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Abstract

To exploit the parallelism inherent in algorithms, any multiprocessor system must address two
very basic issues - long memory latencies and waits for synchronization events. [t is argued on the
basis of the evolution of high performance computers that the processor idle time induced by
memory latency and synchronization waits cannot be reduced simultaneously in von Neumann
style multiprocessors. Dataflow architectures are offered as an alternative because, given enough
parailelism in a program. they can reduce both latency and synchronization costs.
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Two Fundamental Issues in Multiprocessing:
The Dataflow Solution

t. Importance of Processor Architecture

It is generally believed that processor architecture is of little importance in designing parallel
machines. To show the fallacy of this assumption, we will discuss two basic issues. namely, memory
and communication latency and synchronization, that any architect of a scalable, general purpose
parallel machine must confront. We believe these issues to be as limiting and as fundamental as
those imposed by circuit technology (power consumption, heat dissipation, length and thickness of
wires, packaging. ctc.). We further believe that parallel machines of the next generation are more
likely to hit these architectural limits than the technology-imposed limits. As such, they are more
immediately relevant.

We are primarily interested in general purpose parallel computers, ie.. computers that can exploit
paralielism, when present. in any algorithm. Further. we want multiprocessors to be scalable in
such a manner that adding hardware resources results in higher performance without requiring
substantial rewriting of application programs. The benefits of such scalable systems are obvious;
the pitfalls in designing them are subtle. B

To understand the effect of latency and synchronization on performance, one also needs to
understand the execution of programs on parallel machines. First of all, one needs to identify
parallei subcomputations in a source program. This can be done with the help of a compiler, via
programmer-provided annotations, or both. To exploit this parallelism, a parallel machine must
provide run time support for the creation and synchronization of tasks corresponding to these
subcomputations.

In the next few sections we present our framework for addressing the issues of latency and
synchronization, and our formal statement of the problem. The framework is based on two abstract
and fairly orthogonal views of multiprocessors. One view which deals with the gross hardware
organization is embodied in the structural model; the other view which deals with the essential
elements of parallel programming is embodied in the operational model. OQur statement of two
fundamental issues in multiprocessor design is based on these models,

1.1, The Structural Model

The model shown in Figure 1-1 will be used as the baseline for describing multiprocessor
organizations in this paper. [t abstracts away the physical packaging and network topology because,
as shall become clear later, the design of these aspects of multiprocessors will not affect the main
hypothesis of this paper. The structural model is made up of three parts:

» Processing elements: Modules which perform arithmetic and logical operations on data.
Each processing element (PE) has a single communication port through which all data
values are received. Processing elements interact with other processing elements by
issuing and responding to synchronizing signals, e.g., WAIT and SEND semaphores,
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Figure 1-1: Structural Model of a Multiprocessor

interrupts, etc., and with memory elements by issuing LOAD and STORE instructions
embellished as necessary with atomicity modifiers.  Processing elements are
characterized by the rate at which they can issue and respond to such signals,

instructions, and data.

¢ Memory elements: Modules which store data. Fach memory element has a single
communication port. Memory elements respond to instructions issued by the
processing elements by returning data through the communication port, and are
characterized by their total capacity and the rate at which they respond to these

instructions.

o Communication elements: Modules which transport data Each nontrivial
communication element has at least three communication ports. Communication
elements neither originate nor receive synchronizing signals, instructions, or data:
rather, they retransmit such information when received on one of the communications
ports to one or more of the other communication ports. Communication elements are
characterized by the rate of retransmission, the time taken per retransmission, and the
constraints imposed by one retransmission on others, e.g, blocking. The maximum
amount of data which may be conveyed on a communication port per unit time is fixed.

A multiprocessor system may be composed by interconnecting each communication port of one
module with exactly one other communication port of another module. Processors and memories
may only be connected to communication elements. Communication elements may be connected
to either processors. memories, or other communication elements, Bus oriented multiprocessors
can also be represented in our structural model given that communication elements are capable of
broadcast behavior. This aspect of the bus structure can play an important, albeit indirect, role in
lowering memory latency as we shail see in section 2.3.1.



1.2, The Operational Model
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Figure 1-2: Operational Model of a Multiprocessor

To derive the benefits of parallel hardware, a program must be decomposed into basic units of
computation which we shall call computational tasks or simply tasks, One may view these tasks as
being units of work as small as machine instructions or as large as procedures comprised of

thousands of instructions. Tasks have several interesting properties:

o They are the smallest unit of independently schedulable work on the machine.

¢ The set of legal primitive operations a task may perform must include one which is
capable of spawning another task.

o Tasks communicate with one another by sending and receiving signals and/or data, e.g.,
one task produces data which is consumed by another task,
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o Each sk is logically associzted with a set of unique names. called its context, 1o
reference task-held resources such as memory locations. registers, etc,

We have chosen to model the operational behavior of a multiprocessor as shown in Figure 1-2,
Tasks ready for execution may be queued locally (on a per-PE basis) or globally. When selected, a
task will occupy a PE until it can proceed no further because it must wait for a synchronization
signal. Some hardware or sofiware scheduling mechanism may also suspend a task and release the
PE if. for example. the task mukes a nonlocal reference which may take a long time to process.
Notice that regardless of whether the PE is released or not, when a task makes a noniocal request, it
is logically suspended. and will wait until the result of the noniocal reference has been returned. At
that point. the task becomes dispatchable once again. One may view the components of the model
as operating asynchronously with respect to one another. The queues shown need not adhere 10
any particular ordering discipline. e.g.. FIFO or LIFO. An event to enable or dispatch a task needs
a name. such as that of a register or a memory location, and thus, the machinery implied by our
operational model must capture the essence of managing task-generated names for both task
creation and task synchronization. Hardware design usually dictates the number of names available
for synchronization as well as the cost of their use,

1.3. The Two Fundamental Issues
We now discuss issues related to latency and synchronization, two universal characteristics of

multiprocessor organizations.

Latency is the time which elapses between making a request and receiving the associated
response, Of immediate interest is memory latency which, in a multiprocessor system, determines
the time taken to execute an instruction involving a remote operand reference. A PE in a
multiprocessor system faces larger latency than in a uniprocessor system because of the transit time
in the communication network between PE’s and the memories. When latency cannot be hidden
via overlapped operations, a tangible performance penalty is incurred. We will count the cost
associated with latency as the total induced processor idle time attributable to the latency. It includes
arbitration time, time of flight through the network, and the time required to process the request.

The Operational Model implies that tasks need to communicate with each other, For example, a
task may produce a datum which is needed by another task. or may request a resource currently in
use, In either case, the sequencing, or synchronization, of an event in one task with an event in
another is required. The cost associated with such synchronization is also the induced processor idle
time aitributable to synchronization event waiting. It is made up of a fixed time to perform the
synchronization operation itself plus the variable time of waiting for the satisfaction of the
constraint. If a PE immediately suspends the task causing a synchronization event wait, the cost per
synchronization event is fixed,

The performance of a parallel machine is likely to hit an absolute ceiling if adding processors to
the machine increases processor idle time due to increased latency and a greater need for

synchronization, Thus, we assert that
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It is necessary to simultaneously minimize the costs of latency and synchronization
in order to build a scalable multiprocessor.

One is tempted to assume that the latency issue pertains solely to the hardware organization of the
machine, and that the synchronization issue pertains exclusively to the software systems that run on
the machine. However, this is not the case. It is likely that attempts to reduce the latency cost will
increase the synchronization cost and vice versa. In the rest of this paper we will show that

« for multiprocessor organizations based on von Neumann processors, it is impossible to
independently minimize both latency cost and synchronization cost, and

o for a class of multiprocessor organizations including dataflow architectures, it is possible
to independently minimize both latency cost and synchronization cost assuming the
program has sufficient parallelism.

In Section 2 we trace the evolution of high performance von Neumann computers to show how
reductions in latency costs have been achieved. It is shown that the techniques used for reducing
latency costs are either not applicable in the multiprocessor setting or come at the expense of
increasing the synchronization cost. Section 3 presents the essential features of dataflow machines,
with special emphasis on the MIT Tagged-Token Dataflow machine to show how such architectures
can trade paralielism in programs for simultaneous reductions in latency and synchronization costs.
In Section 4, we present our view of how multiprocessor architectures should evolve in the future.

Throughout the paper we make references to many planned and existing uniprocessor and
multiprocessor architectures. Most, if not all, of these machines were designed to achieve goals
other than those set forth here, that is, scaling and programming generality. We have taken the
liberty to analyze these architectures using our criteria. In spite of our sometimes less than
flattering evaluation, these machines may be enormously successful in meeting their own goals.
Note that our intention is to better understand the limits of multiprocessor architectures, and not to
make an absolute value judgment on any machine.

2. Multiprocessing based on von Neumann Processors

In this section we begin our study of the evolution of von Neumann architectures. We ask for the
reader’s indulgence as we begin rather slowly and at a basic level. The points we wish to make are
most clearly seen within such a simple, uncluttered framework, and it is for this reason that we
reiterate what most readers will view as elementaryl.

Figure 2-1 depicts the modem day view of the von Neumann computer model (sans 1/0) as a
mutation of von Neumann's original vision. His description [7] was of a processor-memory pair
with most or all of the computation’s state residing in the memory. The depicted view emphasizes
the migration of state toward the processor side of the processor-memory interconnection. The
reasons for this have relevance to both uniprocessor and multiprocessor architectures and are
discussed below. :

]

1W’c further ask that the reader set aside any technology specific prejudices, e.g, the relative speeds of processors and
memories,
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Figure 2-1: The von Neumann Processor (from Gajski and Peir [16]
The processor’s sole purpose is to repeatedly carry out the following instru&iori interpretation
cycle (see Figure 2-2):

1. Fetch an instruction from the memory.

2. Decode the instruction,

3. (Fetch operands from memory.)

4. Execute the decoded instruction using the fetched data,

5. (Store results in the memory.)

6. Determine the next instruction to be executed,

The earliest solution to speeding up the machine was to increase the processor Slate, ie, to
provide fast storage on the processor side in the form of registers. Appearance of multiple
"accumulators” reduced the number of operand fetches and stores, and index registers dramatically
reduced the number of memory references by aimost eliminating the need for self modifying code,
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Figure 2-2: Traditional Interpretation of Instructions

A later technique involved reducing the number of instructions executed and, hence, the number
of instructions fetched. This was accomplished by making the instructions themselves more
complex (ie., defining a richer language). This technique was less successful than adding registers
due 1o difficulty in designing complex control circuitry. Even though the cumulative effect of these
two techniques was that programs executed much faster than before, the basic cycle time improved
only as a function of improvements in circuit speeds, e, technology. The enlarged processor state
reduced the number of memory references, but it did not reduce the time lost during memory
references and, consequently, did not contribute to an overall reduction in cycle time.

2.1. Pipelined vor Neumann Processors

The most successful solution to hiding memory latency is the pipelined execution of instructions.
The time taken by instruction fetch {(and perhaps part of instruction decoding time) can be totally
hidden if prefetching is done during the execution phase of the previous instruction (see Figure
2-3). The IBM STRETCH [6] and the Univac LARC [12] represent two of the earliest attempts at
implementing this idea. Prefetching can reduce the cycle time of the machine by 20% to 30%
depending upon the amount of time taken by the first two steps of the instruction cycle with respect
to the complete cycle. However, the effective throughput of the machine cannot increase
proportionately because overlapped execution is not possible with all instructions.

Fetch Instruction E

Decode [a]

Fetch Opetands E
Execute / Store E _

» TIME

Figure 2-3: Overlapping of Instruction Fetch / Decode
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Instruction prefeiching works well when the execution of instruction n does not have any effect
on either the choice of instructions to fetch (e.g. as is the case in a BRANCH) or the content of the
fetched instruction (e g.. self-modifying code) for instructions n + Ln+2, ... n+k. The latter case
is usually handled by simply outlawing it. However, effective overlapped execution in the presence
of BRANCH instructions has remained a problem. Techniques such as prefeiching both BRANCH
targets have not shown much performance/cost benefits, Lately, the concept of delayed BRANCH
instructions from microprogramming has been incorporated. with success, in LOAD/STORE
architectures (see section 2.2). The idea is to delay the effect of a BRANCH by one instruction.
Thus, the instruction at n+1 following a BRANCH instruction at n is always executed regardless of
which way the BRANCH at n goes. One can always follow a BRANCH instruction with a NO-OP
instruction to get the oid effect. However, experience has shown that 70% of the time a useful

instruction can be put in that position.
If instructions and data are kept in separate memories (the so-called Harvard architecture,

another idea borrowed from microprogramming), it is possible to overlap instruction prefetching
with fetching of operands, too. It is also possible 1o reduce the instruction fetch time by providing a
fast instruction buffer. The buffer may be automatically loaded with n instructions in the
neighborhood of the referenced instruction (assuming some spatial locality in code references) if the
referenced instruction is found to be missing (e g., the CDC 6600 [31]. To take advantage of either
Separate instruction memory or instruction buffers, it is necessary o also speed up the operand
fetch and execute phases. The two most common techniques for doing this are:

* providing operand caches or buffers, and
¢ overlapping the operand fetch and execution phases (Figure 2-4),

If successful?, these techniques can reduce the machine cycle time to one fourth or one fifth the
cycle time of an unpipelined machine. However, overlapped execution of 4 t0 5 instructions in the
von Neumann framework presents some sefious conceptual difficulties,

Fetch Instruction E
Decode Lo | [o+1] [n+2] [253] [n3q]

Feeh Operands 2]
Execute / Store l n Hn+l”n+2”n+3”n+4i

—» TIME

Figure 2-4: Totally Pipelined Execution

2Of‘ oourse. it is likely that balancing the pipeline under these conditions may require further pipelining of the ALU,



2.2. 1.oad/Store Architectures

Neat, we discuss techniques used in machines built by Seymour Cray. e.g.. the CDC 6600 [31] and
the Cras-1[28]. and more recently. by Reduced Instruction Set Computer (RISC) enthusiasts. e g..
the IBM 801[26). Berkeley's RISC[25], and Stanford MIPS [20]. because of their success in
pipelining von Neumann machines.

2.2.1. Difficultics in instruction Pipelining

Designing a well-balanced pipeline requires that the time taken by various pipeline stages be
more or less the same, and that the “things”. ie.. instructions. entering the pipe be independent of
each other. Obviously, instructions of a program cannot be totally independent except for some
special trivial cases. Instructions in a pipe are usually related in one of two ways: Instruction n
produces data needed by instruction n+k, or only complete execution of instruction n determines
the next instruction to be executed (the aforementioned delayed BRANCH problem).

Limitations on hardware resources can also cause instructions to interfere with one another.
Consider the case when both instructions n and n+1 require an adder. but there is only one of
these in the machine. Obviously. one of the instructions must be deferred until the other is
complete. A pipelined machine must be abie to temporarily prevent a new instruction from
entering the pipeline when there is a possibility of interference with the machine resource
requirements of instructions already in the pipe. Detecting and quickly resolving these possibilities
of interferences. or hazards as they are commonly known. is very difficult with ordinary instruction
sets, e.g., IBM 370, VAX 11 or Motorola 68000, due to their complexity.

Fetch Instruction [ n !{n+l][n+2]{n+3][n+4]}
Decode { n |in+l]|[n+2]|n+3][n+4]
Fetch Operands [ n ‘
|
n+2
Execute / Store Lxxx | [n+1][xxx j[_n j[n+2]
- TIME

Figure 2-5: Variable Operand Fetch Time

A further complication in pipelining complex instructions is the variable amount of time taken in
each stage of instruction processing (refer to Figure 2-5). Operand fetch in the VAX is one such
example: determining the addressing mode for each operand requires a fair amount of decoding,
and actual fetching can involve 0 to 2 memory references per operand. Considering all possible
addressing mode combinations, an instruction may involve 0 to 6 memory references in addition to
the instruction fetch itself. A pipeline design that can effectively tolerate such variations is close to
impossible.
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Figure 2-6: Hazard Avoidance at the Instruction Decode Stage

An idea of Seymour Cray (first seen in the CDC 6600) is to design an instruction set in which
instructions that refer to memory are separable from those which do not at the instruction decode
stage. Such is the case with LOAD/STORE architectures - the only memory reference instructions are
those which move data unchanged between the memory and the registers. All other instructions are
oonstrained to use the high speed registers [20, 26, 25]. Further, given that instructions in a pipeline
cannot be independent of each other, the design of the pipeline is simpler if processing of an
instruction can be stopped at only one stage of the pipeline. In other words, if an instruction gets
past some fixed pipe stage, it should be abie to run to completion without incurring or creating any
previously unanticipated hazards. LOAD/STORE architectures allow for such implementations by
using the time between instruction decoding and instruction dispatching for hazard detection and

resolution (see Figure 2-6),
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2.2.2, 1lazard Resolution and Mcmory Latency

LOAD/STORE architectures are much better at tolerating latencies in memory accesses than other
von Neumann architectures. In order to explain this point we will first discuss a simplified model
which detects and avoids hazards in a LOAD/STORE architecture similar to the Cray-1. Assume
there is a bit associated with every register to indicate that the contents of the register are
undergoing a change. The bit corrcsponding to register R is set the moment we dispatch an
instruction that wants to update R. Following this, instructions are allowed to enter the pipeline
only if they don't need to reference or modify register R or other registers reserved in a similar way.
Whenever a value is stored in R, the reservation on R is removed, and if an instruction is waiting on
R, itis allowed to proceed. This simpie scheme works only if we assume that registers whose values
are needed by an instruction are read before the next instruction is dispatched, and that the ALU or
the multiple functional units within the ALU are pipelined to accept inputs as fast as the decode
stage can supply inputs’, The dispatching of an instruction can also be held up because it may
require a bus for storing results in a clock cycle when the bus in needed by another instruction in
the pipeline. Whenever BRANCH instructions are encountered, the pipeline is effectively held up
until the branch target has been decided.

Notice what will happen when an instruction to load the contents of some memory location M
into some register R is executed. Suppose that it takes k cycles to fetch something from the memory.
It will be possible to execute several instructions during these k cycles as long as none of them refer
to register R. In fact, this situation is hardly different from the one in which R is to be loaded from
some functional unit (eg., the Floating Point multiplier) that takes several cycles to produce the
result. These gaps in the pipeline can be further reduced if the compiler reorders instructions such
that instructions consuming a datum are put as far as possible from instructions producing that
datum. Thus, we notice that machines designed for high pipelining of instructions can hide large
memory latencies provided there is local parallelism among instructions®,

Some LOAD/STORE architectures have eliminated the need for reservation bits on registers by
. making the compiler responsible for not scheduling instructions until the time when the result is
supposed to be available, The compiler performs this static hazard resolution by assuming
deterministic time for each operation (e.g., ADD, LOAD) and inserting NO-OP instructions wherever
necessary. Because the instruction execution times are intimately built into the code, any change to
the machine’s structure (scaling, redesign) will at the very least require changes to the compiler and
regeneration of the code. This is obviously contrary to our notion of generality, and hinders
portability of software from one generation of machine to the next.

Current LOAD/STORE architectures assume that memory references either take a fixed amount of
time (1 cycle in most RISC machines) or that they take a variable but predictable amount of time
(as in the Cray-1). In RISC machines, this time is derived on the basis of a cache hit. If the operand
is found to be missing from the cache, the pipeline stops. Equivalently, one can think of this as a
situation where a clock cycle is stretched to the time required. This solution works because, in most
of these machines, there can be cither one or a very small number of memory references in progress

3Indeed in the Cray-1, functional units can accept an input every clock cyde and repm are always read in one dock
cycle after an instruction is dispatched from the Decoder.

4111e ability to reorder two instructions essentially means that these instructions can be executed in paralld,
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at any gnen time. For example. in the Cray-1. no more than 4 independent addresses can be
gencrated in any memory cycle. 1 an address causing a bank conflict is generated. then the pipeline
must be slopped. However. any conflict will be cleared in at most 3 cycles.

2.2.3. Summary
Good implementations of LOAD/STORE architectures can effectively pipeline many instructions at

a time. Even though instructions are decoded in order, they may finish out of order. If there is
sufficient parallelism in the source code and the compiler is good at reordering instructions,
latencies of memory accesses can be hidden behind useful ALU work.

Latency cost can be reduced by introducing a cheap synchronization mechanism: reservation bits
on processor registers. However, the number of names available for synchronization, ie, the size of
the task’s processor-bound context. is precisely the number of registers. and this restricts the
amount of parailelism that can be exploited®. In order to understand this issue better, consider the
case when the compiler decides to use register R 10 hold iwo different values at two different
instructions say. n and n". This will require n and 2" to be executed sequentially while no such order
may have been necessary in the source code. It would seem that more programmable registers in
the architecture will provide more names for synchronization and. hence, a greater opportunity for
tolerating latency. The obvious disadvantage of relying on this scheme is clear: the machine's
ability to manipulate such names is bound tightly into the instruction set and thereby limits

scalability.

It would be desirable if all the techniques developed for uniprocessors carried over directly to
multiprocessor architecture. In fact, they do not. It was mentioned earlier that memory latency in a
multiprocessor is going to be larger and less predictabie than in a uniprocessor system, and
additionally that multiprocessor systems must support some mechanism for the synchronization of
computational tasks. The method of synchronization used for reducing latency is usually not used
for synchronization at the programming level. In fact, we will show that low cost synchronization at
the programming level calls for small, instead of large, processor state. In the following sections we
discuss the methods of reducing the induced processor idle time due to latency and synchronization
that have been either implemented or suggested for multiprocessor systems.

2.3. Latency Reduction Methods and their Cost

23.1. Caches
Let us assume that all memory modules in a multiprocessor form one global address space and

that any processor can read any word in the global address space. This immediately brings up a
number of probiems:

o The time to fetch an operand may not be constant because some memories may be
“closer” than others in the physical organization of the machine.

5lt is interesting 1o observe in passing that all high performance machines seem to be based on general register
architectures rather than on stack architeciures. One possible explanation is that. given the same amount of fast slorage, a
stack machine has far fewer names available (o uniquely identify synchronization events and is therefore poorer at trading

syachronization cost for latency cost
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o No useful bound on the worst case time to fetch an operand may be possible at machine
- design time because of the scalability assumption.

o If a processor were to issue several (pipelined) memory requests to different remote
memory modules. the responses may arrive out of order.

Some multiprocessors, e.g., Cm* [15] have avoided rather than solved these problems by making
the simplifying assumption that a memory request would not be issued until the previous response
had been received. Not surprisingly, even running a program with tremendous parallelism, Cm*
researchers discovered that the problem took longer to compiete if more than 8 to 10 processors
were used [15]. We think a likely reason is that processor idle time induced by the increase in
memory latency could not be recovered by additional processing power.

LOAD/STORE architectures can solve the problems mentioned above to a limited degree.
However, a general solution for accepting out of order memory responses requires a
synchronization mechanism to match responses with the destination registers (names in the task’s
context) and the instructions waiting on that register. The Denelcor HEP [21] is one of the very few
architectures which has tried to provide such mechanisms in the von Neumann framework.
However, the architecture of the HEP is sufficiently different from von Neumann architectures as
to warrant a separate discussion (see section 4).

The most popular way of circumventing the latency problem is to employ a local cache in a
processor to keep the contents of the most recently used memory locations. This highly successful
idea from uniprocessors suffers a great deal in the multiprocessor setting due to a problem called
cache coherence. Censier and Feautrier [8] define the problem as follows: “A memory scheme is
coherent if the value returned on a LOAD instruction is aiways the value given by the latest STORE
instruction with the same address.” In a multiprocessor context, it is easy to see that this may lead o
difficulties.

Suppose we have a two-processor system tightly coupled through a single main memory. Each
processor has its own cache, to which it has exclusive access. Suppose further that two tasks are
running, one on each processor, and we know that the tasks are designed to communicate through
one or more shared memory cells. In the absence of caches, this scheme can be made to work.
However, if it so happens that the shared address is present in both caches, the individual
processors can read and write the address and never see any changes caused by the other processor.
Using a store-through design instead of a store-in design does not soive the problem either. What is
logically required is a mechanism which, upon the occurrence of a STORE to location x, invalidates
all other cached copies of location x wherever they may occur, and guarantees that subsequent
LOADs will get the most recent (cached) value. This can incur significant overhead in terms of
decreased memory bandwidth. All solutions to the cache coherence problem center around
reducing the cost of detecting (or rather avoiding) the possibility of cache incoherence, and such
solutions seem to work only for bus oriented machines. Some of these are discussed next.

There have been many proposals for solving the coherence problem by using a logically
centralized directory for all cached data. Each entry reflects the state (e.g. private, shared, etc.) of
the associated cache quantum, and is responsible for guaranteeing that coherence is not violated.
Implementations of this idea are generally intractable except possibly in the domain of bus oriented
multiprocessors. Relying on the broadcasting capability of a bus, it is easy to see how all caches can
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purge entry x il a processor attempts a STORE (o x (the so-called snoopy bus).

In such a system at most one STORE operation can 80 on at a time in the whole system and.
therefore. system performance is going to be a strong function of the bus's ability to handie the
coherence-maintaining traffic. It is possible 10 improve upon this solution if some more
information is kept with each cache entry. Suppose entries arc marked "shared” or "non-shared”.
A processor can freely read shared entries but an attempt to STORE into a shared entry immediately
causes that address to appear on the snoopy bus. That entry is then deleted from all the other caches
and is marked "non-shared” in the processor that had dttempted the STORE. Similar action takes
place when the word to be written is missing from the cache. Of course, the main memory must be
updated before purging the private copy from any cache. When the word to be read is missing
from the cache. the snoopy bus may have to first reclaim the copy privately held by some other
cache before giving it to the requesting cache. The status of such an entry will be marked as shared
in both caches. The advantage of keeping shared/non-shared information with every cache entry is
that the snoopy bus comes into action only on cache misses and STORES to shared locations, as
opposed to all LOADs and STORES. Even if these solutions work satisfactorily, bus oriented
multiprocessors are not of much interest to us because of their obvious limitations in scaling.

As far as we can tell there are no known soluitions to cache coherence for non bussed machines. It
would seem reasonable that one needs 10 make caches partially visible to the programmer by
atlowing him to mark data (actually addresses) as shared or not shared. [n addition, instructions to
flush an entry or a block of entries from a cache have 1o be provided. Cache management on such
machines is possible only if the concept of shared data is well integrated in the high level language
or the programming model. Though it may not be obvious, often a direct trade off exists between
decreasing the paraifelism and increasing the cachable or non shared data. Schemes have also been
proposed to explicitly interiock a location for writing or to bypass the cache (and flush it if
necessary) on a STORE: in either case, the performance goes down rapidly as the machine is scaled.
Ironically, in solving the latency problem via multiple caches, we have introduced the

synchronization problem of keeping caches coherent.

2.3.2. Pipelined Memory Systems
One can observe from the Cray-1 and other machines that there is an asymmetry between a

heavily pipelined processor and a non-pipelined memory system. Memory systems continue 10 be
slow relative to processors built with comparable technologies, and thus, are usually the
performance limiting factor. Interleaving as a technique for reducing apparent access time is
unsuitable as a general solution because of sensitivities to addressing pattems.

We have done some initial investigations over the past year into the architecture of pipelined
memory systems aimed at solving this problem. If memory systems were designed to accept
memory references in a pipelined manner with a large capacity to hold memory requests, stretching
of the clock cycle as described in section 2.2.2 can be avoided. To exploit a pipelined memory in its
full generality requires a mechanism such as reservation bits to provide fine-grained
synchronization rather than relying on a rather complex compiler to predict machine configuration
dependent data arrival times. The benefits, however, should be clear.
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2.4. Synchronization Methods and their Cost

W;. turn from our very hardware-intensive view of multiprocessors to the issues of programming
a multiprocessor. From this. we will reason about architectural implications of software systems on
the underbving hardware, A gencral model of parallel programming must assume that tasks are
crewted dynamically during a computation. and die after having produced and consumed data.
Situations in parallel programming which require task synchronization include the following non-
orthogonal basic operations:

L. Forks and Joins: The join operation forces a synchronization event indicating that two
tasks which had been started earlier by some forking operation, have in fact completed.

2. Producer-Consumer: A task produces a data structure that is read by another task. If
producer and consumer tasks are executed in parallel, synchronization is needed to
avoid the read-before-write race.

3. Mutual Exclusion: Non-deterministic events which must be processed one at a time,
e.g., serialization in the use of a resource.

In order to understand the effect of hardware synchronization on software methodology, consider
the case wherein the fixed cost of synchronization is high, say equivalent to the time taken by 10
ordinary instructions. Under such conditions it will not pay to exploit producer-consumer
paralielism on an element-by-element basis. Rather, one would first produce n (O 10) elements
and then signal the consumer to start consuming. The same procedure would be repeated after
producing the next n elements. This way. the cost of synchronization would be kept low by perhaps
inducing some extra idle time on the processor on which the consumer task executes. The choice of
n certainly depends on the machine and deeply affects how one would write code. If the elements
are produced and consumed in somewhat irregular order, or if the data structure comprising the
elements is nonuniform, it may be practically impossible to write code to exploit parallelism given
certain types of synchronization mechanisms.

24.1. Global Scheduling on Synchronous machines

If a multiprocessor is totally synchronous, then it is at least conceptually possible to prepare a
master plan in which instructions for every moment on every processor are specified. An analogy
can be made between programming such a muitiprocessor and coding a horizontally
microprogrammed machine. Recently there have been advances in compiling for such machines
which have caused several machine proposals to appear [14, 27).

While these machines are able to resolve run-time sharing conflicts by moving them to compile
time and are usually able to plan memory references and control transfers in advance of the need
(e.g., the delayed BRANCH), these machines suffer from their special-purpose nature. Except in the
simplest of cases, compilers require "hints” from the programmier or, in some cases, rely on luck
(and hardware interlocks) in doing the code generation. Clearly, these machines are not well suited
to reai-time computations which involve nondeterministic situations or computations requiring
dynamic resource (e.g., memory) management.

We believe that this technique is effective in its currently-realized context - special purpose
computation with a small number (4 to 8) of processors, but the technique is.not sufficiently general
as to allow significant scaling up. Software problems associated with this approach will be
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overwhelming far before the hardware cost of latency and synchronization plays any significant role
in scaling such machines.

2.4.2. Interrupts and Low Level Context Switching
Almost all von Neumann machines have the capability of accepting and handling interrupts. Not

surprisingly. multiprocessors based on such machines permit the use of inter-processor interrupts as
a means for signalling events. However, interrupts are rather expensive because, in general, the
processor state needs to be saved. The state-saving may be forced by the hardware as a direct
consequence of allowing the interrupt to occur, or it may occur implicitly, ie, under the control of
the programmer. via a single very complex instruction or a suite of less complex ones. Independent
of how the state-saving happens. the only important thing to note is that each interrupt will generate
a significant amount of traffic across the processor - memory interface.

In the previous discussion we concluded that larger processor states were good in that they
provided a means for reducing memory latency cost. In trying to solve the problem of low cost
synchronization we have now come across an interaction which, we believe, is more than just
coincidental. Specifically, in very fast von Neumann processors, the "obvious" synchronization
mechanism (interrupts) will only work well when the amount of processor state which must be
saved is very small. Said another way, reducing the cost of synchronization by making interrupts
cheap would generally entail increasing the cost of memory latency.

Uniprocessors such as the Xerox Alto [32], the Xerox Dorado [22], and the Symbolics 3600 family
[24} have used a technique which may be called microcode-level context switching to allow sharing
of the CPU resource by the 170 device adapters. This is accomplished by duplicating programmer-
visible registers. ie, the processor state. Thus, in one microinstruction the processor can be
switched to a new task without causing any memory references to save the processor state. This
dramatically reduces the cost of processing certain types of events that cause frequent interrupts.
As far as we know, nobody has adapted the idea of keeping multiple contexts in a multiprocessor
setting (with the possible exception of the HEP, to be discussed in section 4) although it should
reduce synchronization cost over processors which can store only a single context. it may be worth
thinking about adopting this scheme to reduce the latency cost of a nonlocal memory reference as

well

The limitations of this approach are obvious. High performance processors may have a small
programmer visible state, ie., the number of registers, but a much larger implicit state, Le, mcha.
Low level task switching does not necessarily take care of the overhead of flushing caches®,
Further, one can only have a small number of independent contexts without completely
overshadowing the cost of ALU hardware’. This technique if employed in the large would reduce
the synchronization cost only at the expense of latency cost,

SMulticontext caches and address translation buffers have been used 10 advantage in reducing task switching overhead.,
e.g, the sto stack mechanism in the 1BM 370/168.

7’Ihe Berkeley RISC idea of providing “register windows™ to speed up procedure calls is very similar to multiple
coniexis,



2.4.3. Semaphores and the Ultracomputer _

Neat to interrupts, the most commonly supported feature for synchronization is some atomic
operation 10 test and set the value of a memory location. A processor can signal another processor
by writing into a location which the other processor keeps reading to sense a change. Even though,
theorcucally, it is possible to do such synchronization with ordinary read and write memory
operations, the programming is much simpler with an atomic TEST-AND-SET instruction.
TEST-AND-SET is powerful enough to implement all types of synchronization paradigms mentioned
earlier. However. the synchronization cost of using such an instruction can be very high,
Essentially. the processor that executes it goes into a busy-wait cycle. Not only does the processor
get biocked. it also generates extra memory references at every instruction cycle until the
TEST-AND-SET instruction is executed successfully. Implementations of TEST-AND-SET that permit
non busy waiting imply context switching in the processor and thus are not necessarily cheap either.

It is possible to improve upon the TEST-AND-SET instruction in a multiprocessor setting as has
been suggested by the NYU Ultracomputer group {13]. Their technique can be illustrated by the
atomic FETCH-AND-ADD instruction (sometimes called REPLACE-ADD). The instruction requires an
address and a value, and works as follows: suppose two processors. i and j, simultaneously execute
FETCH-AND-ADD instructions with arguments (A’Vi) and (A.vj) respectively. After one instruction
cycle, the contents of A will become (A)+ v, +v.. Processors i'and j will receive, respectively, either
(A)and (A)+ v, or (A)+v. and (A) as results, llndeterminacy is a direct consequence of the race to
update memory cell A. The implementation of FETCH-AND-ADD calls for a combining packet
communication network which connects n processors to an n-port memory, If two packets collide,
say FETCH-AND-ADD(A. x) and FETCH-AND-ADIX A.y). the switch extracts the values x and y, forms a
new packet (FETCH-AND-ADD{(A4.x+y)), forwards it to the memory. and stores the value of x
temporarily. When the memory retums the old value of location A. the switch returns two values
((A) and (A)+x). The main improvement is that some synchronization situations which would
have taken O(n) time can be done in O(log n) time. It should be noted, however, that one memory
reference may involve as many as logzn additions, and implies substantial hardware complexity.
Further, the issue of processor latency has not been addressed at all. In the worst case, the
complexity of hardware may actually increase the latency of going through the switch and thus
completely wipe out the advantage of FETCH-AND-ADD over its "non combining” version.

The simulation results reported by NYU [13] show quasi-linear speedup on the Ultracomputer (a
shared memory machine with ordinary von Neumann processors, empioying FETCH-AND-ADD
synchronization) for a large variety of scientific applications. We are not sure how to interpret these
results without knowing many more details of their simulation model. Two possible interpretations
are the following:

1. Paralle]l branches (ie, tasks) of a computation hardily share any data, thus the costly
mutual exclusion synchronization is needed rarely in real applications.

2. The synchronization cost of using shared data can be acceptably brought down by
judicious use of cachable/non cachable annotations in the source program.

If true, these interpretations would not invalidate the analysis presented in this paper; the losses
due to latency and synchronization still impose fundamental limits. Rather, it would show that it
possible to build larger high performance von Neumann multiprocessors than what is implied here,
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2.5. Lessons Learned thus Far
In order to reduce memory latency cost, it is essential that a processor be capable of issuing

muitiple, overlapped memory requests. To effectively deal with this we must view the memory /
communication subsystems as a logical pipeline, As latency increases, keeping the pipeline full
implies that more memory references will have to be in the pipeline. We note that memory systems
of current von Neumann architecturcs have very little capability for pipelining,

Even with pipelined memory systems, von Neumann processors must observe instruction
sequencing constraints. Adding hardware support for synchronization is difficult because it

dealing with long latencies and out of order memory responses®. The difficulty arises when one
wishes to share the processor across multiple tasks (e g, multiprogramming, interrupts) because

3. The Dataflow Approach

In this section we present a machine structure which theoretically, given sufficient parallelism in
the program, can show high performance in the presence of extremely jarge memory latencies and
walits for synchronization events, Dataflow processors do not have any notion of a program counter

in dataflow computers is triggered solely by the availability of the operands, Dataflow architectures
are sufficiently different from von Neumann architectures tha, without a discussion of dataflow
program representation, the instruction execution mechanism is difficult to understand and

evaluate,

3.1. Dataflow graphs

a dataflow instruction sending operand values, or tokens, to instructions connected to it by outgoing
arcs.  An instruction is said to be ready to execute, or is enabled, when all the required input

8In essence this amounts to solving a latency problem by introducing a mechanism which, in turn, requires solution of g
low level synchronization problem.
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operands are present.
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Figure 3-1: Compilation of the Loop Expression for X Rx)

An example of a dataflow program graph is shown in Figure 3-1. This graph was compiled from
the following 1d° [4] program which applies function fto each element of array x and sums up the
results thus obtained:

(initials — 0
for i from 1 to n do

new s — s + f(x[iD
return s)

9ld is a high-level functional language designed specially for dataflow machines.
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The graph shown is sgmewhat sty lized; the box murked S represents the subgraph necessary for
invoking function f (which is. itseif. a graph). Instructions D, D™, L, and L7 all act as identity
operators on the input values but are essential for manipulating context-identifying information
(discusscd later). For the time being. let us assume that the box containing x{if somehow produces
a token containing the value at the A" selector in array x. The remainder of the operators are
arithmetic. relational. and conditional instructions whose function should be self-evident,

A dataflow processor conceptually moves tokens along the arcs of the graph (duplicating them
upon encountering a fork), looking for instructions which have become enabled, Upon execution of
an enabled instruction, the input tokens are absorbed. and output tokens for the following
instructions in the graph are produced. A program is said to terminate when no enabled

instructions are left.

3.2. Static Allocation of Storage for Operands
Dataflow machines can be broadly classified on the basis of the method used for allocation of

token storage. Static dataflow machines ailocate storage for operands along with the nodes of the
graph. An early version of Dennis’ machine [11). which is the basis for all static dataflow machines,
is shown in Figure 3-2. The program. along with the data, resides in the Activity Store, and a bit
associated with each operand is used to indicate whether the operand is present or not. Tokens
produced by the Operation Units carry destination pointers which are simply addresses in the
Activity Store. Just before a token is stored, a check is made to see if its partner is available. If so,
the instruction is ready for execution. A packet containing the opcode, the operands, and the list of
destinations is formed and forwarded to a non-busy Operation Unit. After this, the corresponding
operand slots are marked empty. The Operation Unit produces results and forms a token for each
destination in the list; the Update Unit delivers these tokens to destination instructions, potentialty
enabling them for execution. Interestingly. correctness and determinacy in program behavior are
independent of the time order in which enabled instructions are executed.

This simple instruction execution mechanism can exploit parallelism in two ways as discussed in
[11]. First, the processor can be heavily pipelined because the operations of Operation Units,
Activity Store and Update/Fetch Units can all be overlapped easily. Second, and more
importantly, many processors can be connected together to work on different parts of a dataflow
graph. As iong as all the Activity Stores are part of one address space, the Qutput Unit can easily
deduce the destination processor number for a token from the instruction address on the token.

The simplicity of connecting several dataflow processors stems directly from the fact that the
dataflow processor does not treat intemnal and external tokens differently [30], Though for static
machines, the compiler must decide which part of the graph should be loaded on which processor,
the decision can be straightforward for programs with massive parallelism. Notice that increased
latencies in the communication system do not necessarily affect the performance provided there are
sufficient concurrently enabled nodes in the graph to keep the pipelines between Activity Stores

and Operation Units full,

The differences between the dataflow execution mechanism just described and the von Neumann
machines discussed in section 2 are worth noting. There are no registers, not even program
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Figure 3-2: One Processing Element of the Static Dataflow Machine (adapted from [11])

counters in the dataflow machine!®. Instructions which are waiting for operands in the dataflow
machine do not block the instruction pipeline in any way. It is this aspect of the dataflow machine
which makes it possible to trade program parallelism to reduce latency cost,

Static allocation of operand storage in dataflow machines has some weaknesses t0o, As explained
below, it unnecessarily restricts the kind of parallelism that can be exploited in a program, and
makes dynamic invocation of procedures difficult. Since an instruction has space for exactly one set
of operands, concurrent enabling of the same instruction with multiple sets of input operands is
ruled out. It is easy to show that, at the graph level, many loop programs can produce several inputs
for a node (e g, the program in Figure 3-1). Indeed, such programs can produce erroneous resuits

100m= may view the Activity Store as nothing but registers with reservation bits, 2 Iz Cray. However, unlike Cray
machines, the instruction pipeline can not be held up after instruction decoding because only enabled instructions are
decoded,
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on the static machine if special care is not exercised!'! [23]. Generally, this probiem is avoided by
introducing an arc, pointing in the opposite dircction. corresponding to each arc in the dataflow
graph. These so called acknowledgment arcs prevent the enabling of the source node until the
destination node has an empty slot for the operand (see Figure 3-2). This solution complicates the
detection of enabled instructions because all the acknowledgment tokens have to be counted, and it
also doubles the token traffic. Further, it incrcases the time between two firings of an instruction
from one delay around the pipefine to two. Implementation of procedures is also rather restricted
because static allocation views procedures as "in line functions" or macros; not all procedures can

be viewed in this manner.

It is possible to generalize the concept of static dataflow machines by providing support for
dynamic loading of a procedure in the Activity Store. This requires mechanisms for directing
tokens from the calling procedure to the called procedure, and also a mechanism for returning
results, Rather then speculate about these mechanisms we present a more general dataflow model
with the hope that it will be straightforward to deduce what mechanisms from it need to be

incorporated in the static allocation mode! to su pport procedures.

3.3. The Tagged-Token Dataflow Processor

3.3.1. Dynamic Allocation of Operand Store
It is possibie to exploit more parallelism in dataflow graphs than Dennis’ static machine does.

Two groups, one at Manchester, England [18] and the other at University of California, Irvine
{5. 17} independently developed the idea of labeling tokens in Dennis’ dataflow graphs [10] to
achieve this effect. The labels are catled /ags. Tagged-Token dataflow processors allow more than
one token to be present on an arc. Therefore, the destination labels in tokens contain some
dynamic, or context-sensitive information in addition to the address of the next instruction.

The basic structure of a token is the quadruple: <DATA. TAG. ARITY, OPERAND NUMBER>. The
TAG itself is a triple: <CONTEXT, INSTRUCTION POINTER., SEQUENCE. The CONTEXT and
SEQUENCE fields contain dynamic information - the INSTRUCTION POINTER is statically
determined. The CONTEXT field identifies the procedure invocation to which this token belongs.
Even though the TAGs and, hence, the CONTEXTs, are reused, the CONTEXT is guaranteed to be
unique during the lifetime of the procedure invocation.

The D and L operators can now be explained. The purpose of the D operator is to increment the
SEQUENCE part of the TAG of each token which passes through it. One can think of this as giving
new labels to the tokens associated with different iterations of a looplz. D! resets the SEQUENCE
field to zero. The L operator is responsible for logically saving the CONTEXT on incoming tokens
and generating a new CONTEXT to be substituted for the old one on outgoing tokens. It does so

n’me graph in Figure 3-1 may still produce the correct answer because + is associative and commutative.

12Sm:h a mechanism is obvious!y necessary because we permit more than one token on an arc; unconstrained, cycdesin
a graph would give rise to ambiguous maichings of tokens and nondeterministic behavior. If one considers only acydic
graphs, then the sEQUENCT. part of the TAG is useless. However, it can be viewed as providing a cheap way of allocating and

deallocating new contexts for tail recursive programs.
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with the help of a resource manager who keeps track of “contexts” in use. L™ reverses the process
by substituting the old CONTEXT for the new one on outgoing tokens. The details of context

creation are further discussed in section 3.3.3.

Since instructions may have .more than one input operand. two more pieces of information are
included on each token, These are the fota/ number of operands required by its target instruction,
that is. its ARITY, and a value to specify which OPERAND NUMBER this token represents,

Unlike the static dataflow machine. tokens (operands) are stored separately from the program in
the Tagged-Token architecture. Conceptually, the operand store for the Tagged-Token machine is
organized as an association list from which tokens can be extracted by presenting a TAG. The
program store, then, contains no data, only pure code. Aside from this difference, instructions in
both the static and the tagged-token machines are very similar,

A diagram of the the Tagged-Token dataflow processor is shown in Figure 3-3. Assume that the
dataflow graph corresponding to the program to be executed has been stored in the Program
Memory. Let us further assume that all instructions require exactly two input operands. The
Waiting Matching Section performs the function of the operand store. The TAG of the token
entering the processor is compared against the TAGs of the tokens already in the Waiting Matching
Section. If a token with the maiching TAG is found, the data value on the matched token, the data
value on the incoming token, and their (identical) TAG are forwarded to the Instruction Fetch
Section. If no match is found, the incoming token is stored in the Waiting Matching Section!®. The
opcode is looked up in the Instruction Fetch Section based on the TAG's CONTEXT and
INSTRUCTION POINTER fields. Given the two operands and the opcode, the ALU performs the
indicated operation.

The Compute Tag Section derives the new TAG using the old TAG and the DESTINATION
information stored with the current instruction. If there is more than one destination, the process is
repeated. A token is then formed by appending the new TAG to the ALU’s output. At this point, a
determination is made based on the new token's logical destination. If the denoted instruction
resides on the same processor as the one in which it was created, it is routed back to the Waiting
Matching Section. If not, it is passed to a Communication Network which is responsible for
delivering the token to the correct processor.

3.3.2. Executing a Procedure on Several Processors

Tagged-Token machines grovide a degree of freedom in distributed execution of a procedure not
possible in static machines!®. Like the static machine, it is still possibie to divide the dataflow graph
of a procedure into several parts and to foad these parts into the Program Memories of different
processors. Again, if all Program Memories are part of the same global address space, tokens may

llI'hus, storage for operands is allocated dynamically from the common pocl of storage available in the Waiting
Matching Section.

14me now on, our remarks about Tagged-Token Machines apply specifically 1o the MIT Tagged-Token Dataflow
project and may not be wue for other similar machines (e.g, Manchester {18] and Sigma-1 at the Fectrotechnical
Laboratory, Japan [33]). In all cases, we can envision integrating these ideas into other Tagged-Token machines without
much difficulty, however.
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be distributed according to their PROCESSOR NUMBER which is trivially derived from the
INSTRUCTION POINTER (recall that the INSTRUCTION POINTER s static information). However, it is
also possible to load a complete copy of the program’s graph into each of several processors and to
divide up tokens amongst these processors based on the dynamic information in the TAG. For
example, imagine that a program is loaded onto cach of two processors. We can distribute all
tokens with odd SEQUENCE fields to the first of these processors. Similarly, tokens carrying even
SEQUENCE fields can be sent to the sccond processor. To the extent that we can arrange for a
uniform distribution of even and odd SEQUENCE fields during the course of the computation, the
work will be distributed equitably between these two processors.

The MIT Tagged-Token architecture supports a fairly general program mapping and load
distribution scheme along these lines. Each procedure invocation is associated with a particular
mapping scheme. It is this CONTEXT specific MAPPING information which is used by the Compute
Tag Section (Figure 3-3) in generating output TAGs. A detailed discussion of this mechanism is,
however, beyond the scope of this paper and has been described elsewhere [3].

3.3.3. Creating Contexts for Procedure Invocations

We focus our attention now on the mechanisms provided to support creation or allocation of
contexts for procedure invocations. The key, of course, is the CONTEXT field carried with each
token, Referring again to Figure 3-3, the CONTEXT field of the token's TAG is used to select a CODE
BLOCK REGISTER (CBR), one of several key resources allocated at procedure invocation time. Its
contents are used to access (1) the program, (2) invocation specific constants, and (3) invocation
specific mapping information.

Dataflow graphs are compiled into collections of instructions called code blocks. These are
dynamically loaded into {and subsequently deleted from) Program Memory, and are accessed
indirectly via the INSTRUCTION BASE POINTER in the CBR, thus facilitating relocation,

Given that two procedure invocations do not share CBR’s, the name of the allocated CBR serves
the purpose of uniquely identifying a procedure invocation. Both the CONTEXT (the name set) and
the CBR (the physical resource) can be reused when the corresponding procedure invocation
terminates. Obviously, the number of procedure invocations that can exist simultaneously in our
machine is limited by the total number of concurrent contexts the hardware can support.

Regardless of how much other memory is provided, if we run out of CBR's, ie., contexts, we will
have to wait until one is freed up, If no context can be freed then the machine will deadlock. In
sequential machines the closest thing to a CONTEXT is the stack frame base pointer for the procedure
call stack. Frequently, compiler convention dictates that pointers to code and data for the
procedure are stored in fixed positions in the stack frame. By analogy, running out of CONTEXTs in
the Tagged-Token machine is like running out of procedure call stack memory in conventionat
machines (with similar results).

Can we imitate the procedure call stack on a parallel machine? In particular, can we take
advantage of the size of the main memory to reduce the likelihood of deadlock due to exhaustion of
CONTEXTS, a fixed resource? It seems unfikely. If, for example, we assumed that all processors had
fast access to a large shared memory we might be able to emulate the traditional solution. We
believe that such an assumption is unrealistic, however.
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A CONTINT in our machine is not cheap. Even if the machine can support a large number of
CONTEXTs, the time taken to initialize all of the context-specific registers is significant enough to
discourage the use of small procedures. Also, in a balanced design. contexts have to be backed up
by enough other resources such as program memory and token storage space in the wiiting
maiching section [9). From a resource management point of view it would be undoubtedly easier if
all resources were 1o come from a single common pool of resources, eg. the memory,

3.4. Data Structure Operations and [-Structures

Instead of destination instruction addresses, the destination TAGs are sent (o the Structyre Store,
and its output is sent to the Waiting Matching Section,

that some APPENDs Qn cause a new copy of a part of the old data siructure to be created, Such
copying is often expensive. A detailed implementation of Structure storage with a jot of internal
concurrency is given by Ackerman [1; a similar solution in the context of the U-interpreter is

discussed in [17].

The problems with functional operations on data structures have been discussed extensively in
the literature (see, for example, [S]).  Besides the copying overhead in even very clever
implementations, the Structure-on-the-token modef implies data structyre constructors, eg, the
APPEND operation, to be "strict”, That is, the structure output is not produced unless all inputs of
the APPEND are available, Consequently, no element of a structyre can be used unless aff elements
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have been stored. The loss of parallelism under such conditions is obvious. I-structures have been
proposed to reduce copying and increase parallelism in data structure operations.

3.4.2. I-Structures

From a programmer’s perspective. an I-Structure is an array of slots. All slots are initially empty.
A programmer is allowed to store into each slot no more than once. A slot can be read as many
times as desired, and when there are no outstanding read or write operations for an I-Structure it
can be deallocated. At the time the storage is reallocated., all the slots are marked empty again. A
interesting aspect of I-Structure semantics is that even if the reading of a location precedes its
writing, the value returned does not change. This, as we shall see, is accomplished by delaying the
response until the slot is actually filled. :

Referring to Figure 3-4, I-Structure storage can be visualized as a word-addressed conventional
memory with the addition of a few presence bits on each word. Presence bits indicate that the
associated word is in one of three possible states:

¢ PRESENT: The word contains valid data which may be freely read just as in a
conventional memory.

* ABSENT: Nothing has been written into this word since the most recent reallocation. No
attempt has been made to read the word.

® WAITING: Nothing has been written into this word since the most recent allocation, but
at least one attempt to read the word has been made.

The bits change state in obvious ways: during a read operation, the I-Structure storage controller
interrogates the presence bits associated with that location, and if the word is marked PRESENT, the
contents are retrieved and forwarded to the destination instruction. If the word is ABSENT, the
controller puts the read request aside and marks the empty location WAITING to indicate that a read
request is outsmndingls. If the word is already in the WAITING state, the new read request is
appended to the existing list.

A write operation similarly interrogates the presence bits. If ABSENT, the datum is written as in a
normal memory. if WAITING, the value is both written and forwarded to all the instructions on the
deferred list. 1-Structure semantics are violated if a write is attempted and the word is afready
marked PRESENT; an error will be signalled.

I-Structures provide the kind of synchronization needed for exploiting the producer-consumer
type of parallelism. A programmer is completely freed from the burden of avoiding read-before-
write races. The execution time overhead of using I-Structure operations is also minimal as long as
most read requests precede the corresponding write requests. The issues involved with building such
amemory, and the design for an I-Structure memory controller are discussed extensively in [19].

Many other issues are involved with the design of a Tagged-Token dataflow machine whose

1s’l'he idea of associating a status bit with each memory cell is not new - the Deneloor HEP multiprocessor {29, 21) uses
this idea to synchronize cooperaling parallel processes which share registers and/or memory cells. Unsatisfiable requests
result in a busy-waiting condition - ie., there is no such thing as a deferred read list.
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Figure 3-4: [-Structure Storage

details are shown in Figure 3-5). The interested reader will find more details in [3, 2]

3.5. Simultanecously Reducing Latency and Synchronization Costs

The M.LT. Tagged-Token Dataflow machine exploits parallelism at both the procedure and the
instruction level. It is possibie that at any given moment several instructions belonging to a
procedure may be active in a PE. It is also possible, even likely. that at the same moment
instructions belonging to another procedure invocation may be active in the same PE. Instructions
from two different procedure invocations automatically share the instruction pipeline and resources
such as Waiting Matching Section. Thus, a lack of parallelism at the instruction level within a
procedure does not necessarily induce gaps in the instruction pipeline, as it would in a von
Neumann machine. The synchronization cost associated with one instruction enabling the next one
can be totally absorbed as long as other enabled instructions are available, The hardware feature
that makes this possible is the Waiting-Matching Section. |t allows instructions to wait for a
synchronization event without blocking the instruction pipeline. Further, unlike the register based
synchronization in Load/Store architectures, it allocates the name (the TAG) required by a
synchronization event at run time.
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avatlable 10 keep the pipelines full. no performance degradation should take place. Thus, the
Waiting Matching Section plays a crucial role in simultaneously reducing the the latency and

synchronization costs.

The role of I-Structure storage in reducing the synchronization cost is harder to explain because it
is closely coupled with the manner in which parallelism is expressed. When cast as producer-
consumer synchronization. it seems to us that I-structures provide a tremendous opportunity for
overlapped execution as well as minimal synchronization overhead. If a read request must wait
because the data is not yet available, a fixed penaity in the form of updating the “deferred readers
list" is incurred. However, neither the instruction pipeline nor the memory pipeline is blocked by
the waiting reader. Processors can keep issuing memory references, even without Betting responses
to a large number of earlier requests, as long as requests are independent of each other.

4. Future Evolution of Multiprocessors

We have shown that on multiprocessors based on von Neumann processors reducing the losses
due to large memory latency results in increased losses due to synchronization waits. Qur belief is
that this coupling is not fundamental to ail multiprocessor architectures, and in particular, dataflow
architectures can simultaneously minimize latency and synchronization costs, This idea may be
visualized in terms of a three dimensionai latency-synchronization-efﬁciency (LSE) space, in which,
specific architectures appear as points (see Figure 4-1). Our assertion about von Neumann
machines (page 4) can be thought of as defining a surface in this space which we shall call the von
Neumann Barrier'® beyond which no von Neumann design can exist!

PROCESSOR
EFFICIENCY

SYNCHRONIZATION COST

von Neumann Barrijer

Figure 4-1: The La:ency-Synchronimﬁon-Efﬁciency Space

16Not to be confused with the much publicized von Neumann Bottleneck.
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4.1, The Denelcor HEP: A 11ybrid Architecture

PSW Queue
Program
——»
> Memory
Control Loop — l l lAddrecses
Register -
o Function
Opcode Units —1 Results
and
Operands > T[>
) I sFU | Data
—

Memory

Figure 4-2: Latency Toleration and Synchronization in the HEP

We think there is a large space of possible machine structures other than the Tagged-Token
dataflow which satisfy the condition set forth in this paper for scalable, general-purpose
multiprocessors. One machine which, in some ways, intrigues us is the Denelcor HEP [29, 21}. The
basic structure of the HEP processor is shown in Figure 4-2. The processor's data path is built as an
eight step pipeline. In parallel with the data path is a control loop which circulates process status
words (PSW's). The delay around the control loop is variable because of the queue, but is never
shorter than eight pipe steps. This minimum value is intentional to allow the PSW at the head of
the queue to initiate an instruction but not return again to the head of the queue until the
instruction has completed. If at least eight PSW's, representing eight processes, can be kept in the
queue, the processor’s pipeline will remain full. This scheme is much like traditional pipelining of
instructions, but with an important difference. The inter-instruction dependencies are likely to be
weaker here because adjacent instructions in the pipe are always from different processes,

Where dependencies between instruction streams (ie, inter-process sharing) must be
synchronized, the HEP provides FULL/EMPTY/RESERVED bits on each register and FULL/EMPTY
bits on each word in the data memory. An instruction encountering EMPTY or RESERVED
registers!” is effectively NO-OPed: the corresponding PSW which initiated the instruction is not
incremented. The result is that process will busy-wait.

l-"'l"hm: are 2048 registers in cach processor; each process has an index offset into the register array. Inter-process data
sharing is possible at the register level via overlapping register allocations.
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When a process issues a LOAD of STORE irstruction. it is removed from the control loop and is
qQueued separately in the Scheduler Function Unit (SFU) which also issues the memory request.
Requests which are not satisfied because of improper FULL/EMPTY status result in recirculation of
the PSW within the SFU's loop and also result in reissuance of the request. The SFU matches up
memory responses with queued PSW's, updates registers as necessary, and reinserts the PSW's in

the control loop.

Thus, the HEP is capable of trading parallelism, to a degree, for memory and communication
latency while providing an efficient, low-level synchronization mechanism, Disadvantages of the
HEP approach include the limit of one suspended memory request per process at a time and the
cost of busy-waiting when sharing registers across processes.

4.2. Procedure Level Dataflow
A problem with the present Tagged-Token Dataflow architecture is that a dataflow program takes

three to five times as many instructions as a comparable sequential program on a conventional von
Neumann computer. This does not seem o affect the scalability or the programming generality of
the dataflow machine, but it does imply that for comparable performance the dataflow machine
may require substantially more hardware than a von Neumann machine. This has motivated us to
look for a new and larger independently schedulable entity than a single dataflow instruction,

Several researchers have suggested that dataflow mechanisms should be employed at the
procedure rather than at the instruction level, they all seem to have ignored the two fundamental
issues discussed here. Suppose that we regard a procedure as the smallest schedulable entity, and
assume that each procedure is compiled for some register-based von Neumann machine, A
fundamental question then is "when should such an entity be scheduled?". A von Neumann
machine has advantage over datafiow machine only when it executes long sequences of instructions
without interruptions. This dictates that compiled procedures should be scheduled only when ail
their inputs are available. This imposes a fairly rigid methodology on compiling programs, and in
our estimate would involve an unacceptably large loss of parallelism in programs. Nevertheless, we
are looking for hardware structures which can execute procedures as efficiently as a sequential
machine without requiring that the code be executed in a non interruptible manner. It seems to us
that to keep synchronization costs low, any multiprocessor must allow cheap non-blocking

suspensions of schedulable entities.
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