B. Liskov, and D. Clark,
Distributed Computer Systems: Structure and S emantics.

Technical Report LCS TR-215, Massachusetts Institute of Technology,
March, 1979.

[Tanenbaum 81)
Andrew 8. Tanenbaum,
Computer Networks.
Prentice-Hall, Inc., 1981.

[Unknown 81]
Unknown.
Grapevine.

[Walden 72]
D.C. Walden.

A System for Interprocess Communication in a Resource Sharing Computer
Network.

CACMVolume=15(4), April, 1972,

72

Locating Migratory Objects in an Internet _ . 18 August 1982

Table of Contents

Chapter One: Introduction

1.1 Problem Description
1.1.1 Definitions and Description
1.1.2 Operating Assumptions
1.1.3 Proposed Solution
1.2 Design Considerations
1.2.1 Reliability and robustness
1.2.2 Guaranteed termination
1.3 Distributed Update vs. Distributed Search
1.4 Related Research
1.4.1 Catalog management in a distributed database management
system
1.4.2 Grapevine
1.4.3 The Xerox clearinghouse
1.4.4 The packet radio nctwork
1.5 The Remainder of the Thesis

Chapter Two: Environment

2.1 Terminology
2.2 Interface to the Registry
2.3 Search Strategies
2.4 Guardians and the Structure of a Nodal Registry
2.5 Lower Level Systems
2.5.1 Routing System
2.5.2 Neighbor System

Chapter Three: Controlling a Centralized Scarch

3.1 Simple Search Conditions
3.2 Changing Neighbors
3.3 An Unreliable Network
3.4 Migration
3.4.1 A closer look at migration

3.4.2 Migration from inside the search perimeter to outside the search

73

L=J T= Ve PN N A NN~ 7. I N -

40

Locating Migratory Objects in an Internet 18 August 1982

perimeter
3.4.3 Migration from the search perimeter to outside the search
perimeter
3.4.4 Migration completely outside the search perimeter
3.4.5 Migration 1o the search perimeter from inside the search
pcrimeter
3.4.6 Migration from the search perimeter to the search perimeter
3.4.7 Migration to the scarch perimeter from outside the scarch
perimeter
3.4.8 Migration completely inside the search perimeter
3.4.9 Migration from the search perimeter to inside the search
perimeter
3.4.10 Migration from outside the scarch perimeter to inside the
search perimeter
3.5 Concurrent Searches
3.6 Crash Recovery
3.7 Housccleaning
3.8 Discussion

Chapter Four: Controlling a distributed search

4.1 Simple Search Conditions
4.2 Changing Neighbors
4.3 Unrcliable Network
4.4 Migration
4.5 Concurrent Searches
4.6 Crash Recovery
4.7 Discussion
4.7.1 Reliability
4.7.2 Robustness
4.7.3 Termination
4.7.4 The problem of delayed queries

Chapter Five: Final Words

5.1 Simulation of the Search Methods

5.2 Comparison: Centralized vs, Distributed
5.3 Searching vs. Multiple Updating

5.4 Evaluation of Thesis Work

74

40

41
41

41
42

43
43

46
46

48

48
52
52
53
54
55
57
57
58
58
58

60

60
61
62
63

Locating Migratory Objects in an Internet 18 August 1982

Table of Figures

Figure 3-1: Information Kept by a Centralized Search Controller Under
Simple Scarch Conditions

Figure 3-2: Information Kept by a Centralized Search Controller
Assuming an Unreliable Network

Figure 3-3: Information Kept by a Centralized Resident Server Assuming
Migrating Objects

Figure 4-1: Information Kept by a Distributed Search Controller Under
Simple Scarch Conditions

Figure 4-2; Information Kept by a Distributed Search Controller
Assuming an Unreliable Network

15

32

36

50

53

