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Abstract

In tecent years, there have been many attempts to construct multiple-processor computer
systems. The majority of these systems are based on von Neumann style uniprocessors. To exploit
the parallelism in algorithms, any high performance multiprocessor system must, however, address
two very basic issues - the ability to tolerate long latencies for memory requests and the ability to
achieve unconstrained, yet synchronized, access to shared data. In this paper, we define these two
problems, and examine the ways in which they are addressed by some of the current and past von
Neumann multiprocessor projects. We then proceed o hypothesize that the problems cannol be
solved in a von Neumann context. We offer the data flow model as one possible alternative, and we
describe our research in this area.

Key words and phrases: caches, cache coherence, data flow architectures, I-structure storage,
multiported memories, multiprocessors, packet communication, von Neumann architecture
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Two Fundamental Issues in Multiprocessing:
the Data Flow Solution

1. Introduction

In the early days of computing, the issue of constructing a multiple-processor computing system
was viewed as little more than an interesting intellectual exercise; after all, it seemed clear that
machines could be made to operate faster simply by increasing the speed of the underlying

technology. Given this view, it seemed that the style of machine organization for potential

multiprocessing was not of overriding importance. The von Neumann organization, because of its
sequential nature, was conceptually simple and easy to realize. Hence, it is not at all surprising that

an entire community (and industry) was born with a built-in bias towards sequential computing.
While understandable, this tacit assumption about machine organization has inherent limits which,

form our present vantage point, sit just beyond the horizon.

Attention has been focused in the recent past on constructing multiprocessor systems

(23, 24,25, 29, 30. 14] - atiention derived from a desire for more performance, greater fault

tolerance, the ability to exploit the rather curious economics of 2 single-chip computer, or whatever,
What has not been done sufficiently is a re-evaluation of the assumptions that led us to where we
are now. This is painfully clear when one observes that von Neumann style uniprocessors still form
the building block for the majority of multiprocessor projects or proposals. Many variations on the

von Neumann theme have been explored (e.g., pipelining, multiple functional units, vector

instructions), but not much has been done with the sequential control required for instruction

execution. There are good reasons to believe that this re-evaluation is overdue.

~ In this paper, we will use the term multiprocessor 10 refer to a computing system that exploits
parallelism in programs through replication of resources. Although we will examine some special
purpose machines, our primary interest here is in general purpose parallel computers, Le., computers
that can exploit parallelism, when present, in any algorithm. Further, we are interested in the
property of scalability - that the system can be made incrementally more powerful by adding
incrementally more hardware resources (and without reprogramming). The basic building blocks

of a multiprocessor are

« Processing elements: These perform arithmetic and logical operations, and are provided
with an interface to communication and memory elements;

« Communication elements: These are used to construct an interconnection network. The
resulting network has a number of ports, each with a bounded bandwidth. The purpose
of the network is to interconnect various processing elements with each other and/or
with memory elements; and :

+ Memory elements: Collectively, these provide the repository for program and data
storage. Processing elements can, either directly or indirectly, access the data in the
various memory elements via the network.
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Figure 1-1: An Abstract Multiprocessor

Scaling of the multiprocessor involves incremental additions to all of the above. Modularity, an
important designh characteristic, allows scaling without redesign, ie, modules are constructed for
each of the above, and an arbitrarily large machine (within the physica! limits of packaging) is built
by simply plugging these together. See Figure 1-1.

Note that we have said nothing about the programmer’s view of the system (e.g., explicit s
implicit specification of parallelism and communication), the programming methodology, the
network topology, packaging. etc. For our purposes here, we are concemed with the shared
memory multiprocessor model, and we will consider tightly coupled memory/processor pairs which
use a message passing methodology as shared memory machines. An equivalence between the
shared memory model and the message passing model based on storage for messages, timing, and

synchronization can be established.

1.1. The Issues ~
Let us review for a moment some of the issues which seem fundamental, at least from an

engineering point of view, in the construction of any multiprocessor - von Neumann or not.

C
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Issue 1: Ability to Tolerate Memory Latency

Latency is the time between issuing a memory request and getting a response. As the number of
ports in the network increases, it stands to reason that the average latency of a memory request will
have to increase if only due to the switching time in the network. Given the rate at which a
processing element can issue memory requests and the bandwidth of each memory element (bits
per second per port), it is clear that at some point, the memory units, on the average, will not be
able to respond to each processor request without causing the processor to idle.

The key observation, then, is that it is absolutely necessary that each processor be able to issue

multiple memory requests in succession without intervening memory responses. It is also quite

reasonable to assume that, because of contention, the memory responses may arrive out of order

unless some constraints are placed on the memories and network interconnections, The problem is °

unsolvable for a truly scalable multiprocessor unless some assumptions about progran: behavior are
made. The kind of assumptions we have in mind are that the disiribution of memory references
with respect to the distance from the issuing processor does not get worse as the number of
processors and memory elements increases.

Traditional ways of circumventing the latency problem attempt to exploit spatial locality.
Instruction prefetching is the most successful technigue; the inherent sequentiality of the von
Neumann machine assures some measure of locality. Exploiting spatial locality in data references is
more difficult. General register architectures subscribe to the notion that the user will somehow
know what data will be referenced most frequently; however, it is well known that optimal register
usage essentially amounts to solving the coloring problem on large graphs {20], and is very difficult
to achieve,

A dynamic scheme for exploiting locality is the (demand) cache for main memory. This scheme
is difficult to apply in a multiprocessor context due 10 the cache coherence problem. Censier and
Feautrier [8] define the problem as follows: "A memory scheme is coherent if the value returned on a
LOAD instruction is always the value given by the latest STORE instruction with the same address. "Ina
multiprocessor context, it is easy 1o see that this may lead to difficulties. Suppose we have a two-
processor system tightly coupled through a single main memory. Each processor has its own cache,
to which it has exclusive access. Suppose further that two tasks are running, one on each processor;
and we know that the tasks are designed to communicate through one or more shared memory cells.
In the absence of caches, this scheme can be made to work. However, if it so happens that the
shared address is present in both caches, the individua! processors can read and write the address
and never see any changes caused by the other processor. Using a store-through design instead ofa
store-in design does not completely solve the problem cither. What is logically required is a
mechanism which, upon the occurrence of a write to jocation x, invalidates all other cached copies
of location x wherever they may occur, and guarantees that subsequent LOADs will get the most
recent (cached) value, This can incur significant overhead and complexity.

Several approximate solutions for keeping cache coherence exist, but all such schemes inevitably
introduce overhead and/or decrease parallelism (eg. due to lockout of page-sized areas of
memory). Schemes have been proposed to explicitly interlock writing or to bypass the cache {and
flush it if necessary) on a write; in either case, the complexity goes up and the performance gocs
down rapidly as the machine is scaled. '

Another attempt at tolerating memory request latency is by performing context switching at a

P S F RN
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very low level (analogous to task switching when an [/0 request is made in a multiprogrammed
operating system). Thus, while one computation waits for the memory to respond, the processor
resumes another, parallel computation. Of course, the scheme works only if the context switching
itself does not generate any memory references. This is done by duplicating programmer-visible
registers (ie. the processor state). The problem here is again the increase in processor complexity
as the machine is scaled. _

Uniprocessors such as the Xerox Alto [31]. the Xerox Dorado {19], and the Symbolics 3600 have
used the technique of microcode-level context switching to allow sharing of the CPU resource by
the 1/0 device adapters. This is very different than the type of context switching needed in
multiprocessors. While both schemes rely on replication of hardware registers and other state
information, the uniprocessor application requires only a fixed number of disjoint contexts
- established by the number of 1/0 adapters plus the emulator itself. In the muitiprocessor case, it
will be necessary to have an unbounded number of tasks to achieve scalability. To illustrate this,
consider the problem of expanding such a system. As memory elements are added, the depth of the
communication network will grow. Hence, the number of low-level contexts to be maintained will

also have to increase to match the increase in memory latency time.

Issue 2: Ability to Share Data without Constraining Parallelism

A much more troublesome issue is that of sharing data between two O more processes while
maintaining proper synchronization. One manifestation of this is the write-write race - two
processes attempt to write data into the same Jocation. The meaningfulness of this is not at all clear,
and the problem can be properly avoided by some software convention, perhaps assisted by some
run-time checking. Functional languages avoid this problem totally because updating the value of a

variable has no meaning in such languages.

The real problem, however, is not a pathological case like the write-write race: it is the real
problem of the read-before-write race. To iilustrate this problem, consider two routines running on
two different processors, both accessing a two-dimensional, array of numbers. One routine is
creating the elements, in order, and writing them into the array. The other routine is waiting to read
the elements. One possible way of avoiding a read-before-write race would be to allow the entire
array 1o be written prior to allowing the consumer routine to begin processing. By this simple
minded transfer of control, there is no synchronization problem, but neither is there any chance for
parallelism. On a single processor, the computation cannot be made faster by overlapping the
production and consumption of a data structure, and this sort of scheme works well. 1t defeats the

purpose of multiprocessing, however.

A more common scheme is to synchronize on a per-row or per-column basis of the array (as
appropriate); this incurs more overhead, but constrains parallelism less. The extreme approach
would be to synchronize the two routines on a per-element basis. it should be obvious that doing so
is impractical with current methods and requires fundamental changes at the hardware level.

This example oversimplifies the real situation - consider the case where the elements are not
produced in a regular (ie. row order or column order) way, or the case of a nonuniform data
structure. The question remains: is it necessary to sacrifice parallelism for proper synchronization
of reads-before-writes? We will show in section 2 that synchronization can be achieved with no loss

of parallelism,

q
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1.2. A Survey of von Neumann Multiprocessors
We examine a few of the planned or existing von Neumann machines that are described in the
fiterature. Each one fails to satisfy at least one of the above two basic issues. We have ignored

" commercially-available 2 or 4 processor systems because, to the best of our knowledge, such systems

have not been used in a manner in which processors cooperaie on solving one problem. The main
motivation for such systems has been higher performance in a multiprogrammed environment, and
even in that limited area the performance of these systems has been far from impressive.

In our discussions, one figure of merit that is used in evaluating multiprocessor systems is ALU
utilization/idle time. This assumption orients our discussion toward favoring machines designed
for solving problems which can be expressed in numerical terms. Another important class of
computation is the symbolic type in which the ALU utilization metric is less useful. One
multiprocessor in this category is the Connection Machine. While it does not fit our model, we
examine it in some detail because it is an interesting second-generation SIMD architecture.

1.2.1. Cmmp

C.mmp was a tightly-coupled multiprocessor built on a base of PDP-11 minicomputers
connected into a single global memory through a high-speed crossbar switch [30]. The processors
ran asynchronously, and could use jocal memory without interfering with the global memory. The
switch speed was comparable 1o the speed of a local memory reference, but the cost of building a
larger switch which maintains the same performance level grows at Jeast quadratically. This
reliance on technology doesn't solve the memory latency problem; it merely circumvents it
However, the investigators were clear-on the point that the machine was exploratory in nature, and
feit that scalability was only a secondary goal.

Interprocessor communication was facilitated by the shared memory and a Cross-processof
interrupt scheme. Synchronization was performed at several levels due to the recognized need to
keep the overhead of this operation very low. High-level semaphores were maintained by Hydraon
data objects to properly handie synchronized sharing. It is clear that the performance cost of this
relative to, say, an ALU operation is rather high unless some potential parallelism is traded away.

The original design catled a local cache for each processor, but only one processor in the machine
was ever fitted with one (and it was never used by Hydra). The reason is, guite simply, the cache
coherence problem.

1.2.2.Cm* - '

Cm®* differed from ity predecessor in several ways; notably, that the machine used a kind of
hierarchical network to interconnect a number of microprocessors, each with its own memory
{24, 25). One might have guessed that this physical locality when combined with spatial locality in
programs and data would have resulted in less communication overhead; the idea was intuitively
appealing. This hope manifested itself in the design of the communication strategy - any Pprocessor
making a nonlocal memory reference would idle until the reference was completed. Because of the
hierarchical structure, this meant that greater interprocessor distances translated into longer
memory reference times and decreased processor utilization.

A packet switching, instead of circuit switching, communication network was used (another
difference from C.mmp) to avoid processor deadlock. In such a network, a processor formats
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information to be transmitted into data packets (by the addition of some routing and control
information - analogous to putting a letter into an addressed envelope) and hands it off to the
network. The sending processor is then free to perform other work while the network goes about
the task of delivering the packet to the proper destination. Such networks vary in their interconnect
topology, but most have the property that a packet may go through more than one network link
traversal on the way. Rather than reserving a complete path from source to destination for the
entire duration of the packet’s transit time (circuit switching), such networks allow packets to be
stored at intermediate points until a path is available to the next intermediate point. The network

then forwards the packet and frees the storage space used for the next packet.

Kmap. the communications controller, was actually a context-switching processor which oouid
tolerate the long-latency remote memory references. Unfortunately, the processors (LSI-11s) could
not perform similar low-level context switches during a remote reference. It would be interesting to
speculate on the behavior of Cm* if micro-tasking processors had been used.

In fact, Cm* demonstrated quite clearly the importance of Issue 1; the effect of processor idle
time put an upper limit on the number of processors that could cooperate on even highly parallel
programs {e.g., chaotic relaxation) {10]. As far as Issue 2 was concerned, synchronization was based
on a message system, but the underlying mechanism was the shared-memory, lockable segment.

1.2.3. The NYU Ultracomputer
Another shared memory multiprocessor is the NYU Ultracomputer [14). Their solution to the

synchronization problem is the atomic FETCH-AND-ADD instruction (sometimes called
REPLACE-ADD). The instruction format is FETCH-AND-ADD(address, value). and works as follows:
suppose two processors, i and j, simultaneously execute FETCH-AND-ADD instructions with
arguments (A,vi) and (A.vj) respectively. After one instruction cycle, the contents of A will become
(A)+v,+ v; Processors i and j will receive, respectively, either (A) and (A)+v,, or (A)+v, and (A)
as results.” Indeterminacy is a direct consequence of the race to update memory ceﬂ A.The
implementation of FETCH-AND-ADD calls for a synchronous packet communication network which
connects n processors to an n-port memory. If two packets collide, say FETCH-AND-ADD(4,x) and
FETCH-AND-ADD(A,y), the switch extracts the values x and y, forms a new packet
(FETCH-AND-ADD{(4,x+)), forwards it to the memory, and stores the value of x temporarily.
When the memory returns the old value of location A, the switch retumns two values ((A) and
(A)+x). Hence, one memory reference may involve as many as log,n additions, and implies

substantial hardware complexity.

The issue of processor latency has not been specifically addressed, and there are serious questions
in our minds as 10 whether such a network (t . . < tmmory) is realizable. We also do not
understand the implications of basing a whole programming model on such an instruction as

FETCH-AND-ADD.

1.24. YLIW Architectures - ELI-512 and the Polycyclic Processor

Another approach which seems to be coming into vogue these days is the horizontally-
microprogrammed processor in which a smart compiler {or a patient and talented human) is able to
fold many parallel opcrations into a single machine cycle. Examples of this are the ELI-512 {13],
the ESL Polycyclic processor [21], the AP-120B [9], and numerous programmable signal processing

(/
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machines.

While these machines are able to resolve run-time sharing conflicts (by moving them to compile
time).and are usually able 1o plan memory references and control transfers in advance of the need
{e.z., the delayed jump), these machines suffer from their special-purpose nature. Except in the
simplest of cases, compilers require "hints" from the programmer Or. in some cases, rely on luck in
doing the code generation. Clearly, these machines are not suited at all to real-time multiuser
multiprogramming, interrupt handling, or anything which relies on the ability to efficiently switch
contexts. '

We believe that this technique is effective in its currently-realized context - special purpose
computation with small scale (4 to 8) parallelism, but the technique is not sufficiently general as to

allow significant scaling up.

1.2.5. SIMD Revisited: the Connection Machine

Recently, there have been proposals to revive and to improve upon SIMD architectures (eg,
Iliac IV [7]). The Connection Machine [16] proposal can be viewed in this context although it is
intended for an entirely different class of problems than Illiac IV. It generalizes the
communications scheme of Illiac 1V, but still uses a single instruction stream with each processor
having the capability of not participating in an instruction.

lliac IV had 64 fairly powerful processors connected in an 8X8 rectangular, end-around grid
topology. Each processor could directly access only its local memory (2K words). Using
communication registers (one per processor) data could be shifted in one step to any of the four
neighboring processors, Thus, in seven steps, a processor could access data from any other
processor. However, because a single instruction controlled all processors, every processor had to
wait even if one processor needed data from nonlocal memory. Also, if one processor wanted to
~ transmit (shift) data to the processor t0 its east and another to its west, two machine instructions had
to be executed. The need for such communication was poorly understood at that time, and llliac IV
executed a very small subset of scientific problems efficiently.

The Connection Machine proposal envisions a million processors, each consisting of 12 32-bit
registers, some flag bits, and one 1-bit ALU. The pmcesvsors1 are connected in an Illiac IV-like grid
with similar restrictions. However, groups of 64 processors are also connected by a 14 dimensional
hypercube - there are 2'4 groups. The bit-serial communication through the hypercube links is
packet oriented; each processor can transmit or receive a message to/from any other processor. In
the absence of conflicts, a message will reach its destination in at most 14 steps; but, because of
conflicts, some messages will take significantly more steps than the required minimum number. A
global flag is raised when all processors are done communicating, and only then can the next
instruction begin. i '

1t is clear that the speed of one bit ALU operations is irrelevant because it will be insignificant in
comparison with the commuiication time - a processor will spend almost all (90%?, 99%7) of its
time communicating. This machine, because of its single instruction sequence nature, also does not

lltispmhably buwrmviewmsepmmascdnofa“M' memony.
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fit the model of the multiprocessor presented in this paper. Our modci implicitly assumes that the
goal of a general purpose parallel machine is to execute ALU operations (e.g.. addition,
multiplication, comparison) as efficiently as possible by overlapping ALU operations with
communications. However, for the class of applications in which communication predominates
computation, our framework and metrics are not applicable. Many such situations occur in applied
artificial intelligence programs where more time is spent exploring the connectivity of a large graph
rather than computing with the information found at the nodes of the graph. The relevance of
Issue 1 for the Connection Machine is not clear, and Issue 2 does not arise in a SIMD architecture.

2. Proposed Solutions: Data Flow Architectures

In this section we present a memory structure which allows efficient synchronization at the
atomic level, and we also present an architecture which offers the ultimate in flexibility in issuing

overlapped memory requests.

2.1. I-Structure Storage ’
If we associate ‘with each memory cell in a machine special flags (called presence bits) which

indicate the memory cell's status - writien or unwritten - we have the ability to solve the read-
before-write race problem as follows: assume that a memory module has just received a request to
read a particular memory location and to forward the contents to instruction x. The memory
module interrogates the presence bits associated with that location. If the bits indicate that the cell
has already been written into, the contents are retrieved and forwarded to instruction x. If the bits
indicate that the location is empty, the memory module puts the read request aside, and marks the

empty location to indicate that a read request is outstanding.

Now. when a write request for that location arrives at some time in the future, the memory
module notices the pending read request, and forwards the newly-arrived datum to instruction x {as
well as writing it into memory and setting the presence bits accordingly). Note that the memory
module must maintain a list of deferred read requests (see Figure 2-1) as there may be more than
one read of a particular address before the corresponding write. We call this type of memory
I-Structure Storage. The issues involved with building such a memory, and the design for an
I-Structure memory controller are discussed extensively in [15].

This mechanism, when coupled with a processor which is able to issue multiple, overlapped
memory requests and which can tolerate out-of-order responses, allows the uncoupling of memory
latency from the performance of a multiprocessor. The penalty of such a scheme in terms of the
demands placed on memory elements is not excessive. A read operation is as efficient as in a
wraditional memory. Write operations take twice as fong. however, due to the prefetching of
prescnce bits. Many different implementation strategies are possible which can largely eliminate

this penalty.

he idea of associaling a Status bit with each memory celf is not new - the Denelcor HEP multiprocessor [22] uses this
idea to synchronize cooperating parallel processes which share registers and/or memory cells,  Unsaiisfiable requests
result in a busy-waiting condition - Le.. there is no such thing as a deferred read list.
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/——— Presence Bits (P = Present, A = Absent, W = Waiting)
. D
Fan ata or Deferred Read Pointer

Tag A
data Tag (_3
TagB

n+1:

n+2:

n+3

n+4:

»=|S|>T
A

Deferred
Read Requests

-

data

n+m

Possible execution sequence
producing this stn_lcture:

* Attempt to READ{n + 2) for instruction A
* WRITE{n + m)

* Attempt to READ(n + 3) forinstruction C
* WRITE(n)

* Attempt to READ(n + 2} for inatruction B
* READ{n)

Data Storage

Figure 2-1: I-Structure Storage

2.2. Data Flow Processing Element

When one desires to build a machine capable of issuing multiple memory requests and of
tolerating long latencies, the most troublesome aspect of von Neumann architecture is the built-in
sequentiality (viz, the program counter). By eliminating the notion of control flow for program
sequencing, we can circumvent this problem directly. One altemative to sequential control flow is
data flow, where the execution of instructions is triggered solely by the availability of the operands.
In order to explain the operation of a data flow processor, we must digress for a moment to discuss
program and data representation.

2.2.1. Program Representation
Data flow compilers translate high-level programs into directed graphs; vertices in the graph
correspond to machine instructions, and edges correspond to the data dependencies which exist

between the instructions. , 7
The implication is, quite simply, that instructions which depend on other instructions should be
sequenced accordingly; but where no dependence (edge) exists, instructions can be executed in

parallel. A simple example of this graphical translation is shown in Figure Z-2, compiled from the
following ID program which integrates a function f from a to b over n intervals of size h by the
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(initial s «— (fa)+f(b))/2;
x—a+h
for i from 1 te n-1do
new x — x+h;
new s « s+ f{(x)
return s)*h

The graph shown is somewhat stylized: the box marked frepresents the subgraph necessary for
invoking function f (which is, itself, a graph). Instructions D, DL L, and L are included to
provide proper entry, iteration, and exit by manipulating context-identifying information {discussed
in the next section). The remainder of the operators are arithmetic, relational, and conditional
instructions whose function should be self-evident. The graph generated by the compiler is
reentrant.

2.2.2. Data Representation

It is the processor’s task to propagate data values through this graph, triggering instructions when
the operands are available. Data values are carried on logical entities called fokens; a token
contains not only a data value but also the name of the instruction to which it belongs.
Conceptually, tokens move about on the vertices of the graph. Instructions ‘are enabled for
execution when tokens are present on all input vertices. Upon execution, the instruction absorbs
the input tokens, and produces an output token for the next instruction in the graph. A program is
said to terminate when no enabled instructions are left.

Our execution model allows more than one token to be present on an arc, and, therefore, the
next-instruction label also contains some dynamic, or context-sensitive information. In their full
generality, these next-instruction labels or activity names contain four parts:

e u: The context field, which uniquely identifies the context in which a code block is
invoked. The context itself is specified by an activity name, thus making the definition
recursive.

o ¢: The code block name. Each procedure and each loop has a unique code block name.
o §: The statement (instruction) number within the code block.

+ &: The iniriation aumber, which identifies the loop iteration in which this activity occurs.
This field is 1 if the activity occurs outside a loop. :

Activity names, then, define an unbounded namespace. Names in this space are mapped
dynamicajly into a finite namespace. The activity name plus some mapping information uniquely
define the runtime fag and processing element (PE) number.

Since instructions may have more than one input operand, we also include two more pieces of

information on each token: the fotal number of operands required by its target instruction (called mt
- number of tokens), and an index vaiue (called the porf) which specifies the operand number

R T
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associated with this token. Tokens of this type are called normal tokens, abbreviated as d=0. A
more complete discussion of formats is given in {4]. The complete token, then, looks like this:

<d=0,PE tag,nt,port,data>

2.2.3. Structure of the Processing Element
Figure 2-3 is a block diagram of an abstract data flow machine and its processing element.

Assume that the program 10 be executed has been compiled into a directed graph, and an encoding
of this graph is stored in the program memory. As tokens arrive at the machine’s input, they are
classified according to type. The d=0 tokens (above) which require partners (nt>2) are routed to

the the waiting - matching section.

Since each token carries the name of its target instruction, we can maich up related tokens (ag.,.

the two input operands for an addition) by comparing the tags that they carry. This is the function
of the waiting - matching section. When a match is found, the pair is passed on to the instruction
fetch unit. When a match is expected but not found, the token remains in the waiting - matching
unit’s associative memory until its partner arrives. The instruction fetch unit also directly receives
d =0 tokens which require no partners (nt=1).

The instruction fetch unit looks up the operation code and other information associated with the
token-carried names, and passes this enabled instruction on to the ALU. At this point, no other
information is needed to carry out the operation save that which is in this enabled instruction

packet.
The ALU output represents a datum which is ready to move off to its target instruction; but first,

it has to be put in a token. We build this output token by computing a new tag, using the old tag
along with information stored in the instruction itself. The ourput section handles these operations.

The ocutput section also computes the PE number for the new token. A routing translation table
turns this PE number into a network routing address. See Figure 2-4 for a more detailed view of

the PE.

Other paths through the processing element provide for the cases where an incoming token is
destined for the I-Structure Storage (d=1), or is destined for the PE Controtier (d=2).

2.2.4. References to Data Structures

Conceptually, in a data flow graph, even a data structure is represented by a single token which is
replicated on encountering a fork. The two most common operations on data structures are SELECT
(to select a specific element of a data structure) and APPEND (to generate a new data structure which
differs from the input structure in one selected position). In any reasonable implementation,
however, data structures reside in some storage (I-structure storage in our machine), and tokens
carry only pointers 1o the structure. Thus, a SELECT operation becomes a FETCH instruction while

3The reason for this notation has been lost in historical obscurity.

4



Proposed Solutions: Data Flow Architectures Page 13

nxn Routing Network

Local Path

|-structure
Storage

Figure 2-3; Organization of the Tagged-Token Data Flow Machine

an APPEND operation becomes a STORE instruction.*
Now, to understand how I-structure storage references are processed consider an enabled FETCH

*Thereisamimrcmnplicatjon in thal SOME APPENDS can cause a new copy of a data structure to be crested. This is ot
germane 10 the muin discussion here; the interested reader may refer 1o i6).
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Figure 2-4: Data Flow Processing Element

instruction in the data flow graph. This instruction wili be sent the ALU for processing. The ALU
constructs a special token (d=1) which contains the address of the }-structure element to be read,
the name of the PE on which this element resides, the FETCH opcode, and the name (tag and PE
number) of the instruction which is to receive the result of the FETCH. The token is then forwarded
to the proper I-structure controller, and the ALU proceeds to process the next enabled instruction,

This token makes its way through the network and is routed to the I-structure controller on the
appropriate PE. The actual FETCH is performed as described previously, possibly after being —
deferred. When the FETCH operation is complete, a new token is formed to forward the fetched -
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datum to the target instruction.

STORE operations are similar - a STORE instruction in the graph is executed, causing a data value
and an address to be built into a d=1 token. The new token is forwarded to the appropriate PE
which completes the operation by writing the data value, checking for and processing any deferred
read requests, and setting the presence bits.

2.3. Review of the Issues

As we have seen, data flow provides a means whereby a processing element can issue many
simultaneous memory requests, can tolerate long latencies (given that the program being executed
is sufficiently parallel), and can deal with responses that arrive out of order. The mechanisms which

make this work are

» Tagged tokens: By having each datum carry context-identifying information with it, no
time-ordering ambiguities can arise.

o Associative pairing: Enabled instructions are detected by matching of these tagged
tokens.

« I-structure storage: By providing low-level synchronization bits per word of memory
and by enforcing a discipline which defers unsatisfiable requests, data can be shared
between producers and consumers with no performance overhead and with no loss of

parallelism.

Many other issues are involved with the design of a tagged token data flow machine, and many
other benefits accrue. The interested reader is directed to the literature [3, 6, 5, 2].

3, Construction of a Testbed

Many people find data flow an interesting and exciting research direction for a number of
reasons. We feel that, because data flow addresses the fundamental problems that have haunted
von Neumann multiprocessors, it offers a fresh perspective and the hope that we will be able to
exploit the thousand-fold parallelism "grail" after which so many have sought,

Our efforts are two-pronged, with a common base. The common base is made up of the
definition of our high-level data flow language (ID, the Irvine Dataflow language), our ID compiler, .
 application programs, and an abstract definition of the tagged-token data flow architecture. This
base feeds our two major experimental efforts - a simulation of the architecture and an emulation of
the architecture. These experiments will provide us with information about critical design
parameters in the machine, and will enable us to write a realistic specification for a VLSI tagged-

token system. Refer to Figure 3-1.

We have built a detailed simulation model in Pascal of the tagged-token machine which
interprets graphs produced by our compiler for the Irvine Dataflow (ID) language. The model
accounts for communication as well as processing simulated time. We have installed an IBM 4341
MG?2 processor which we will dedicate to the task of running these simulations of realistic data flow
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Figure 3-1: Development Plan for the Tagged-Token Machine

programs.

We are also in the process of constructing a high-speed multiple processor emulation facility out
of a set of 32 to 128 user-microprogrammable processors interconnected by a programmable, high-
bandwidth, fault-tolerant packet communication network [17]. This emulator will also interpret the
graphs generated by our compiler, but at much higher speeds. What is lost is the detailed internal
timings of the abstract data flow machine; but what is gained is the ability to run very large
application programs to learn about the behavior of programs in a multiple processor data flow
environment.

The key element to building the emulation facility is the packet communication network module,
one of which is integrated with each microprogrammable processor. The network topology will be
a seven dimensional hypercube with each connection implemented as a 4 megabyte per second
bit-serial link. This topology was chosen for its flexibility. Each switch module also includes a
routing table which allows the experimenter to specify any emulated topology which can be mapped
onto the hypercube, The hardware has the capability of exploiting the redundancy in the
hypercube network for message routing and for fault tolerance, Table-based routing also allows the
facility to be statically partitioned into two or more smalier emulation machines.

Figure 3-2 shows an example configuration of a 3 dimensional cube using a 4 X 4 switch. Cubes
of higher dimensionality are topologically similar and require that the switch module grow

\
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Figure 3-2; Using 4 by 4 Switch Module for Various Topologies

logarithmically in complexity with the number of nodes in the cube. The routing tables for such a
configuration implement a relation mapping input port number and routing address into a set of
output port numbers. The mapping may be one to one, or multiple-valued. The interconnection is
defined in Table 3-1, and the routing information is shown in Table 3-2. In the tables, numbers

refer to nodes in the network. Letters(A, B, C, P) refer to specific input/output ports.

Pot  NodeQ Nodel Node2 Node3 Noded Nodel Node6 Node?

A 1 0 3 2 5 4 7 6
B 2 3 0 1 6 1 4 3
C 4 5 6 7 0 1 2 3

Port P is connected to the local processor in all cases. _ A
Table 3-1: 3-Cube Interconnection
Also shown in Figure 3-2, Table 3-3, and Table 3-4 is the realization of a butterfly topology by

reconnecting the wires and re-writing the routing tables. Since no traffic is directed at the

processors in nodes 9-14, port P in these nodes is used only for error handling.
In general, most topologies that require fewer links than the hypercube topology can be
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Construction of a Testbed

Dest Node0 Nodel Node2 Noded Node4 Noded Nodeé Node7
0 P A B {AB} C {AC} {BC} {A.B,C}
1 A P {AB} B {AC} C {AB.C} {B.C}

2 B {AB} P A {B.C} {ABC} C {A,C}

3 {AB} B A P {A.B,C} {B.C} {AC} C

4 C {AC} {BC} {ABC} P A B {A,B}

5 {AC} C {ABC} {BC} A B {AB} B

é {BC} {ABC} C {AC} B {AB} P A

7 {A.BC} {B/C} {AC} C {AB} B A p

Table 3-2: 3-Cube Routing Tables

Pori ~ Node? Nodel0 Nodell Nodel2  Nodeld  Nodeld
A
B
C

12 12 12 0 3 6
13 13 13 1 4 7
14 14 4 2 -3 8

Nodes 0-8 use ports A and P only. Node; 9-14 do not use port P. See text.
Table 3-3: Butterfly Interconnection

Nogel2  Nodeld  Nodeld
A - -

B . .
C

‘W !

B NP AW O E
QOO EWI > > > E
N>
OB > > > E
=
QONWEE> > > E
=

A > !

Table 3-4: Butterfly Routing Tables

"simulated” using our switch merely by changing the routing tables. A fauity link can be masked
by changing the routing table of the source node of the link. If necessary, a "detour" around the
faulty link can also be provided by the same mechanism.

Using 8X8 routers, we can construct a 27 =128 node hypercube. If more processors need to be
included in the emulation facility, the same switching module cannot be used to implement the
hypercube topology. However, the switching module will still be useful in building any
interconnection that requires less than 7 input and 7 output ports per processor.

The idea of closely associating a switch module and a microprogrammable processor allows much
of the low-level maintenance and fault recovery logic to reside in microcode. The hardware
provides the essential fault-detection mechanisms, and is flexible enough to alfow for simple error

(
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recovery under the control of a microcode task.

It is our belief that this microcodable emulation facility will provide enough flexibility to actually
study the effects of the two issues raised in this paper.

4. Related Work

Our data flow research, like that of several other groups around the world, has been inspired by
Jack Dennis’ pioneering work in data flow base languages and static architectures [11, 12]. Dennis’
group at MIT has constructed an engineering mode! of a prototype static data flow machine which
has 8 processing units connected by 12 2X2 packet routing modules. Currently, the group is
analyzing the performance of data flow architectures for several large-scale scientific computations
such as weather prediction.

Gurd and Watson at Manchester University in the UK. have constructed a processor to
implement data flow with token coloring (ie., tagging) [28}. The processor looks very much like the
PE shown in Figure 2-3. Their processor has several ALUs (currently 5) per waiting-matching
section, and implements I-structure-like storage in the waiting-matching section itself. This is done
by providing several more sophisticated waiting-matching functions than the simple matching
permitted in our machine. Currently, efforts are underway 1o increase the size of the matching

~ store to 1 million tokens and to add three more rings (processors) 10 the machine, Both Dennis’

machine and the Manchester machine address the issue of memory latency at the basic level. The
Manchester machine can also deal with read-write races though the efficiency of the mechanism is
still to be determined.

At present, there is a flurry of activity in data flow architectures in Japan, They are exploring
data flow for high-speed scientific computing [18, 26), symbol manipulation {1, 32}, and data flow as
a basis for implementing logic programming [27). Also, Amamiya of Nippon Telephone and
Telegraph has constructed a 4 processor version of his machine.

Given the flurry of activity, it is very difficult for us to summarize all of the work that is going on.
We feel enoouraged that these projects will ultimately demonstrate that data flow architectures
solve the fundamental problems of multiprocessor systems, perhaps within the next few years,
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