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TYPE CHECKING iN GENERALIZED VAL
by
TIMOTHY MARK PEACOCK

Submitted to the Department of Electrical Engineering and
Computer Science on May 27, 1983 in partial fulfiliment
of the requirements for the degree of Bachelor of Science
in Computer Science and Engineering

ABSTRACT

VAL, in its current implementation, is a strongly typed language. That is, all of the variables
used in a VAL program must have their types explicitly declared by the programmer. This
provision ,while helping to simplify compile time type checklng, can become qu1te bothersome

to the programmer., Therefore, all type-declarations will be- optrorral in the ‘proposed revision
| of VAL. This capability will allow the programmer to write generic functrons ( functions that

perforrn analogous operations on dlfferent data types).

The immediate problem with compiling revised VAL is how to type check VPlL modules with no
type declarations. Our approach is to represent each VAL module as a data type graph. Type
values filter through such a graph, passing through various operator nodes. Examination of
each operator node places constraints on the type vaiues. If every operator is examined and
none of the constraints are in conflict, the module is type checked. My ihesrs rs that an
algorithm can be devised to do all type checking in a module at compile tlme and that type
determ:natlon a related problem can be accomplished at link time.

Thesis Supervisor : Jack B. Dennis
Title: Professor of Computer Science and Engineering
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1 Introduction

This thesis is based on work done by the M. I. T. Computation Structures Group. The group is
applying the concepts of functional programming and data flow computer architecture to the
design of general purpose computer systems. The goals of the group are

to present a. system model for a kind of ideal multiprogrammed computer
system, one that would serve many users in a way permitting sharing of the
products of their individual programming efforts consonant with the principles of
program modularity -- the ability to build program umts which can be combined to
form higher units, etc.

[Dennis 81]. This goal was first articulated inside the group back in 1966 in [Dennis 66].
Despite the amount of time since, the complete goals of that original paper have not been
achieved in a practical computer system. The group is now workrng oha Base Language that

can be used to specify a general class of computer systems. .. ... i nm

VAL, a’Value-Oriented Algorithmic Language, is intended to be the base language for a
computer system. Here, a computer system is the combmatlon of hardware. firmware and .
software that realizes the base language, The base programmmg Ianguage must be.
sufficiently complete so as to prowde the user access to all essential features of a computer
system. A programmer should not have to depart from the language in order to express any
requirement of an apphcauon VAL, as desciibed in [Ack 79], because of its coherent design,

can support large portrons of all computer applications, as argued in [Dennis 81]

1.1 Generalizing VAL

VAL.-when originally specified, was inrtended to be a base language for a static data flow -
architecture. As such, it was decided to make VAL a strongly typed language, that is a
language in which all data types had to be explicitly declared In addition, in order to limit the
scope of the problem for lmplementatlon two data types were omitted, the stream and the
function. Now an updated version of VAL is being implemented. The new version will make
all type declarations optional. This allows the programmer to write generic functions, as well
as eliminating the need for repelitive declarations. The stream type is included to prowdo for .
mter process communication. The function type is added to allow functions to be passed as

parameters to other functions,.



1.2 Type Checking Complexity

The new version of VAL requires a much more complex type checking algorithm than the old
version, This is primarily due to the removal of type declaration requirements. Formerly, the
VAL compiler was able to do type checking by using a technique for determining equivalent
states of finite state automata by separating them into equivalence classes. The technique
has been used to find the equivalence of modes in Algol 68 [Zosel 71, Kral 73], Unfortunately,
this algorithm depends on the presence of all type information to separate types into
equivalence classes. In the new version of VAL, it is often necessary to determine type
equivalence before all type information is avaifable. This introduces the notion of ,tybe
consistency. Two types are consistent if their basic types are not contradictory and none of
their sub-types are inconsistent. Two contradictory basic types are 'real’ and 'char'. Two
non-cantradictory basic types are ’any’ and ’stream’. Thus, the new. version-of VAL must be
type checked not by achieving for type equivalence, but rather by acﬁieving type consistency.

Type consistency IS hard to determme if the two types are recursive. Recursive types, data:
types that point to themselves, are legal in VAL provided they include at least one union type.

There is no simple algorithm for determmmg the consistency of recursive types What
algorlthms there are, are based on examining the structure of the tree which represents the
type in some exhaustive manner.

Type mformatlon can be gathered by representlng the VAL modules as data type graphs. The
translatlon of a module to its graph form is straightforward. By examining each operator node
in the type graph constramts are placed on the types. Often, types are constrained to be a
single type, such as mteger. if the entire graph is examined, and none of the constraints are

in contflict, then the module is type consistent, and thus, type checked.

1.3 éynopsis

After presenting the differences between generahzed VAL and the o!d version, this thesis
examines the problems inherent in type checkang the new VAL. An algorlthm to type check
generahzed VAL is then presented. The algonthm allows intra-module type checking to be
accomplished at compile time. Inter-module type checking, and module type determination
are completed at module link time. After presenting the algorithm in general, a major portion

of the algorithm is examined in detail. The purpose of the detailed examination is to show that



the algorithm can be implemented. Next, a few examples of the algorithm are presented to aid
comprehension. Following the examples, the module link time algorithm is presented. Before

concluding, some notes on producing data type graphs are offered.

2 An Introduction to Generalized VAL

VAL was originally designed as a base language for a static data flow architecture. It was also
designed to support multi-processing and mutti- -programming. The enhanced version of VAL

Isintended to extend this support while at the same time making VAL functions easier to wrlte

The new version of VAL has three new data types. These are the stream type, the funct:on
type and the empty type. The stream type is used for inter- process ‘communication. The
function type allows functions to be passed as arguments to other functions. The empty type

Is a single type used to represent either an empty array or an'empty stream.

The new VAL has no FOR or ITER constructs. These constructs are unnecessary as
recwrsion serves the same function. The new version of VAL allows recurswe data types but
only if the type contains a union type. This restriction provides a defense agalnst infinitely

recursive types. The new VAL also allows record types to be initiafized in parts.

Fype _declarations will be optional. This eliminates the requirement that all data types be
explicitly declared by the programmer. Optional type declarations wiil provide the ability to

write generic functions.

2.1 New Data Types

2.1.1 Streams

The new version of VAL will have a stream data type in order to express computations that are
often expressed as coroutines or as sets of cooperating processes. Coroutines or
cabperating processes have been used for two main reasons. One, they alleviate the
tendency of large computations to produce large intermediate data structures. Two, they

allow subcomputations to be executed concurrently [Weng 80}



VAL will use streams instead of coroutines or synchronization primitives because experience
has shown that writing applications with coroutines or the primitiﬁes is quite difficult. The
correctness of such programs is hard to establish. This leads to programming errors resulting
in deadlocks or unwanted nondeterminacy. The VAL version of streams should save the
inherent cc;ncurrency' while ‘aitowing the computation to be determinate and free of
deadlocks. Also, streams support program modularity in the following sense: the overall
behavior of modules can be expressed as a function of streams:and characterized using
denotational semantics [Weng 80). '

The new stream data type will have the following operations; - ' :

operation notation ‘ functionality
create stream(V1l,..,,Vn), T1,...,Tn >
"o . Lo stream[T]

is stream empty nullfstream[T]] stream{T] -> bool
obtain first element first(V) . stream[T] -> 7T
obtain rest of stream -rest(V) o stream[T] <>

' : - stream[T]
prefix elmt to stream affix(V1,V2) T, stream[T] ->

" stream[T]

The stream data type introduces almost no addmonal complexity to the type checker. Indeed,

streams can be type-checked in the same manner as arrays.

2.1.2 Functions

The sécond new data-type is the function. Functions are currently the hlghest level of
program structure in YAL. With their inclusion as data types, it wnll be possﬂale to pass -

functions as parameters to other functions.

One good ‘use for function parameters is the ability to write generalized functions. For
example, one might write a generalized summation function, Consider the function -

Suquuares shown below.

function SumSquares (a,b:integer returns integer)

- for x : integer := a; y : integer := 0;

- do if x <= b then iter y := x*x+y; x := x+1: enditer
else y
endif

endfor



endfun

This function will sum the squares of a range of integers from a to b. However, if then one
wanted to sum the cubes of a range of integers or perform some other summation, it would be
necessary to write a whole new summation function. A better solution would be to write the

general summation function listed below.

function summation (a,b : integer ;FofX, step :
functmn returns integer)
for x : integer := a; y : integer := 0;
do if x <= b then iter y := FofX (x) + y;
X step (x); enditer

i

e]se ¥
end if
endfor
endfun

ST . el Tidan- iy e e

Here, FofX is the function of x to be summed and step is the increment used between a and
b. Assumrng that the functions square cube and plus1 exist, the following calls on summation

would suffice ta sum the squares and the cubes of a range of integers from ato b.

summation {( a, b, square, plusi )
summation ( a, b, cube, plusi )

This is just one example where function data types allow more flexible functions to be written.

Another might be in writir{g parsers for which input may come from different sources.

The type chetking of functions is fairly complex. The type cf.tecker must make sure that a
funcgi'on is not passed as a parameter to itself. This would be an unending or infinite recursive
type. Determining equivalence of function type is also complex. The complexity is inherent in -
the need to check two sets of sub-types; the argument sub-types, and the result sub-types.

2.2 Other Changes

2.2.1 No FOR or ITER Constructs

The FOR construct, and its related ITER construct, are not in the new version of VAL Thas is
because they provide no ability to VAL not provided by calls on recursive functions. In order

to better see this, consider the conversion of the general FOR construct below to a recursive
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implementation. (Only 1 example of a FOR body is shown but all can be easily converted.)

FUNCTION foo()

FOR expl;
DO IF exp2 THEN ITER exp3 ENDITER
. ELSE exp4
ENDIF
ENDFOR

ENDFUN

Where expl - exp4 are arbitrary VAL expressions. This converts
into the fol]ow1ng recursive program,

FUNCTION foo (ArgList)

LET args := ArgList ; args are list of vars in exps
IN IF exp2 THEN foo {exp3) ;
ELSE exp4
ENDIF - o ST
* ENDLET : '
ENDFUN
foo (expl)

The absence of the FOR and ITER constructs eases the type- checkers task. The iter
construct was the sole source of feedback loops in a data flow graph The ehmmatlon of such

feedback simplifies the type checking algorithm,

2.2.2 Recursive Types
VAL’s new type system will allow partially recursive, and mutually recursive types. However,
infinitely recursive types are i!legal. Here is an example of a infinitely recursive type:

type T = array [T];

A quick analysis of this data type reveals it to be an infinitéfy dimensioned array. Thus, it can
have no physical significance, indeed it can not even be initialized on a computer. Here is an

example of a partially recursive type: - _ -

type stack = oneof[empty:null:
top:record[value:integer;rest:stack]]:

A stack type is clearly physically significant. Furthermore, this type can be implemented

because the union allows the infinite recursion to be broken. Here is an example of a mutually



recursive type:

type stack = 'oneof[empty:nuﬂ;top:e]ement]:
type element = record [va]ue:integer‘;rest:stack];

This is just an alternate representation of a stack. The union type again helps to prevent
_infinite recursion. The difference is that the two types may be defined in two ditferent

modules. Mutual recursion of data types between medules is permitted.

The key difference between legal and illegal recursive data types, is the presence of some
stn..;cturre that guards against infinite recursion. In VAL, the only such structure is the unioh
type. This type does not neceésarily provide complete protection (one can still program the
infinite recursion). However, if it _is not present, the recursive data type is in‘herently_ ‘irr_yfrinite,

and thus illegat.

Recursive types introduce great complexity -into the type'checker. Recognizing them is _
straightforward, Hdwever, since recursive union types are legal in VAL, it becomes necessary
to determine if two recursive types are consistent or inconsisktent. The basis for solving this
proi)lem is the complete examination of the trees which repreéenjs the types.__ ~ Another
problem is that mutually recursive types that recurse between modules can o'n'ly be

recognized at module link time.

2.2.3 Partiai Record Types

Currently, when one wants to create a record type, one must specify all the elements of the
record type. With complicated record types this can be an unnecessary hassle as the

function may only use part of the record type. For instance :

typeemploy = record [name:array[char];idfint;pay:rea];sex:char];

The employ type may be used to keep track of an employee’s work status. However, a payroll
program would not care what sex the employee is, just his or her salar'y. Thus it would like to

be able to refer to the type as shown below.

record [name:arra_y[char]:id:int:par:rea]]

Other, more extreme examples can be found. This partial specification of a record type is



known as a partial record type. The type has three main advantages; one, it is easier for the
programmer to use; two, it can be used to improve security; and three it helps to promote data
format independence. (For the last two advantages, it is similar to a sub-schema of a

database.)

2.3 Optional Declaration of Types’

Currently, every VAL variable has its type éxplicitly declared, be it a parameter of a function, a
loop valué or whatever, The new version of VAL will mak‘ef such type specification optional for
all variables. That means that, if the programmer so chooses, no values need be given explicit

type declarations at all.

2.3.1 Ease of Use

Consider the gain shown in the following example which begins by setting x-equal to y.
function equate ( y : record [a : integer; b : real: ¢ : array[int]
returns T) .
let x : record [a : integer; b : real; ¢ - array[int]]
X 1= y; : ,

With no type déclarations, the same function fragment would be ;
function equate ( y )

let x := y;

In sorrie ways, this is clearly superior. Of course, the programmer will have to specify some
typeé for his or her own sake. Otherwise, the ability to use abstract data types will be lost, to

say nothing of program clarity.

2.3.2 Genéric Functions

Another useful result from making type specification optional is the ability to write generic

functions. A generic function is one that performs the same or analogous operation on its

parameters regardiess of their data type. For example, a generic add would add.,two integers,

add two reals, or perhaps vector add two arrays.

A more powerful example of generic functions might be in the implementation of a stack. The



following example would not be legal in the current implementation of VAL.

function push (val,stack) : push value onte stack
make record [top : record [vaiue:val;rest:stack]] ; rtn stack
endfun '
function pop (stack) : i return a value from a stack
tagcase stack : "3 and new stack
tag empty : null )
otherwise : stack.value,stack.rest
endtag :
endfun:

Here the stack type is the same as that shown in the recursive types section wuth the

exception that 'value' can be any legal VAL type,

2.3.3 Type Checking Implications

The obvious problem with eliminating type specifications is How to determine a value's tyipe in
order to type check it. For the basic VAL types, integer, reai null & bool, this is easily done by
inspection of the expressions to which they are set. However, if the value is a stream, array,
record or union type, problems can arise. Consider the case where a union type is recurswe

Unless the type is specified, deducing the actual structure may prove tncky Even worse, if
the recursion goes across module boundaries the type might not even be known undil lmkage

time.

3 Type Checking Problems

Type checking the new version of VAL is a far from trivial problem. By type checking, | mean
checking to see if all the data values used in a VAL module have the correct data type for their
use. For example, an integer i/alue can not be added to a boolean value. The main problem .
with type checking in new VAL is that all type declarations are optional. In the worst case, this
means that none of the values used in a module wili have any type information available at the _
time when type checking should cemmence. The type checking problem then becomes one

of type determination.

The key to type determination in VAL is examining the constraints that VAL operators place

10



on their arguments. For example, the AND operator constrains its two arguments to be
boclean types. It also constrains its result to be boolean. While it would be possible to
examine these constraints directly from the textual representation of a VAL module, | feel that
a data type graph representation is more effective. Once into the graph representation, all
data types can be determined in a straightforward manner by an exhaustive examination of all

operator nodes, except recursive data types.

The determination of recurslve data types is tricky. While an existing recursive type can be
easily recognized, type checking depends on the ability to recognize the equivalence of data
types. Determining the equivalence of recursive types when all type information is available,
is possible. Indeed, the old version of VAL has such a capability in its compiler.
Unfortunately, what is needed here is to determine equwalence of recurs:ve types from

incomplete information.

This ;;roblem leads to the removing of the requirement for type equivalence. instead, what is
required is type consiStenoy Consistency of recursive types can be determined mra brute
force manner by repetitive examination of the recursive types tree representation. The ability
to determine type consistency from incomplete information allows new VAL to be type
checked in one pass. A VAL module is type checked if, at the end of the exammahon of data

type graph operator nodes, no inconsistent types were found.

However thts does not mean that all the values in the module have had their type determined,
A value is sald to be type determined if and only if its basic type is known and the basic types
of all its sub-types are known. (A basic type is one of {null, integer, real, char, bool, empty,
array, stream, record, oneof, function}. Note that only array, stream, record, oneof and
function types have sub-types.) N

A VAL module can not be run until it is type determmed It is possible that the module can not
be type determmed until module link time. For example, a call on functlon add, add (1.2, 1 3),
- would provide the information that both of add’s arguments are of type real. Yet such a call
could legitimately be in another module. The problem is to provide the ablllty to type

determme VAL modules at link time, without the need to re-examine their data type graphs,

One solutlon to this problem is to provide a symbol table for each module. The symbaol table

would provide pointers to basic types which would point to sub- types and so on. Comparison

1



of the two symbol tables (remember that functions, as data types, are in the symbal table) will

provide the necessary information in a straightforward manner.

With this approach in mind, the development of a correct algorithm may proceed.

4 Development of Algorithm

This section concerns itself with the purpose and development of the algorithm. It also
presents alternate approaches to accomplishing the algorithm’s goals. The algorithm's basic
goal is to type check the new version of VAL. The norhal definition of 'type checking’ isthat a
program is type checked if and only i, 'iff, all operat}'ons in the program can be executed for
the arguments specified by the program. This definition is hot used by this algorithm, asitis a
run-time definition. The algorithm wishes to show that a modules can be type checked at
compile time, ConseqL_le'ntly a compile time definition will be presented. First, however, a few

basic definitions are needed.

~

4.1 Data Type Graphs

The objects on which the algorithm operates are data type graphs. These objects are derived

from data flow graphs as presented by [Dennis 75];

A data type éraph is a directed bipartite, écyclic graph. The two types of nodes in the graph
are operator nbdes, and type nodes. Directed means that the links between nodes can only
be traversed in one direction. Bipartite means that the two types of nodes must alternate in
the graph. Acyclic means that if one starts at an arbitrary node, by following th'{-:i directed

links, one can never return to the original node.

A data type graph éan be thought of as two sets, the set of operator nodes and the set of type
nodes. Each link is a pair (n1, n2) where one of n1, n2 is a type node, and the other is an

operator node.

12



4.1.1 Operator Nodes

The set of operator nodes is defined as follows :

1) An operator node is oneof {+,- " A-sel, =, is undef, ... } (fora complete listing of operator
nodes, see the Appendix). Note that ihe set of operator nodes is directly related to the set of
legal VAL operations and constructs. All VAL operators translate directly into operator nodes.
VAL constructs can be transiated into g_raph structures built up from operator nodes. Again
see the Appéndix for further details.

2) Associated with each operator node is a set 6f type constraints. These constraints apply to
the type nodes which are the operators arguments and results, A type node is the argument
of an operator node, iff one can traverse a link from the type node to the operator. A type
node is the result of an operator node, iff-ene can'-traverse a4ink:'fro;n the opefatbi"nbde'm'“the
type node. Remember that this is a directed graph. Note, if one visualizes the graph as
beginn'ing at the top and being' directed towards the bottom, then the operator node's
arguments are 'above’ it and the results are 'below’ it." Constraints are defined after type

nodes.

4.1.2 Type Nodes

The set of type node is défined as follows:

1A type node has a type number. the that in the set of type nodes in any specific data iype
graph, no element may have the same type number as another,
2) Each type node has an associated type specification. A type spécification contains three

parts. They are as follows:

2a) A basic type set. Thig. a set with a maximum of four elements. Each elerﬁent is a member )
of the set {any, nuil, integer, bool, real, char, empty, array, stream, record, oneof, function}.
fn short, all the data types allowed in VAL with the inclusion of the type ’any’, Wh_ich means the

type could be any of the others. — '

-

2b) A sub-field list. This is a list of character strings which are ordered alphabetically. This

list is empty except when the basic type set has the element record or oneof in it. In that case,

13



this list is the field names of the record or oneof's sub-types.

2c) A pair of sub-type lists. A sub-type list is a list of pointers to type nodes. The second list is
-always empty, unless the basic type set contains the element function. The first list is empty,
unless the basic type set contains the element array, stream, record, oneof, or functlon Note
that cyclic type specifications are posssble and legal. A cyclic type specification is known as a

'recursive’ type specification. Also note that the order of the sub- type lists is important. In the
case of the basic type set = {record} or {oneof} corresponding entries in the first sub- -type
list and the sub- fre!d list are matched. That is to say, the first field in the sub-field list is thg.-

field name of the first type node in the sub-type list.

3) Each type node has associated with it an equivalence set; An equivalence set is a set of
pointers to type nodes. The meaning of an equivalence set.is. that the type node has.been

‘constrained to be equivalent to all the type nodes in its associated equivalence set.
There are two special classes of type nodes, formal parameters and free variabIes.

A formal parameter is a type node which is an argument node of the operator node with the
tabel 'PROCED'. This operator node is the node used to represent a function header Thus a

formal parameter is a type node representing an argument to a VAL function.

A'free variable is any type node in the graph that is not the result node of any operator node
in the graph and is not a formal parameter. VAL's syntax limifs free variables to bemg type
nodes with the basic type set equal to {function}. Thatis, VAL free variables are just calls on

functions defined externally to the VAL module.

4.1.3 Constraints

As was mentioned previously, an operator nodé has a set of constraints that apply to its
argument and result type nodes. The set of possible constraints are deflned as follows: i

1) A constraint may be that one type node must be equivalent to another. This means that the .
assomated type specifications of the two type nodes must be type consistent (see below) and

that the two type specifications should be merged (also see below),
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2) A constraint may be that the type specification of a type node must;

2a) Have a basic type set of one element and that element is equal to oneof (null, real, bool,

char, integer, empty).

2b} Have a basic type set of multiple elements, all of which are members of (real, integer, bool,

char).

2c) Be equal to some type specification with a basic type set with the element = oneof (array,

stream, record, oneof, function).

4.2 anls

As was stated previously, the gdal of the algorithm is to :shov;v that:amprogﬂrérr‘l can ﬁbe. type
checked by compile time. What was also stéted is that the algorithm operates on data type
graphs. An assumption of this thesis is_ that any VAL program can be mapped into a data type .
graph in a manner that preserves the functionality of the program. This assumptioh is valid as
it has been demonstrated to be true for data flow graphs [Weng 80}, and the only difference in
graph construction would be the insertion of type nodes between all nodes in a data flow
graph, a trivial process. (For an introduction into the production of data type graphs from VAL
modules, see Section 8))

The goal of the aigorithm is now to insure that a data type graph is type checked by compile
time, orto i msure that a data type graph is type correct. The algorithm operates on a data type
graph by examining each operator node in the set of operator nodes in the graph. For each
operator nodes, the associated constraints are applied to the argument and result type nodes.
The result of the algorithm is a new data type graph.

Formally, if the algorithm is a function, check, with Gand G~ béing data type graphs, then:
6" := check (G) 1 : A

If the algorithm attempts to apply a constraint to a type node, and that constraant is not
consustent with that type node’s previous constraints, then an error is signalled. The assertion
of this thesis is that if G is produced, and no error is signalled, then the data type graph, G is

type correct.
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4.2.1 Type Correct

An arbitrary data type graph G is type correct if and only if every operator node in G’ is type
safisfied. An operator node is type satistied if and only if the constraints associated with that
node are consistent with the argument and result type nodes of that operator node. For

example:

If the operator node was an add node. The constraints would be; 1, all argument and result
type nodes are equivalent; and 2, each argument and result type node should have the basic
type set {real, integer}. If the two argument and the one result type node all had the basic
type set {real}, they would be consistent with the constraints, and thus the node would be

type satisfied.

4.2.2 Consistency

Several times in this section the notion of consistency has been mentioned. Usually, it was ,
mentioned in termsrof two type nodes being type consistent with each other. The other case
was when a constraint was mentioned as being consistent with a type node. The latter is just
a s;;écial case of the other. If you envision the constraint as just a type node, Tc, e:ﬁbodying
the information in the constraint (eq. Tc -? basic type set = {real} ), then a constraint is

consistent with the type'pode if Tc is consistent with the type node.

fwo type no;des are type consistent if and only if their type épecifications are consiste;'lt.
Two type speci.fications are consi.stent it and only if:

1} Their basic type sets are consistent.

2) Their sub-type ligts are consistent.

Two basic type sets are consistent if: ‘ h . -
1)/One of the basic type sets contains the eieme.nt"'any'. OR

2) %He inters.ection of the two sets is not empty. OR

3) Qne of the sets contains the element 'empty’, and the other contains either ‘array’ or
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'stream’,
Two sub-type lists are consistent if and only if:

1) The sub-field list is empty, AND the correspondmg type nodes in each of the sub- type lists

are consistent. OR

2) For each case where an element in one sub-field list is equal to an element in the other, the
corresponding elements in the sub- type lists are consistent. If no sub-fields match, the sub-

type lists are cons:stent

4.3 Relative Constraints
The second assertion of this thesis is that the data type graph produced by the aigorithm, G,
is more or as constrained as the original graph, G. A data type graph, G, is more constrained

than a graph, G, if:

1) None of the type nodes in G are less constramed than the type node with the same type

numberin G.

2) At least one of the type nodes in G is more constramed than the type node with the same

type number in G.
A type node, "rj, is more constrained than a type node, T2 if:

1) Tﬁe equivalence list associated with T’ has more entries than the list associated with T2.
OR ‘

2) The type specification associated with T, is more constrained than the specification

associated with T

Before examining the concept of 'more constrained’, as it applies to t'.ype specifications, note
two facts. One, because T, and T, have the same type number, and the algorifhm ijI. never’
defete an element from an equivalence list, the equivalence list for T,in G’ wil always have at
least as many elements as the list for T in G. Two, because the two type nodes have the same

type number an no constraint may be applied to T2 that is inconsistent with its existing
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constraints, then T1 must be consistent with T2.

In the diagram that foliows, the farther to the right that a type specification gets, the more
constrained it is. Note that if a type specification reaches a point where it is unable to go
further to the right, itis constrained as far as possible. Indeed, the type of that node is said to
be determined. The diagram itself represents a sort of graph with directed links from left to
right. Note that the graph is cyclic.
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Where all the Tinks at the right of the diagram point to the labe]l
'START:" on the extreme left of the diagram. The links that come out
of the nodes labeled array, stream, oneof, record and function, :
dre links to the type specifications of the associated sub-types in
the sub-type 1ists.

A way bf visualizing the algorithm is to picture all type-nodes sta ting off with-the type

specification 'any’. That is, they all start off at the extreme left of the diagram, As the
algo?itkhm works, more and more constraints are placed on each type spec. Thus, each type
Spec moves towards the right of the graph. If a type spec reaches a node where there ié no
link to the right, that type spec is‘said to be determined. 1t is impossible for the algorithm to
make the type spec go back towards the left of the graph, i. e. to remove a constraint. This is
because the algorithm always merges constraints, and the definition -of mérge. ’ brécludes

such removal.

4.3.1' Merge
A merge is a function that takes in two type specifications and sets each of them equal to the

union of the two. if the two Specs are not consistent, merge will signal an error. Note that

union is used here to mean the union of the information provided, not a simple union of the

associated sets and lists.

The merge of Ts'1 and T, where T, and T52 are type speci}ications is defined as:
1) T, and T, areinconsistent, signal an error,

2)/The basic type set is the intersection of the two basic type sets.

3) if the two sub-field lists do not have the same arity. The sﬁb-ﬁeld list is the union of the
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sub-field list. Merge is called recursively on the elements of the two sub-type lists that have
equal field names. Those elements with no coffesponding type in the other spec are just
inserted into the correct position in the new sub-type list. Otherwise, the merged type node

(or rather, the type node that points to the merged type spec) is inserted into the position.

4) If the sub-field lists have the same arity, the sub-field list is just one of the sub-field lists.
The sub-type list is just one of the sub-type lists, after merge haa been called for all the

sub-types in corresponding positions in‘the two sub-type lists.

Note that the definition of merge contains a very important property. Namely, a merge never
removes a constraint from a type specification. Thus, an operator node’s type constraints,
once applied, are always preserved,

R g T sl - e e N

It is this property that allows the second assertlon to be made. The property ensures that ali
type specifications always end up as or more constrained than they were initially. Thus, the

graph G’ is as or more constrained than G.-

4.3.2 Type Determination

Type determined is a term that applies to VAL modules meaning that the types of all the data
values are known, at least enough to execute the program. A data type graph is sa:d to be

type determined when:
All the formal parameters and free variables in the data type graph are type determined.

Thus, a data type graph is type determined if the type naodes which represent its formal
parameters and free variables are type determined. A type node is type determined if and only
if: '

1) Its basic type set has one element and that element is not 'any’.

2) Ail of its sub-types are type determined.

This thesis asserts that, if it is possible to produce a graph G~ which is type determined,
starting from a graph G, then this algorithm will do so. Another way of phrasing that assertion

is, that G is the most constrained version of G possible from the information in G.
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More formally:

1)} in G, there is no operator node for which the algorithm defines a further constraint of a

type specification.
2) Any order of examination of operator nodes would lead to the same graph G,
The reasoning is as follows:

1) The only constralnrng information in a data type graph is the constralnts derived from the

operator nodes.

2) All constraints derived from operator nodes are applied to the type nodes.

A g T R [ e TN e

3) No constraint is applied in such a way that it destroyé an existing constraint.

4) The presence of equivalence lists allows constralnts to be propagated around a data type

. graph.
5) Therefore, all constraints are applied to all type nodes.

6) Therefore, G is the most constrained version of G possible.

4.3.3 Link Time Information

A VAL moduie ¢an not be executed if it is not type determined. Yet, the algonthm will often
finish when the data type graph is not type determined. Thrs is because references to external -
functions often lead to non-determined type nodes. This forces the algorithm to allow for type
checking at module iink time. The algorithm saves the following information in order to be

able to perform type checkmg at link time:

1} A symbol tabie with the identifiers of the formal parameters and free variables. Associated
wrth each identifier is a pointer to the type node which represents that parameter or vanable i

If the entry in the table is type determined, a flag is set.

2) The type specification and equivalence list associated with each type node referenced in

the symbol tabie, and associated with any type nodes referenced by the specifications or
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equivalence lists.

This information is used by the link time algorithm as specified in section 7.

4.4 General Algorithm
Here is a list of steps executed by the type checking algorithm. Remember, the input to the

algorithm is a data type grapﬁ 'G'.

1) For each operator node in the graph, apply the associated type constraints to the node’s

argument and result types. Signal any errors..

2) When done with step 1. If any error’s signalled, the module is not type correct Resugnal

errors and end.
3) Otherwise, examine _thé symbol table to see-if the module is type determined.
4) If s0, delete all nodes in graph hot referenced by symbol table, directly or indirectly. End.

5) Else, just delete the operator nodes and end.

The assertion of this theS|s is that if G is produced and no error is sugnalled (the algorithm

above reaches step 4), then the module is type correct.
The reasoning-is as follows:
1) Al operator node associated constraints were applied. This is implicit in the algorithm.

2) No constraints were applied that were not consustent with another constraint. ThIS follows

from no error belng signalled.

3) Therefore, all operator constraints are consistent with the operator s argument and result
types. This follows from all constraints being applied. '

4} -Therefore, all operator nodes are type satisfied. This follows from the definition of type

satisfied.
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5) Therefore, the data type graph is type correct.

5 Constraint Algorithms

It is now necessary to show that the preceding algorithm can be implemented., The
translation of VAL modules into data type graphs is straightforward and is summarized in
Section 8. Algorithms for searching acyclic graphs are well known. | suggest that, for
efficiency reasons, the graph be searched in a bottom-up, breadth-first manner (see Section
5.1.6). What is neither straightforward nor well known is how to apply type constraints.

Accordingly, this section is devoted to a precise algorithm for applying type constraints.

5.1 -Action Routines

Type constraints are emfs)odied in action routine calls. When an operator node is examined,
its associated constraints are found by pefforming a large case instruction on the dperator
node's identifier. The constraints are embodied in references to action routines, The
execution of these routines applies the constraints. For a corhpleté Ii_sting of operator node's

and their associated constraints, see the Appendix.

There are four action routines. These are SeiType, which corresponds to constraini 2ain

Section 4.1.3; SetMult Type, 2b: merge, 2¢; and equiv, 1.

Here is the information that is availabile in the type node: the type number, the basic type list,

the sub-type list, the sub-field list, the equivalence list, the recursive flag, and an auxiliary flag,

The action routines detailed below rely heavily on two subroutines; TypeEqual and
IsRecursive, The exact algorithms for these routines are presented after the 4 action routines,

For now, I will détai"l their format and effect.

TypeEqual has the format TypeEqual {t1; t2) where t1 and t2 are pointers to type nodes in
the graph. TypeEqual returns yes it t1 and t2 point to equivalent nodes. Two types are
equivalent if their basic type is equivalent, and all their sub-types are equivalent. TypeEqual
returns no if t1 and t2 are inconsistent. Two types are inconsistent if their basic types

incompatible OR at least one pair of their sub-types are incompatible. Nole, the only
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remaining possibility is that the two types are consistent.  TypeEqual returns T1 if the
information in union(11,t2) is equal to the information in t1. TybeEqual returns T2 if the
information in union(t1,t2) is equal to the information in 2, Otherwise, TypeEqual returng
merge, meaning that the two types are consistent and each types contains information that

the other does not. Note that TypeEqual cannot return merge unless both types are complex,

The format for IsRecursive is lsRecu rswe {t) where ti Is a.pointer to a type node in the graph.
IsRecursive returns ’ng’ if, by following aII the sub- types to the end of their branches, the

routine never returns to t again. Otherwise, it returns the recursive path or paths

5.1.1 SetType

The format for SetType is SetType (]’ atomic: type) where Tis a polnter to a.type node in
the graph and atomic _type is one of the atomic types.

step 1. If the basic type list of type# ~= {any} OR the atomlc _type is not an element of the
basic type list THEN signal an error and return.

step 2. If the basic type = atomic _type then return.

step 3 Set thé basic type = Atomic _type.

step :; . I the 9quivalence list for typg #is rempty OR the auxiliéky flag is true, T;lEN ret;urn‘.
stepis‘-. Set the auxiliary tag = true.

step 6. For each tin thé equivalence list Do (a) call SetType (tn,atorﬁic _type).

step 7. Set;auxiliary tag = false and return.

The auxiliary flag is used by this routine to avoid following equwalence lists back and forth ~
between type nodes. Note also that if T's basic type is {real,integer} and atomic type =

mteger the basic type becomes {lnteger}

-

Before the examples start, here is the format that these and all examples in this thesis will be

in. There will be three sections for each example. The first will be labeled 'State’, this section

5



contains the relevant information about the state of the data type graph. The second will be
"Action’, this will be the action that is to occur. The last will be ‘NewState', this will be the

relevant information about the state of the data type graph after the action has occurred,

Here are a few examples:

Note that the format for representing type nodes is:

Type number

If the sub-type,
they are omitted.

:= {basic type Tist} ( sub-type Tists) (sub-field Tist)

={equivalence Tist)
sub-field and equivalence Tists are all empty,

State: T, := {any} -
Action: SetType (T,,integer)
NewState: T, := {integer}
State: T, := {bool}
Action: SetType (T »bool) . e e
NewState: T, := {boof}" T T e '
State: T, = {reaI.?nteger} (O 0O)Y O ={T2}__
_ T, := {real,integer} s
Action: SetType (T, real) o y
NewState: T, = {real} ((3()) O ={T,} T, := {real}
State: T, := {char}
Action: SetType (T,,empty)
NewState: ERROR signalied
State: T, i= {integer, char}
Action: SetType {T,,real}
NewState: ERROR signalled

5.1.2 SetMuliType

The format for SetMultType is SetMuliType (T,typelist) where Tis a pointer to a type node
in the graph and type list is a list of from 2 to 4 different types all of which are different and all

of which are onecf (real, char, bool, integer).
Step 1. IF the basic type list of T is a subset of type list THEN return,

Stép 2. IF the basic type list and typelist intersect, set the basic type list equal to the
intersection and goto Step 5, |

Step 3. IF the basic type ~ = {any} THEN signal an error and return,
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Step 4. Set the basic type list = typelist.

Step 5. If the equivalence list is empty OR the auxiliary flag is true THEN return,
S{ep 6. Set the auxiliary tag = true.
SwplFmemh%mmemmmbmeMkaCﬂSmMMﬂwememmy
Step 8. Set auxiliary tag = fz;lse and return.

Similar to SetType, this routine Uses the auxiliary flag to stop from infinitely traversing an

equivalence list cycle. Here are a few examples of the effect of the routine.

State: 1 := {any} :

Action: SetMultType (T1,{real, integer))

NewState: Tt := {rea].integer} '

State: 11 := {real}

Action: SetMultType (Tl.{rea],integer})

NewState: . T1 := {real} ‘ )

State: T1 = Lany} (()()) () =(T2) L -
12 := {any)} o

Action: SetMultType (Tl,{integer,char})

NewState:, T1 := {integer,char} L0)0)) () ={12)

- T2.:= {integer.char} .

State: T1 := {real,integer)

Action: . SetMultType (Tl.{integer.char})

NewState: - T1 := {dnteger}

State: : 11 := {empty)

Action: SetMultType (Tl.{rea],integer})

NewState: ERROR signalled

5.1.3 Merge : i -

Merge has the format merge (T, complex _type), where Tis a pointer to a type node in the

graph, and complex _type is either a pointer to a complex type node in the graph or a pointer

to a complex type node literal.

To make life easier, | am going to assume the call is merge (Ta, Tb) where TaisT and This the
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complex _type.
Step 1. Call TypeEqual (Ta,Th).

Step 2. If the result = 'yes’ THEN insert Ta in Tb'’s equivalence list and Th in Ta's equivalence

listand return. (N. B. Do not make duplicate entries in equivalence lists.)

Step 3. lithe result = 'no’ THEN signal an error and return.

]

Step 4. If the result = 'T1’ THEN set Tb's basic type
list = Ta's sub-type list, and set Th's sub-field list = to Ta's sub-field list. Goto Step 9. (N.

to Ta's basig type, set Th's sub-type

B. Step 9 detects recursive types.)

to Tb's basic type, set Ta's sub-type

Step 5. If the result = 'T2’ THEN set Ta's basic type
list = Th's sub-type list, gnd setTa's sub-field list = to Th's sub-field list. Goto Step 9.

Step 6. (result = 'merge’) (NB have 1o watch out for the special case of two multiple basic
types needing merging) If Ta's bésic type has more than one element, then set Ta and Tb's
basic type : = the intersection of their basic types and return. If Ta’s basic type = -array OR
Ta's basic type = stream, then type _equal (Ta.sub-type,Tb.sub-typé): (This is legél aé arrays

and streams can only have one sub-type in their sub-type list.)

Step 6b. if the result = 'yes' then return. If the result = 'no’, then signal an error anid return,
if the result = 'T1’, then set Tb.sub-type = Ta.sub-type and goto Step 9. if the result = 'T2',
then set Ta.sub-type = Tb.sub-type and goto Step 9. If the result = merge, then call merge
(Ta.sub-type, Th.sub-type) and goto Step 9.

append the corresponding sub-type to Ta's sub-type list; ¢) for all other fields (fields comrr;on
to both types), call type _equal {Ta.sub-type, Tb.sub-type} on the corresponding sub-types.
(N.B. Al sub-types must be merged.} '

Step 7a. If the result = 'ves' then loop. If the resuit = 'no' then signal an error and return,.

E1s_g, call merge (Ta.sub-type, Thb.sub-type).

28



Step 7b. When steps 7 and 7a are completed, goto Step 9.

Step 8. (T1's basic type = function. ) Ifafield is in Ta’s sub-field list and the matching field is
blank in Th's, then place the field from Ta into the blank field's position in Tb. if a field is in
Ta's sub-field list and' not in Tb's then append the field onto Tb's list and append the
corresponding sub-type onto the fIrSt of Tb’s sub-type lists. (Please note, fields and types for
function type nodes that are in the same position in the sub- neld and sub-types lists are
matching fields or matching types.) Ifa freld is in Tb's sub-field list and the. matching field is
blank in Ta's, then place the field from Tb into the blank field’s position in Ta. if a field i is il:l
Tb’s sub-field and not in Ta’s, then append the field onto Tb's list and append the
corresponding sub-type onto the first of Ta's sub -type lists, (N B. Remember that functions
have two sub-type lists.) '

WSS L e ST B e L T Tt i e

Step 8a. Otherwise, for each pair of correspondmg type in each pair of lists DO call
type equal (Ta.sub-type,Tbh.sub- type). If the result = 'yves' then loop. Ifthe result = 'no’ then
signal an error and return. Else, call merge (Ta.sub- type, Th. sub -type).

Step 8b. When Step 8b is done, goto Step 9.

Step 9. Determine if Ta has become a recursive type. Call IsRecursive (Ta}. If the result.

'no’ then goto Step 10. (T1 is recursive.) i Ta's basic type = array OR stream OR function
then signat an error and return. I Ta s basic type = oneof, then set the recursive flags = true
for ail the type nodes in the paths returned. Also, set Tb’s recurs:ve flag = true, then goto
Srep 10. (T1is recursive and a record type.) Examine all type nodes in each path, if any path
is all basic types = record OR any path is not all oneofs and records THEN signal an error and -
return, Otherwise, set recursive flags = true for all the type nodes i in the paths returned, and
for Tb. Geto Step 10. (N. B. Recursive types must contain union types to guard against

infinite recursion.)
Step 10. Call equiv (Ta,Tb).

Step 11. lf Ta's equivalence list is empty or the auxiliary tag = true or the list contams 1ust the
entry Th, then goto Step 12. Set Ta's auxiliary tag = true. Otherwise, for all the t in the list,
call merge (Ta,tn).
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Step 17a. Set Ta’'s tag = false. Goto Step 12,

Step 12. Do the analogous steps for Tb as in 11 and 11a.

Step 13. Return,

. Here are a few examples of merge:

State:
Action:
MNewState:

State;

Action:
NewState:

State:

Action:
NewStata:.

State:

Aétion: _
NewState: t1
t2

State:

Action:

t1 = {any} ; t2 := {array} ( (Te) O)) () =03
Tc := {any}
merge {t1,t2)

t1 := {array} ( (Tc) () ) () =(t2)

t2 := {array} ( (T¢) () ) () ={t1}

1 := {strean} ( (Tb) () ) () =()

t2 := {stream} ( (Tc) () ) () ={}

Tb := {integer)

Tc := {real}

merge (t1,t2)

ERROR signalied

t1 := {array} ( (Tb) () ) () =(}

t2 := {array} ( (Tc) () ) () =(}

Tb := {real)

T¢c := {real,integer)

merge (t1,t2)

t1 = {array} ( (Tb) () ) () =(t2)

t2.:= {array} ( (Tb) () ) () ={t1)

t1 := {record} ( (Ta Tb Te) () ) ( 'a', ‘b, 'c') ={
Ta := {integer)

Tb := {any}

Tc := {empty)

t2 := {record} ( (Td Te Tf ) () ) (b, e, 'd*') =
Td := {char} .
Te := {stream} ( (Tg) () ) () =(y

It := {nul1} :

Tg := {bool} ’

- merge (t1,t2) o
:= {record} ((Ta Td Te Tf)()) (‘a',’b'.'c’,'d") =(t2)
= {record} ((Ta Td Te T7)()) ("a','b''c','a") ={t1}

{function} ((Ta.Ta) (Tb) () =(3 .

t1 :=

Ta := {integer)

Tb := {any}

L2 := {function) ((7¢ Te) (Td)) () =()
Tc := {any)} .

Td := {real}

merge (t1,t2)
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NewState: t1 := {function} ((Ta Ta) (Td)) () =(t2)
t2 := {function} ((Ta. Ta) (Td)) () ={t 1}
State: t1 := {record} ((Ta Th) ()) (ra*, 'b") ={}
Ta := {integer}
Te := {any} |
t2 := {record} ((t1 Te¢) () (‘b', 'c") ={}
Te := {real)
Action: merge {t1,t2)
NewState: ERROR - 'Illegal Recursive Type' signalled
5.1.4 Equiv

The format for equiv is equiv (t1 t2) where t1 and t2 are both pomters to type nodes in the
graph.

Step 1. Call TypeEqual (t1,'t2).7 :

Step 2. If the result = 'yes' THEN if t1’s basic type = null OR real OR inieg‘ér OR char OR
bool then return. Else, puttlin t2's equivalence list. Put‘té‘ in t1's equivalence list and return. -

Step 3. Ifthe result = ’no’ then signal an error and return.

Step 4. Putt1 end t2 into each others equivalence lists.

Step 5. W the result was = 'T1’, set all of t2 equal to tt except t2's equivalence list. If t2'§
equivalence list is empty, or t2’s auxmary flag = true, then return Else, set t2's auxiliary flag

= true For allt in 12's equivalence list, equiv (t t2). Return.
Step 6. If the result = ’T2', do asin Step 5 except switch the t1’s and t2's.
Step 7. The result was = 'merge’. Call merge (t1,t2). Return,

Note that the only times when equiv will not insert the type pairs into the equivalence lists is *
when the two types are not consistent or when they are equivalent and atomic types that are
not any and not empty. (This is because type nodes that are any, or empty can be g:hanged :

without an error.) Here are a few examples of equiv;

State: tl := {integer} ; t2 := {any}
Action: equiv (t1,t2)
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NewState: ttl := {integer) {(()O)) O ={t2}
tZ == {integer} (()()) () ={t1}

State: tl := {real) (O () ={t3, t7}
t2 := {real}

Action: equiv (t1,t2)

NewState: no change

State: t1 := {record} ((Ta Th) () (a','b") ={t3}

Ta := {integer) .

Tb := {reat, integer} '

t3 := {record} ((Ta Tb) ()) (‘a','b') = ti})

12 := {record} ((7c Td Te) () ('a','b'.'c') ={}
Te := {any} ' -

Td := {real}

Te := {empty}

Action: equiv (t1,t2) ,

NewState: t1 := {record) ((Ta Td Te) () (fa','b','cf) ={t2, t3}
t2 := {record) ((Ia_TdLIe)_()L;(ja',ﬁb';'cl)f;{tl}w,A
t3 := {record} ((Ta Td Te) {)) (‘a','b",'¢c") ={t1}

State: t1 := {array} ({(Ta){(}) () =(} -
t2 := {stream} ((Ta)()) () =(}

. Ta := {integer)} b o

Action: equiv (t1,t2) -

NewState; ERROR signalled

As you may have noticed, the preceding four action routines call two subroutines; IsRecursive

and TypeEqual. IsRecursive is fesponsible for determining if its argument is a recursive type

SJ.SISRepurﬁve

The format for thig Subroutine. is IsRecu rsive(l). Where t points to a complex type node in
the graph. Note that this subroutine has an internal subroutine findp which is defined below

it. -

Sfep 1. If the basic type of t = array OR stream THEN pathlist = {t}. Can fihdp {pathlist,
t.sub-type).
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Step 2. If the basic type of t = record OR gneof THEN Cnt := 0, for all types in the sub- type
listDOcnt:= ent + 1, pathlist.cnt : = {t}, call findp (pathlist, cat, t.sub-type).

Step 2a. If all results = false, return 'no’. Else return all pathlists returned by findp.

Step 3. (T’s basic type = function.) Cnt:= 0. For all types in both sub- -type lists DO cnt -

1

cnt + 1, pathlist.cnt : {t} call findp (pathlist.cnt, t.sub- type).

Step 3a. Ifall results = false, return 'no'. Else return all pathlists returned by findp.

returns the first element in the pathiist.)

Step 1. Ift = car (pathlist) then return {pathlist)

Step 3. Append t's type number to pathiist,
Step 4. li t's basic type = array OR stream THEN call findp {pathlist,t.sub-type).

Step 5. Ift's basic type = record OR oneof THEN ¢nt ; = 0, for all types in t's sub. type llst DO
cnt:= ¢nt + 1, pathlist.cnt : = pathlist, cail findp (pathlist. cnt Lsub-type), loop.

Step 5a. [fall the results are false, return (false). Else, return ali the pathlists.

Step 6. (T has basic type = function). Cnt: = 0, for all types in t's sub- -type lists BO cnt :
ent +1, pathlist.cnt : = pathlist, call findp (pathlist.cnt, tsub -type), loop.

Step 6a. If all the results are false, return {false). Else, retdrn all the pathlists,

Here are a few examples of IsRecursive:

State: 2= {record} ((Ta)(}) ('a') ={)
) ‘ := {any}

Action: IsRecur51ve (t1)

NewState: 'no' is returned

State: t1 := (array) ((Ta)()) () =}
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Ta = {record} ((Tb)()) ('b') ={)
Tb := {array} ((Tc) () () ={}
Te := {any)}
Action: IsRecursive (t1)
NewState: 'no’ is returned
State: tl := {stream) ((t2) ()) (O ={}
t2 := {array} ((t1) ()) () ={}
Action: IsRecursive (t1)
NewState: (t1 t2) is returned : N. B. is illegal recursive type
State: t1 := {oneof} ((t2 Th) () (*a’, 'b") ={}
Tb := {record} ((Tc t3) ()) ('a’, ') ={}
Tc := {nul1)
t2 := {record} ((t1) ()) ('b') ={)
£3 := {record} ((t2) ()) ('c') ={)
Action: IsRecursive (t1) '
NewState: (( t1 t2 ) (t1 t3 t2)} is returned

(NB this s an example of a legal recursive typey -

5.1.6 TypeEqual

The format for this subroutine is TypeEqual (Ta, Tb) where Ta and Tb are pointers to type

nodes in the graph.

This subroutine has five possible results. A resuit of 'yves’ means that the two types are
équivalent. Two types dare equivalent if and only if they have the same basic type, and all of
their sub~tybes are equivalent. A result of 'no’ means thét the two types are not colnsistent.
‘Two types are consistent (a) one of the types has the basic type 'any’ OR (b) the two types are
both atomic types and their basic types are equal OR (c) one or both of the types have two
enlries in their basic typé lists AND the two basic type lists intersect OR (d) one of the types
has basic type 'empty’ and the other has basic type ‘array’ OR ’stream’ OR (e) the basic types
of both types are equal, AND sub-types and sub-fields'comm_on to both types are consistenlt.
A result of 'T1' means that the types are consistent and that type Ta éontains all the
information found in type Th. A result of 'T2' means that the types are consistent and that
type Th contains all the information found in type Ta. A result of 'merge’ means that the types

are consistent and that each type contains information not found in the other.

Step 1. If Ta has basic type any return ('T2"). If Tb has basic type any return ('T1’). (NB trivial

cases first).



Step 2. Y Ta has basic type null OR bool THEN if Ta’s basic type = Tb’s basic type return

('ves'). Otherwise, return ('ng’).

Step 3. if Ta has basic type real OR integer OR char THEN if Ta’s basic type = Tb’s basic
type réturn {'yes'). It Ta’s basic type is in Tb’s basic type list, return ('T1"), Otherwise, return
(no’).

Step 4. If Ta's basic type list has multiple elements THEN if Th's basic type list = Ta's basic
type list return ('yes'). If Tb's basic type list has muitiple elements and it intersects with Ta,
return (‘'merge’), else return ('no'). If Th's basic type is an element of Ta’s list, return (T2').

Otherwise, return ('no’).

Step 5. If Ta’s basic type = empty THEN if Tb's basic type = empty return_-(lygs_’). If Th's

basic type = array OR stream return (Tb) "'btﬁér'\i\}ise'-.' 'rétu;ﬁ (‘n(»)’}.‘
Step 6. If Ta’s basic type = array OR stream THEN if Tb's baéic type = embty, Areturn (’Ta’). It
Tb's basic type ~= Ta's basic type then return (’no’). therwise return (TypeEqual (Ta.sub-

type,Th.sub-type).

Step 7. If Ta’s basic type = record OR oneof THEN if Tb’s basic type ~ = Ta’'s basic type then
return ('no’). If Ta's recursive flag AND Thb's recursive flag are true, goto Sr_e-p 9 to handle

recursive type problem.

Step 7a. For all fields in both Ta and Tb's field list DO if TypeEqual (Ta.sub-type, Tb.sub-type)
= No, return ('no’). Ifall ~ = yes, then return (’merge'): It arity Ta's field list ~= arity Tb's
field list, then return ('merge’). Otherwise, return ('yes').-

Step 8. (T1's basic type = function). If Th’s basic type ~ = function return ('no’). If Ta'sin
sub-type lis‘i arity ~= Tb'sin sub-type list arity then return ('no’). I Ta's out sub-type list arity
~= Tb's out sub-type list arityrAND Ta’'s out arity ~ = 0 AND Tb’s out arity ~ = 0 THEN return -
('np’). Tresult = yes. -

Step 8a. For all fields in Ta's field list DO if Ta.field = Tb.field list then loop. If Ta.field is.blank

or To field is blank then tresult = merge and loop. Otherwise return {'no’).

Step 8b. For all types in both of Ta's sub-type lists DO call TypeEqual (Ta.sub-type, Th.sub.-
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type). ifresult = yes then loop. If result = no then return 'ng'. Otherwise, tresylt = merge.

Step 8c. If Ta's out sub-type list arity = Tb's out sub-type list arity, then return tresult.

Otherwise, return merge.

Step 9. This is the algorithm to test consistency of two recursive types,

of all recursive paths.

Substep 2. Call IsRecursive (Th). Save the returned pathlist,

master list.
substep 4. Turn on Ta and Tb's auxiliary flag. Delete the first pair from the master list,

substep 5. Pertorm TypeEqual algorithm precisely as above, excépt ignore recursive flags for
types in the pathlists and if TypeEqual shouid be called with one or maore of its arguments with

their auxiliary flags on then goto next substep.

substep 7. Otherwise, check to see if Ta,Th pair is in the master list. If not, turn off flag and
return ('yes’). Otherwise, turn on Ta, Tb flag. Delete Ta, Tb pair from master list. Call

TypeEqual (Ta, Th) as in substep 5.
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sub-types are consistent. To do this, it resets the auxiliary flags and begins checking anew.
The danger with this is that the algorithm may then reach the ofiginal start peint and not
realize that it has already checked this pair of type nodes for consistency. The master list is
used to keep track of what pairs in the recursive paths have not been checked. In the worst
case, all poésible pairs'in the paths will be checked. However, since the number of nodes in a
data flow graph is finite, the number of distinct nodes in a recursive path is finite and the
number of distinct recursive paths are finite. It follows that the ntimber of possible pairs of
nodes in recursive paths is finite. This means that the master list is finite and that the
algorithnﬁ will close. This algorithm may seem to be soméwhat ineHficient. However, | know of
no other aigorithm that is any better. - ) '

There is one saving grace of the recursive algorithm. If one seé_zrch_es the graph in a bottom-
up breadth first manner, the only places that rerﬁufs’ive.tybes*wm be created aré arthe last few
nodes ?xamined. This is because.recursive types can only be created by the algorithm when
the type's structure is searched via recursive calls on aﬁmction. A réci:fsive call on a
function is only détected when the operator node for the function header, the-Proced node, is:
examined and its constraints applied. Proced nodes are always at the t}Jp of the graph,

therefore recursive types are only formed at the top of fhe graph.

Here are a few examples of TypeEqual :

State: t1 := {integer}
t2 := {integer)
Action: ) TypeEqual (t1, t2)
NewState: 'vyes' is returned
State: tl := {nul1}
12 := {any}
Action: TypeEqual (t1, t2)
NewState; 'T1' is returned
State: t1 := {stream) ((Ta) ()) O ={}
- Ta .:= {any}
t2 := {stream} ((Tb) ()) () ={}
Tb := {real}
Action: TypeEqual (t1,t2)
NewState: 'T2' 1is returned
State: tl := {oneof} ((Ta Tb) ()) ('a', 'b') ={}
Ta := {char}
Tb := {any}
tz := {oneof} ((Tc Td) (}) ('a', 'b") ={}
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Tc := {real, integer}
Td := {array} ((Tb) ()) () =3
Action: - TypeEqual (t1, t2)
NewState: 'no' is signalled
State: t1 := {record} ((Ta Tb) ()) ('a', 'b') ={}
' : Ta := {bool} .
Th = {record} ((Tc) ()) ('q') =
Tc := {any} '
12 := {record} ({Tc T1d) ()) (ra', b)Y ={}
Td := {record) - ((Te) ()) ('q') =)
Te := {integer}
Action: ' TypeEqual (t1,t2)
NewState: ‘merge’ is returned -

Here are a few examples with recursive types :

{oneof} ((Ta t3) 0) (ra', by =y

State: t1 :=
Ta := {num} st L e Lo Do
t3 := {record} ((%1 Tb) () ('rest', 'val') ={}
Tb ;= {integer}

12 i% {oneof) {(Ta Tc) ()) ('ar, 'pr) =} .-

_ Te := {record} ((t2 o) ()) ("rest', ‘val') ={}
Action: - TypeEqual (t1, t2) - .
NewState; 'Yes' is returned
State: t1 := {oneof} ((Ta t1) ()) ('a', h') =)

Ta := {integer) :

t2 := {oneof) ((Ta t3) () ('a', 'b*) ={}
t3 := {oneof} ({10 t2) ()) ('a', 'b") ={}
T &= {rea1} ,

Action: TypeEqual (t1, t2)

NewState: 'no' is returned

State: t1 := {oneof} ((t3 t4 Tay (}) (ra', ‘b, 'c') =)

. Ta := {any)} A
t3 ;= {record} ((t1 Ta) ())'('next'l 'val') ={}
t4 := {record} ((t1 o) ()) ('next', ‘val') ={}
Tb := {real} . '
) t2 := {oneof) ((t4 t3 Ta) (}) ('a’, b, 'e') ={}
Action: TypeEqual (t1, t2)
NewState: 'merge'ris returned



6 Examples

This section presents three examples of the algorithm in action. The first example shows the
old version of a VAL program, the new version and its data flow graph representation. It then
Sht;WS how the operator nodes are examined and what their action routine calls would be.
For.each set of action routine calls, example 1 shows what new type information is gained.
The second example focuses on the last action routine call from the first example. The call is
followed in detail through all the steps of the precise algorithm. The third example is similar to

the first in format, but in this case, an error is detected.

6.1 Example 1

function CountLeaves ( x : tree returns integer) . - -
type tree = oneof [ leaf : null i internal : record
. [1: tree; r : tree]]:
tagcase y := x; -
tag leaf : 1 A
tag internal : Countleaves (y.1) + Countleaves (y.r)
endtag
endfun '

N. B. This function counts the # of leaves on a tree structure.

function Countleaves (x)
tagcase y := «x:

tag leaf : 1
tag internal : Countleaves (y.1) + Countleaves (y.r)
endtag

endfun



Here is the data flow graph for Countleaves,

o ti

LR e,
| PROCED (x)| a
R L

MU SRR S S S S S U

{ tagcase

| ( internal, tear )

| I

o t8§ o t9

] ]
o tig - o ti1
| ]

ML R SO
| .1 ) ¢

it 444

B & S S S

i) apply | apply | j
ettt bty bbb
| : -
0o ti5 0-t16

t----+ -3
I
g
| add | k

ettt

d

EE

.rlg)1]n

+tt+4

|
[
I
|
|
0
|
]
|
]
!
|
|
| ++++++++++++++++++++++++++
|
|
l
|
[
I
|
]
!
|
|
|
|
]

0
!
|
l
|
I
|
!
!
J
|
|
l
l
o
l

t14

e — e O

-+
ol



RRE LSS S R o S AP
1 | { internal, leaf ) B R E T +
I . tag
: L e SN AU T,

|
o ti8

Note that all os are type nodes, and that all have been given distinct type numbers. All
operator nodes are boxes, and have been given ldenttfylng letters. These letters are for the
purpose of these examples only. The symbol table would have three entries 'in it;
CountLeaves, which would point to t1; x, which would point to t2; and y, which would also

point to t2. AH of the type nodes would be initialized to basic type any Also note that the

operator node < is a link node which serves to diwde one node mto many

Now the algorithm begins its bottom up breadth first search of the data flow graph. The first
operator node it hits is node l, atag node. ‘

A tag node is one of two nodes used to represent a tagcase construct. Its purpose is to join
together the several cases of a tagcase and return the appropriate value based on the union
type parameter Its act:on routines calls are:”

merge (t7, t0) where t0 is a pointer to the literal
oneof [internal : any; leaf : any]

equiv (t17,t14)

equiv (t17,t18)

The'resulting type information is :
L7 := oneof [internal : any; leaf any]

t14 := any = {t17} ; where = { ...} is the equ1va1ence list
17 := any = {t14, ti18}
t18 := any = {t17}

The next operator node examined 1is k.'an add node,

Its action routine calls are:

SetMu]tType (t15,{real, integer})

equiv {ti1s, t18)

equ1v (t15, t17)

The new type information is: (only if info for that type has changed)

t14 := (real, integer) = {t17})
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t15 := (real, integer) = {t16, t17}

t16 := (real, integer) = {t15) .

t17 := (real, integer) = {t14, t1s, t18}
t18 := (real, integer) = {t17}

The next operator node €xpanded is i, an apply node., Anp apply node
is used to handle calils on functions, :

Its action routine calls are :

merge (t3, t0) where t0 is the literal

t0 := function { (t12) (t15) y o + )

(Meaning t0 is g function taking t12 as an argument, with an unknown
identifier, ‘and returning t1s5.) : '

The new type information is ;
t3 := function { (t12) (ti5) ) ( + )

The next operator nede examined is j, another apply node.
Its action routine éal}'is T o |

merge (t4, t0) where tg is the literal

t0 :="function ( (t13) (t1s) Y (')

The new type information is : - o
U4 i= function ( (t13) (t16) ) ( + | .

The next operator node examined is f, a record sefect node.
Its action routine call is
merge (ti0, to)

0 := record [T t12]

The new type information is .
tio := record [ 1 : t12 ) -

The next operator_node‘examihed is g, another record select node.
Its action routine call is

merge (111, t0)

t0 := record [ r:t13]

The new type information is
t11 := record [r: t13 ]

The next operator node examined is h, ap integer constant node.

Its action routine caill is
SetType {t14, integer)

The new type information is .

t14 := jnteger = {t17}
t15 := integer = {t16, t17}
t16 := integer = {t15}

42



t17 :
t18 :

integer
integer

{t14, t15, t18)
{t17}

The next operator node examined is e, a fink node.

Its action routine calls are :
equiv (t8, t10)
equiv (t8, t11)

The new type information is

t8 := record [ 1 : t12; r : ti13 1 = {t10, t11}
t10 := record [1 : t12; r : t13 1 = {8}
t11 := record [1 : t12; r : t13 ] = {t8)

The next operator node examined is d, a tagcase node. The tagcase
node is used to break up the original union type into its constituent
parts, as is done by the tagcase construct,

Its action routine call is
merge (t6, t0)
t0 .= oneof [ internal : 18, leaf : t9 ]

The new type information is :
t6 := oneof [internal : t8, leaf : t9 ]

The next node examined is €. another tink node,
Its action routine calls are :

equiv (tb6,t6)

equiv (t5,t7)

The new type information is - N.B. t6 and t7 are consistent

t5 := oneof [internal : t8, Tleaf - t9 1 = {t6, t7}
t6 := oneof -[internal : t8, leaf : ts ] = {t5}
t7 := oneof [internal : t8, leaf : t9 1 = {t5)

The next node examined is b, another 1ink node.

Its action routine calls are :
equiv (t1, t3)

equiv (t1, t4)

equiv (t1, t1.s)

The new type information is : (t3, and t4 are equivalent as t12 = t13
= any and t15 = t16 = integer.) -
function ( (t12) (ti5) )

]

tl

(' :
t1.5 := function ( (t12) {(t15) ) ( ? ) E {t1}
t3 := function ( (t12) {(ti5) ) ( r ) = {t1}
t4 :-= funFtion ( (t13) (t15) (') = {t1}

The last type node examined is 4, a proced node. A proced node is
used to represent a function header, - '
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Its action routine calls are :
equiv (t2, t5)

merge (t1.5,t0)

t0 := function ( (t2) ()) ( 'x')

The resulting type information is
t1 := function { (t12) (t1s5) Y('x' ) = {t1.5, t3, t4}
t1.5, t3 and t4 are similar.

t2 := oneof [internal : t8: lear . 9 ] = {t5)
t8 := record [Y:t12; r; t13 1] = {t10, t11}
t3 := any ’

t12, t13 := oneof [internal : t8; jeaf : 9] = [each other}
t15 := integer = { ti18, t17)

Note that not a1j of this information is new, it was all included for
the sake of clarity. Note also that t2, t8, t12, ang t13 point

to recursive types. To get an understanding of how the merge of t1.5
and t0 resulted in t12, t13 being changed, sae exampJé 2, "~ -

Becétlse the algorithm feached this point, the module is -considered to be type checked.
However, that does not mean that the algorithm is type determined. In fact, if one follows
through all the types in the symblol table to make sure that they are all type determined, one
quickly finds out that the oneof type is undetermined as the field 'leaf' is pointing. to an 'any'

type. Type determination for this module will have to wait to link time.

6.2 Example 2
The action routine call is merge (11,5, t0).

t1.5 := function ( (t12) (t15) ) (+ 1 . {t1)

t12 := any

t15 := integer = {t16, t17)

t1 := function {( (t12) (t15) {' ') = {t1.5, t3, t4}
t3 := function ( (t12) (t15) ) (") = {t1}

t4 := function ( (t13) (t15) ) ¢+ } = {t1})

t13 := any

t16, and t17 are irrelevant

t0 := function ( (t2) () ) ( 'x')

tZ := oneof [internal : 18; leaf : tg] = {t5}
t8 := record [1: t12; r . t13] = {tio, t1i1}
19 := any

15, t10, and t11 are irrelevant

Entry MERGE1 T4 bound to t1.5, 71p bound to to



ME1.1) Call TypeEqual (Ta. Th)
Entry TE1 Ta bound to t1.5, Tb bound to t0
TE1.1) Neither Ta or Tb has basic type any.
TEi.Z) Ta is not basic type null or bool.
.TE1.3) Ta is not basic type real or integer or char.
TE1.4) Ta's basic type Tist has only one element.
TE1.5) " Ta is not basic £ype empty.
TE1.6) Ta is not basic type array or stream.
TE1.7) Ta is not basic type record or oneof.
TE1.8) Tb's basic type is_equaluip‘hecorq.:.Ia!srihput'sub%typa.list
arity does equal Tb's input sub-type 1ist arity. Tb's out sub-type
list arity does equal 0. TEl.tresult = yes,
TE1.Ba) ' ' ~= 'x'. ''' j5 a blank. Tresq}tr= merge.
ftl.sb) Call TypeEqual ( t12, t2 ) , :‘
Entry to TE2, Ta is bound to t12, Tb is bound to t2.
T€2.1) Ta has basic type any. Returning 'yes'.’
Exit from TE2, 'Tb"is returned.
(still iﬁ TE1.8b) TEL.tresult =.merge.

TE1.8¢) Ta's out sub-type list arity ~= Th's out sub-type list
arity. Returning 'merge’.

Exit from TE1, 'mérge' is returned,
(now back in original merge call)
ME1.2) ﬁgsu)t ~s 'yes',

ME1.3) Result ~= 'no',

ME1.4) Result ~= 'Ta'.

ME1.5) Result ~= 'Tb'.

ME1.8) Ta's basic type list does not have multiple elements and is
not equal to array or stream.



ME1.7) Ta's basic type does not equal record or oneof.

WE1.8) Place 'x' in the blank field in Ta. Note that
t1.56 := function ( (t12) (t15) ) ¢ 'X') now,

ME1.8a) Call TypeFqual (t12, t2).

Entry point to TE1, Ta bound to t12, Tb bound to t2.

TE1.1) Ta has basic type = ‘any"', return a 'yes’,

Exit point from TE1, returning a 'yes'.

(sti1l in ME1.8a) Call merge (ti2, t2)

Entry point to ME2, where Ta = t12, and Th = 2,

ME2.1)

Call TypeEqual (t1z2, t2),

EE St ST Tl T e e

“Entry point to TE1, where Ta = T12, Ty = 2.

ME2.2)
MEZ.3)
ME2.4)

ME2.5)

TE1.1) Ta has basic type 'any}. return ‘Th*.
Exit from TE1, result = 'Tb';-

Result does not equal 'yes',

Result ddes not equal 'noﬂ.

Result does not equal 'Ta'.

Result does equal 'Tb'. Result of step 5 i§ that

t12 := oneof [interna] : t8; leaf : t9] now.

ME2.9)

Call IsRecursive (t12),

Entry to IR1, T bound to t12,

IR1.1)

T12's basic type does not eduaT array or stream.

- IR1.2) T12's basic type does equal oneof. Call
_findp (pathlist.1,t8) where-pathlist.1 = (t12, t8}.

Entry to FI1, pathlist is bound to {t12}, t is bound to t8,

FI1.1) t8 does not equal t12.

"FI1.1.5) t'is not a member of pathlist.

FI1.2) t is a complex type.

FI1.3) pathlist := {t12, tg)
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FI1.4) T's basic type is ~= to array or stream,

FI1.5) t's basic type does equal record. Caltl findp
{pathlist.1, t12), where pathtist.1 = {t12, ts}.

Entry to FI2, pathlist bound to {t12, t8)
T bound to t12. '

FI2.1) t12 does equal t12, Return pathlist.
Exit from FI2, result = {t12, t8)

(still dn F11.6). Result = {t12, t8}. ca11 findp
(pathlist.Z.tlS). where pathlist.2 = {t12, t8}

Entry to FI2, pathlist bound to {t12, t38)
T bound to t13.

FI2.1) t13 does not equal ti2,
FI2.2) t13 is not a member of {t12, 8}

F12.3) t13's basic type is equal to 'any'.
Return false.

Exit from FI2, result = 'fé];e'.
(still in FI1.5). Return resutt,
Exit from FI1. Result = {t12, t8)

(still in IR1.2). Result « {t12, t8). Call findp
(pathlist.2, t9). Where pathlist.2 = {t12}.

Entry to FI1, pathlist bound to {t12}, T bound to t9.
Fil.l) t9 does not equal t12.
FI1.2) t9 is not a membef of {t12}.
FI1.3) t9's basic type = 'any;. Return false,
Exit from FI1, result = 'fase’. . : - -
(still in IR1.2). return result,
Exit from IR1, result = {t12, t8)
(5ti11 in ME2.9). Result ~= 'no’. Ta's basic type does not

equal array, or stream or function. Ta's basic type -is
equal to oneof. Set t12, t2 and t8's recursive flags to trye,
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ME2.10) Can equiv (t12, t2).

Entry to EQ1, Ta bound to t12, Tb bound to t2.
EQ1.1) camn TypeEqual (t12,t2)
TypeEqual call omitted. Result = 'yes'.

EQ1.2) Put t12 ip 12's each others equiv lists
12 1= = {12}, t2 := = {5, t12}.

Exit from EQ1.
ME2.11) t12's equivalence Tist contains just t2,

ME2.12) t2's equiv 1ist contains t5. Set t2's aux tag = true.
Call merge (t2, t5). Set t2's aux tag to false.

Merge cali omitted, as has no effect on typeé.
(Still in ME 2.12). Return.
Exit from ME2, A

(still in ME1.8a). The corresponding type to Ta.t15 in Tb is null.
Copy t15 into the 1ist. Note that t0 := ( (t2) (t158) ) ( 'x° ) ‘now.

ME1.8) cCall IsRecursive (T1.5).
IsRecursi;e call dﬁitted, result = ‘no* .
(Stil] in ME1.9). Result is equal to 'no'.
ME1.10) Cafl Equiv (t1.5, tg)

Equiv call omitted as irrelevant.

ME1.11) Call merge (t1.5, t1),

Note this is the last step from the example that is explicitly shown. However, what occurs
inside this merge is a call on merge {t1, t4). This merge is what provides the information that
t12, and t13 are the same type, and also that 113 is a recursive !ype.' If the reader wants to

assure that this is true, just follow the detailed stepé of the algorithm.



6.3 Example 3

This example is a program with a built in type error. Specifically, in the function badtype
betow, the array 'a’ is being used both as an array of integers and an array of chars,

Incidentally, what the function is trying to return is the 1 + the sum of the elements of an

array. Here is the function including the type declarations :

function badtype { x : array [integer] returns integer )
let a : array [integer]; - .
a := x [ (array_Timh (x) + 1) : '1'] ;
in forall i in [array_lim](a),array;limh(a)]
eval plus a[1] . :
endall
endlet
endfun

Here is the function without the type declarations : - ST AR G S el

function badtype { x )
~ let a := x [ (array_Timh (x) + 1) : '1'7
in forall i in [array_]imI(a).array_limh(a)]
- eval plus a[1] ) .
endall -
endlet ’
endfun

Here Ais the data flow graph which represents the program.
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o tis8
Fhtd bbb
| plus-all | m
+H+ttt bbb

|
o tig

The symbol table has two entries. The entry badtype points to t1. The entry x points to t2,
Here is the way the general algorithm finds the error.

The first operator node examined is m, a plus-all node.
Plus-all nodes are one of a class of nodes that perform the eval
function inside a forall construct. '

Its action routine calls dre:
SetMultType (t18, {real, integer})
equiv (t18, t19) .

The new type information is:
t18 := {real, integer} ={t19}
ti19 : {real, integer} ={t18}

Ir n

The next operator node examined is 1, an A-se/ node. A-sel nodes”
are array select operations. '

Its action routine calls are:
SetType (t16, integer)
merge (t17, t0) ; where t0 := array [t18]

The new type information is:
t16 := integer
t17 := array (t18)

The next operator node examined is k, a forall node. Forall nodes
are used to represent the forall header. They also funnel the -
limits to a single integer type. ’

Its action routine calls are:
SetType (t14, integer)
SetType (t15, integer)
SetType (t16, integer)

equiv (t13, t17)

The new type information is:

t13 := array (t18) ={t17)}

t14 := integer .
t15 := integer '

t17 := array (t18) ={t13}
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The next operator node examined is i, an array-lim/ node.
nodes return the Tow index of their argument arrays.

Its action routine cails are:
SetType (t14, integer)
merge (til, t0) ; where tg 1= array [any]

~The new type information is:
t11 := array [any]

The next operator node examined is 3. an array-limh node.

hodes return the high index of their argument arrays.

Its action routine calls are:
SetType (t15, integer)
merge (t12, t0) ; where to := array [any]

The new type information is:
t12 := array [any]

The-next operator node examined is h, a link fode,
Its action routine calls are:

equiv (t10,t11)

equiv (t10,t12)

equiv (t10,t13)

The new type information is

t10 := array (t18) ={t11, t12, t13)
11 := array (t18)  ={t10}

112 := array (t18) ={t10}

t13 := array (t18) ={t10, t17} .

The next operator node examined is g, an A-append node,
performs the array append operation,

Its action routine calls are:

SetType (t8, integer)

merge (t4, t0) ; where t0 i= array [t9)]
equiv (t4, t10) - )

The new type'information is:

t4 := array (t9) ={t10}
t8 := integer
t9 := {real, integer} ={t18}

t10 := array (t18) ={t4,t11,t12.t13}
The next operator node examined is ¢, ap add node.
Its action routine calls ara:

SetMultType (t6, {real, integer})
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equiv (t6, t7)
equiv (t6, t8)

The new type‘information is:
t6 := dinteger ={t7}
t7 := integer ={t6}

The next operator node examined is f. a char constant.

Its action routine call is:
SetType (t9, char)

SetType signéﬂs an error.

At this point the type-checker can do one of two things. It can blow up after giving an
appropriate error message, or it an assume one ass:gnment or the other IS correct and prmt
the error message and keep on gomg Prowded that good assumptrons can Ee made the
second.course is far and away the better, as it allows the programmer to see all of the errors

in a module with one compilation attempt.

7 Module Link Algorithm

So far, no algorithm has been specified that w:ll allow modules that are not type determined to
be further type checked at module link tlme ModuIe link time is when two or more VAL
modules are loaded together. Any |dent|f|er in one module that refers to a value in another
module must be bound to that value. For exampie, an identifier ‘foo’, that refers to a function
"foo’, in a module "bar’ would have to be bound to the function dehnmon The coricern for the
type checker is to insure that such a binding would be type consistent, and that, after all such
bindings are finished, the modules are type determined.

7.1 Type information a'vailable

Before discussing what exactly a bind will do, it is useful to review what type lnformatuon will
be available at link time. A module regardless of whether or not it is type determined, has alt
its type information available through its symbol table. The symbol table contains an entry for
each formal parameter and free variable in the module. Each entry contains an identifier and

a pointer to a type node that corresponds to that identifier. As before, the type node has
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associated with it a type specification and an equivalence list. Al type nodes that are
referenced directly by the symbol table and 'indirectly througﬁ type specificationg are
available. The information formerly present in the data type graph, but not available at link
time, is the set of Operator nodes and all the type nodes which are not referenced. ' This

information is not needed in or&er to bind data types.

7.2 Binding

Currently, bindihg is envisioned. as occurring frqm speci_ﬁc. programmer generated calls on a
function bind. The function ‘bind’ would take as its arguments the name of the non-
determined module and a list of pairs, the first of which is a non-determined type in the
module, and the second of which is the module to which the typé should be bo_und. Note, it is
‘a requirement of VAL that the second ‘module be type‘-detérminea. "Thé-fuhéﬁbrf' ‘bind’ is

defined as doing:

1) Testing to see if the non-determined type and the type.to which it is to be bound are type,
consistent, The type to which the non-determined type is to be bound, the'-’binding' type, is
found by looking at the symbol table for the 'specified module, the binding type will have the
same identifier as the non-binding type. If the binding type is not found, or it is not type
consiétent with the non-determined type, an error should be signalled.

2) Perform a merge on the type nodes poihted to by the non-dé‘termined type and the binding

type. . '

3) Test to see if both types are type determined now. Ifnot, a message to that effect should be

signailed.

Note that step 3 is necessary as the test in step1is consistency, so the non-determined type
may contain sub-types pot in the binding one. This would lead to the types being non- )

determined, even after the merge is performed.

7.2.1 Assertion



way as to cause the first module to be type determined. Also, that if such a binding occurs
with no error, the type specifications created will not cause corresponding types (types with

the same identifiers) to be type inconsistent,
1) The second module is type determined, thus all its types are type determined.

2) If the non-determined type is consistent with the determined one, and all of the non-
determined type’s are in the determined one’s specification or are referenced by that

specification, after the merge both type's will be determined.,

3) When two type nodes are merged, the resulting type specifications are consistent,

Step 2implies that type determinacy can be reached. Step 37 says thgg typ_e__ gon_s_is__te_ncy is
preserved., ' '

7.3 Example

Here is an example of the bind function:

The\z‘symbﬂ table for a module 'foo' has 4 entries, 'foo’', 'x'.:,‘y',
and 'add'. Foo, x and Y are type determined. Add is not, -

add -> {function} ( (t4 t5) (t6)) () =03
t4 -> {real, integer) ' -

t5 -3 {real, integer}

t6 -> {real, integer}

There is a module 'adder’ that had the jdentifier 'add' in its
Symbol table. Adder is type determined. The type information
for add is:

add -> {function} ((t1 t2) (t3)) ()
t1, t2, t3 - integer

The programmer enters the command ;
bind (foo, ( (add adder)))

The result is that the two adds are merged and that
t4,t5,t6 -> integer, :

Foo is now t_ype‘ determined. |
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8 Producing Data Type Graphs

Construct translation, while trickier is also straightforward. Each construct usually requires

the creation of one or two special operator nodes.. fn the case of the IF THEN ELSE, the
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8.2 Data Type Graphs

Data flow graphs are not data type graphs. The ;iata flow graphs contain no type nodes, just
links labeled with identifiers, To create a data flow graph from a data type graph is simple.
Merely. insert a type node between each pair of linked operator nodes in the graph. If a
labeled link is represe,nting a formal parameter or free variable, place the‘ identifier in the
symbol table and poinf the table entry at the argumeht type node to the link operator. Remave

all link labeis.

Each typ‘e_ node is initialized with an empty equivalence list and a type specification with a
basic type list equal to {any}. If an identifier had a type declaration, that information is

incorporated into the specification in place of the default, 'any’. _

To sum up, Weng’s work shows how to translate fext programs-into data flow ‘graphs: The
translation from data flow graphs to data type graphs is trivial. Thus, it follows, that producing
data type graphs from VAL textis both possible and straightforward. s '

9 Conclusion

The programming language VAL is currently undergoing revision. Some of the proposed
changes have a severe impact on the ability of the VAL compiler to do all tybe checking at
compile time, The most notable: of these changas are the elimination of reduired type
declarations, the inclusion of function data types, and the provision that recursive data types

must contain union types.

_ This thesis has presented one solution to the problem of how to type check the new version of
VAL. The basis for solution is the analysis of data type graphs. These graphs are just data
flow graphs with the inch_:sion of type nodes. The graphs are analyzed by examining operator
nodes to see what type cbnstraints the nodes place on their argument and resuit type nodes.
By properly applying and preserving these constraints, enough tybe information may be

deduced so as to allow the module to be type checked at compile time. Furthé,rmore,v all the
type information determined allows the modules to be correctly and uniquely type deterhined

at module link time.
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9.1 Alternatives

Clearly, the approach of this thesis is not the only one. Andther approach might be to
examine the VAL module without translating it into an alternate representation. VAL modules

can be type checked straight from their text form.

However, | feel that the translation into graph form is a powerful tool for simplifying the type
checker’s task. The algorithm is easy to develop as it only has to concern itself with two types
of nodes. The graph makes constraint propagation (via equivalence lists) easier to visualize.
The tradeoft in graph production considerations is not bad. VAL was originally designed for a

déta flow architecture, so the translation turns out to be simple.

9.2 Apg;lications to Other Languages

This thesis has been concerned with -type checking generalized VAL, yet the algorithm
developed herein can be applied to other languages. The eséence of the algorithm is that the
types of data values can be determined by examining the operations that are to be performed
on them. Furthermore, most tanguages can be translated into data type graphs of a form

similar to the one presented in this thesis.

The key to the algorithm was the type constraints produced by the operators. | belieu{e that
similar constraints can bé easily developed in most languages. Certainly CLU, PL/1 and other
sfrongly typéd languages seem amenable to this sort of apbroach. I also believe, thoﬁgh with
less certainty, that LISP, APL and other such languages can also be type checked in this

manner,

9.3 Further Work

There are two clear areas where further work needs to be done on this algorithm. One, the
algorithm has not been formally proved. This is essential if it is to be trusted to always work
correctly. Two, the algorithm needs to be imp!einented. This, too, is cbvious as one can

never be sure that an algorithm can be implemented until it has.
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Appendix A

VAL Operators and Constructs

10 Basic Operators

10.1 Error Tests

There are three universal error tests in VAL. Their names are is undef, is miss-elt, and is error.

Their graph representation is:

L e
0--~--- >| NAME J-~----s >0
T1 D bbbt T2

The only type constraint is that T2 must be type *bool. .

The action routine call would be:

SetType (T2,boo1)

10.2 Equa! and Not Equal

Equal, ' =", and not equal, '~ =, are in a special class because they constrain their argument
typesnot to a specific type but to be a set of four possible types, namely real, integer, char, or
bool, )

Their graph representation is: ,

O-—r=—= D
T1 | NAME |--~-~-- 20
0= ==-==Dttd 44+ T3
T2

Their type constraints are that T3 must be of type 'boor’, that T1 and T2 must be of equivalent
types, and that T1 and T2 must be oneof {bool, char, integer, real}.
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The action routine calls would be:

~ SetType (T3.bool)

SetMultType (T1,{bool »char, integer, real})
SetMuTtType (T2,{bool,char, integer, real})
equiv (T1,T2)

...___.-._._.._....__.._._-_'_..___._...___..____.._______.._.___-.____._....___._......

10.3 Boolean operations

Their are two classes of boolean operations in VAL. The first class has two arguments, the

second has one.

The members of the class with two arguments are and, ‘&', and or, . Their graph

representation is:

0---==- pl S S TR

T1 o | NAME |---n--- >0
0----x pE SR T3
T2 :

The type constraints are that T1, T2, and T3 are all of type "bool.

The action routine calls would be:

SetType(Tl,boo1)
SetType(Tz,bool)
SetType(T3.boo])

The second class has only one member, the nat,’'~', operator,

Its graph representation is:

4
0==--u- >F NOT -e-memeo >0

T1 ++i++4++ . T2

Its type constraints are that T1, and T2 must be of type 'bool'.

The action routine calis are;

SeiType(Tl.boo1)
SetType(TZ,bool)

--——-.-____._______.._.....-.-—-——-—-—__-.-.___-__..__.....-_-—-———--_-.__...
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10.4 Type Conversion Operations

Their are three operations intended to convert one data type into another. These are real,

character, and integer.

Their graph representation is:

++++ 4+
O0-=---- >| NAME }---~-- -->o0
Ti bttt T2

If the name is 'real' then the constraints are that T1 is of type ’ integer’ and T2 is of type real’,
The actions routine calls are SetType calls in the obvious manner (Henceforth all obvious
SetType's are omitted.) I the name is character the constraints are that T1 is of type
mteger and that T2 is of type 'char’. If the name is 'integer’, the constraints.are that T2 is of

type mteger and T1is oneof {real, char}. lts action routine calls would be:

SetType (T2,integer)
SetMultType (T1, {rea?, char})

10.5 Real and Integer Operations

Most real and integer operations have the same names. Those that do are divided lnto four

classes.

The flrst class takes 2 arguments and returns 1 result, all three types being the same type.

The members of this class are plus,’ +', minus, '-'; -y multiply, ***; divide, '/ '; max; and min.

Their graph representation is:

0-=-~-- Dttt 44+

T1 - | NAME |------- >0
Q0---=-—- D R T3
T2

The type constraints are that all three types are bonstrained to be équivalent and that each

type is constrained to be oneof {real integer}. The action routine calls wou!d be:

SetMultType (T1, {rea].1nteger})
equiv (T1,72)
equiv (T1,T3)
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The next class has one argument and one result, both of which are either real or integer

types. The members of this class are negation, '-’; and abs.

Their graph representation is:

b4+
0=7==-=>| NAME |-~------- >0
T1 L o A T2

The type constraints are that T1 and T2 are equivalent types and that they each must be oneof

{real, integer}. The action routine calls would be:
SetMultType (TI.{reaT,integer})
equiv (71,72)

The next class has 2 arguments and 1 result, with the resyft being forced to be of type ‘bool.
The members of this class >, ¢, >=,and<=. Their graph representation is:

0--=~-- PHEti b+
T1 | NAME {------_ >0
0--=-=- D+ttt + T3
T2

The type constraints are that T3 is of type 'bool’, that Tt and T2 must be of equivalent types,
and that each of T1 and T2 may be oneof {real, integer}). The action routine calls would be:

SetMultType (T1,{real,integer})
equiv {T1,T2)
SetType (T3,bool)

The fourth and final class of real/integer operatiohs has 1 argument and 1 result. The
argument can be real or integer, the resuit is a bool. The members of this class are js
POs-over, is neg-over, is unknown, is zero-divide, is over, and is arith-error. Their graph

repreSentation js:

LSS B

0~-~=-- >| NAME [----mmeu >o : .
T1 Ftt+d4++ T2 ' ’

The type constraints are that T1 must be oneof {real, integer} and T2 must be of type 'bool,

The action routine cails would be:

SetMultType (Tl.{reaT,integer})
SetType (T2,bool)
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Their are five operations that operate on real and integer types which do not fit into the above

classes. The first of these special cases is mod. lis graph representation is:

O==—=== P+ ++

Tl | MOD  |----a-- >o
0-=====Dt++ittit . T3
T2

The type constraints are that T1, T2, and T3 must be of type ’integer".

The second special case is exp. Its graph representation is:

0--—--~- Sttt N

T1 D T >o
o-—---- >+ttt T3
T2

‘The type constraints are that Ti.and T3 must have eqijivafent types, that if T1 is known to be
of type "integer’ or if T2 is known'to be of type 'real’ then T1 and T2 must have equivalent
types. Otherwise, T1 and T2 must be oneof {real,integer}. .'Note, the action routine calls are
o‘mitted. Exp is a very nasty operator. | am in favor of reducing i_ts possible a%guments to both
r%bmmeMwaachmmaﬂmnﬁmd%NﬂwaﬁnmemmdeMWWAMQm
operations. Np power is lost, since if you wanted to faise areal type to an Integer power, you

could just convert the integer to a real and use the real fo the real case.

The final three special cases are is pos-under, is neg—undé»j and jis under. Their graph
representation is; '

bt

0-==--- >| NAME j-r------ >0
T1 ittt T2

The type constraints are that T1 is of type 'real’ and that T2 is of type 'bool’,

...—--._-_-.—_.._.._..______.__...p_.._-_—-—.._-_.-.—...-._..__.._..___.._..-_..--_-—_.

10.6 The empty operation

Tﬂe graph representation of the empty operation is:

b4+
| empty |---->9
FH+++ 4+ T1



The type constraint is that T1 must be type’ empty

10.7 Array-Operations

The graph representation for the operation array-fill is:

O0~-=---- Dttt +44

71 |

O-~==== >larray-|----- >0
T2 | fi11 | T4
0=-~--- 2|

T3 R o

The type constraint are that Tt and T2 must be of type mteger and that T4 is an array of type

[ TR i cavm e

.T3. The action routine calls are:

SetType (T1, mteger)

SetType (T2, Tnteger) K '

merge (T4, T0) 10 = [array ( (T3) () ) () =} ]
sub-types sub-fields eq-list

The graph representation for the{] (select) Operation isf

O--=~—- Dttt

T1 | A-sel|-----—-3g
Or=—-~=-x PR L B N ey T3
T2 :

The type constraints are that T1 is an integer and that T2 j s an array of T3. The action routine

calls are:
SetType (T1, 1nteger)

merge (TZ T0) ; 70 := [array { (T3) () ) () ={} 1}
Sub-types sub-fields eg-list

The graph répresentation of thie append operation is:

O=-=-==- S+ttt t4+
T1 |

O---=--- >larray-|{----- >0
T2 |append] T4
0-i-ms3 l

T3 44+



The type constraints are that T2 is of type 'integer’, that T1 and T4 are equivalent types and

that T1is an array of T3. The action routine calls are:

SetType (T2,integer)
equiv (T1, T4)

merge (T1, T0) ; TQ := Larray ( (T3) () ) () =} 1]
sub-types sub-fields eq-list

The graph representation for [:] (create by elements) is:

0----~- pT

11 i [:1 |)------- >0
0--~--= P e | T3
T2

The type constraints are T1 is of type ‘integer’ and that T3 is an array of T2 The actlon

routine calls are:;

SetType (T1,integer)

merge (T3, T0) : T0 := [array ( (t2) )Yy - 0O - ={} ]
' ' - Sub-types sub-fields eq-list

Tht—;‘ folfowing three operations have the same constraints; 'ajrray-limh, array-imf and

array-size. Their graph representation is:

b4+
Q--==-- >|' NAME |~=-=~-eo >0

T2 Sa ST o T2

The type constraints are that T2 is of typé integer and that T1 is an array of any. The action

routine calls are:

SetType (T2,integer)

merge (T1, T0) ; TO := [array ( (Tc) ()) O ={} 1]
sub-types sub-fields eq-list
Tc := any

The operation afray-adjust has the following graph representation:

o------ P+t

T1 | |

0------ >|array-|----- >0
T2 |adjust| T4
0-=~-==- >

T3 ++++++++



The type constraints are that T2 and T3 are of type 'integer’, that T1 and T4 are equivalent

types and that T1 is an array of 'any’. The action routine calls are;

SetType (TZ,integer)
SetType (T3,integer)

equiv (T1,T4)

merge (T1, 70) ; 70 := [array ( (Tc) () ) () =} 1]
: . sub-types sub-fields eq-list
Tc := any

The operations array-addh and array-add/! have the following graph representation:

O--~—-—- b = S A

T1 { NAME |===--=- >0
o-~---- Dttt +++ T3
T2

The type constraints are that T2 must be of type 'integer' | that T1 and T3 are equivalent types,
aMﬁﬂﬁbmmmwdmyﬂmm%mmﬂmm%m&_

SetType (Tz,integer)

equiv (T1,73) . .

merge (T1, 70) ; 10 ;= [array ( (Te) () ) () =} ]
N sub-types sub-fields eq~list

Tc := any

The operations array-setl, array-remh and array-remf have the graph representation:

FH+it b4
O===2==>] NAME |--m-oe__ >0

T1 L R T2

The type constraints are that T1 and T2 are constrained to be equivalent, and that T1 is an

array of any. The action routine calls are:

equiv (T1,72) .
merge (T 18) 5 10 3= [array ( (Te) () ) () ={} 1]

. sub-types sub-fields eq-1ist
Te := any

The operationg concatenate, '||'; and array-join have the graph representation:

O~=----- 24ttt

Tl | NAME |-===—-- >0
0--==-- PHtttr+4 T3
T2 ‘
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The type constraints are that T1 is equivalent to T2 and to T3, and that T1 is an array of any.

The action routine calls are:

equiv (T1,T2)

equiv (71,T3)

merge (11, T0) ; T0 := [array ( (Tc) () ) () ={} 1
sub-types sub-fields eq-list

10.8 Stream Oﬁerations

The operation stream has the graph representation:

O—n-—=== >t 4+
T1 | |
I E . COLE L WL e me e T i, S I e U TR e eme e
. —==>] STREAM J---=- >0
I I Tnﬂ
O~—~=== >l+++++++++ o
T, y o

The type constraints are that T1 through T are equivaient and that T +1 s a stream of T1,

The action routine calls are:

equiv (T1, T2)
equiv (T2 T3)

equw (T,-

merge (T +1, ?0) P T0 := [stream ( (T1) () ) () <} ]
. ) sub-types sub-fields egqg-list

The operation nu/f has thé graph representation:

bt
0------ >] NULL |-==m-men >0

T1 +H++4++++ T2

The type constraints are that T2 must be of type 'bool’ and that T1 is a stream of any. The

action routine calls are:

SetType (12, booﬂ)

merge (71, T0) ; = [stream { (Tc) () ) () =} ]
sub-types sub-fields eg-Tist
Te := any
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The operation first has the graph representation:

i+t 4
0------ >[FIRST J--uooooo do
T1 bt T2

The type constraint is that T1 must be a stream of T2. The action routine call fs:

merge (T1, T0) : 10 := [stream ( (T2) () ) 0 =} ]
sub-types - sub-fields eq-list

The operation rest has the graph representation_:

bbbt
0--=~-- >] REST [=-aneoo. >0
T1 bbb+ T2

The action routine calls are;

equiv (T1, 72) o
merge (T1, T0) : 1O := [stream {( (Te) () ) - () =3} ]
- sub-types sub-fields eq-tist

Tc := any

The operation affix has the graph representation:

0--=-=- dt+++++44
T1 ] AFFIX)--v-un- 20
O~===== PH+Htt 4+ T3
12 ‘

The type constraints are that T2 and T3 are equivalent, and that T2 is a stream of T1. The

action routine calls are:

equiv (T2, 13) '
merge (T2, T0) ; 10 := [stream { (T1)y () ) () =} 1
_ Sub-types sub-fields eg-list

10.9 Record operations

The operation recorg has the graph representation:

O~ -—mu- D N
T1 | ]
| RECORD |



“==>|(F1, F2 [~-=-- >0
I ... Fn)j

0-m=n—= pl R S

n+1

The type constraint is that Tn+1 is a record for which F.T are the field name, sub-type pairs,
ThéacﬁonrouﬁnecmiE:

merge (Tn+1, T0) where
T0 := {record} ( (T1 72 ... TYO ) (FLF2 ... Fa ) ={}

The operation select,’., has the graph representation:

b+t
===z . F [~----mm- >0

T1 +H+bb T2

The-type constraint is that T1 is a record with a fieldnamé,sub-type pair F,T2, The action

routine call is:

merge {(T1, T0) ; where
T0 := {record} ( (T2) () ) (F) =)

The operation repface has the graph representation:

L e P R R e T Y .
T1 | REPLACE F |------->0
0-~=-=--—= D R e e T3
Tz - '

The type constraints are that T1is a record with a fieldname, sub-type pair F, 'any’ and that T3
is a record with a fieldname, sub-type pair F, T2. The action routine calls are:

merge (T1, T0) ; where

T0 == {record} { (Tc) () ) (F) ={}
Te := {any}

_..__-.__—_—._..__—_-—..-._..__..._._____—_.._.._.,_.__...__.__..__-—_-——---_._

10 10 Union Types

The operation make has the graph representation;

0------ P S
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T1 | MAKE F [~------ >0
O-==--- P+ttt 4 T3

The type constraints are that T1 and T3 are equivalent, and that T1 is a oneof with fieldname,

sub-type pair F, T2, The action routine calls are:

equiv (T1, T3)
merge (T1, T0) ; where.
T0 := {oneof} ( (T2) () ) (F) =()

The operation is has the graph representation:

-+t
0-=--=- > is F j=me-eeee >0
T1 R T 12

The type'constraints are that T1 must be a oneof and that T2 must be of type 'bool. The

action routine calls are:

SetType (T2,bool) |
merge (T1, T0) ; where '
T0 := {oneof} ( () () ) () ={}

-.-—_.....—___-._.._-._.._..____.._.._.__-._.._.._.._-.-.__..__—--._---._-.___.-._....

10.11 Constants

All constants have the graph representation;

HH+ft bbb+
0-=-==- >| constant [~-----.- >o

T1 bbb T2

The type constraint is that T2 must be the same type as the constant,

11 Basic Constructs ) - - -
1 1'.1 If Then Else constructs
The /f Then Else Construct can be written in the form:

IF expl THEN exp2
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ELSE expl
ENDIF

where expl, eipz, and exp3 are all arbitrary VAL expressions.

The graph representation of the construct is:

exp2 : exp3 expl
I I I
+++ +++ _ |-
IT]<mmmmmmmmes [F]<mmmmmmenes +
+++ +++
[ I

LRl D S L A Y

| T F j <=
R R I

I - v L L e LT I

o Tz

ik\
§i
i
1
i

in the graph fragment above, expl, 2 and 3 are the. graph representatlons of the VAL
expressrons There are three Operator nodes introduced above, the T node, the F node and
the TF node,

The T-and F operator nodes have the graph representation:

o T2
I
v
R o 2 S X
0-=---- >} name |-------- >0
T1 . b+ T3

The type constraints are that T1 and T3 are equivalent and that T2 must be of type 'bool’. The

action routme calls are;

equiv (T1 T3)
SetType (T2, bhool) -

The TF node has the graph representation:

- 0o T3
- I
Vv
0--==--- D44+
T1 | T J==------ >o

7



I F T4
O-==——n- dtttti+4

The type constraints are that T1, T2 and T4 are equivalent, and that T2is of type ‘bool". The
action routine calls are:

equiv (T1, 12)
equiv (T1, T4)
SetType (T2, bool)

__-._..-._-.-..-.-._.—_..--....____._...-.___-.-.__.--...-—__---.—-.—-—.._._......_-__-.___

11.2 Tagcase constructs
The tagcase construct can be written in the form:

TAGCASE exp
TAG1 : expl
TAGZ : exp2

TAGn : expn
OTHERWISE expl
ENDTAG

~

where e€xp, exp0 to n are arbitrary vaL expressions. .

The graph répresentation of the construct is:

|

+++++++++++++++++++++ i

| tagcase |

| (TAG1 ... 5 ") |

+++++++++++++++++++++ |

S

- expt ., expn exp0 o

g |

+++++++++++++++++++++ |

I tag . |

| (TAG1 ... j IR B K e, +
AR AR LS S TSR

|

In the above graph fragment, all the exp’s are short for the actual graph representation of that
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expression. Note that the 'OTHERWISE’ clause in the tagcase is represented as a '’ {a blank),

Two new operator nodes were introduced, tagcase and tag.

The tagcase node's graph representation is:

I SRR >0
| i T2
[ TAGCASE |
0---~-- >[(F2, F3 |
T1 I ... Fn)]
I [
s T S SRR >0
: Tn

The type constraint is that T1 is a oneof with fieldname, sub-type pairs F2,T2 to Fn,Tn. The

action routine call is:

DU e WD e v ancr L s man oo

merge (Ti, TO0) ; whefe _
T0 := {oneof} ( (T2 T3 ....T.) () ) ( F2 F3 .o Fn) =}

The tag node’s graph representation is: e o~

oT1
|
v
O- == === Dbt ibb bttt
T2 | |
| TAG |
. ===>|(F2, F3 [-=--- >o
b... Fn){ Tn+1_
O~ == ===Dtttttttttt

The type constraints are that T1 is a oneof with field F2 to Fn, and that T2 to Tn 41 @re

equivalent.-The action routine calls are:

merge (T1, T0) ; where , - :
T0 := {oneof} ( (Ta2 Ta3 ... Tan) () ) ( F2 F3 ... Fn) {}
Ta2, Ta3, ..., Tan := {any} , )
equiv (T2, T3)

equiv (T3, T4)
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11.3 Forall constructs

TmmmMmmwdwnmwmwMﬂMMM:

FORALL var in [exp1l, exp?]
’ exp3l :
CONSTRUCT ‘or EVAL exp4
ENDALL

Note that in the following graph representation var is-used to tie the result type of the forali

node into exp3 and exp4. This is not shown asitis inhere{nt in the links,

- expl exp2

B & L R

| forailil
R S L T R AT

‘ A T T s e T L T Ve i

exp3
I
expd
I
, Fommeao Fmmmm s + .
| ‘ N
Rt b T ey SRR S S S E T
| array-ai1 | : | +. *, min |
R b L |max, &, or |
S | an
bbb bbb b4

The array-all node represents the éonstruct operation. The otﬁer all node represents ail the
possible eval operations,

The graph representation of the foray node is:

O-=~c=-x PR i RO
T1 I |
0-==--- >
T2 " forall |

L L L LT >0
any # | | T3
of pairs|

of nodes++++++++++

The type constraints is that all type nodes must be of type integer. Action routine calls are él!
SetType (T, integer).
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The graph representation of the array-all node is;

R a R T E
0----~- >| array-all j-------- >0
T1 +E+HF 4+ 12

The type conetraints is that T2 is an array of T1. The action routine call is;

merge (T2, TO) ; [array ( (T1) ()) () ={} 1
sub-types sub-fields eq-~Tist

All the eval nodes have the graph representation:

4
0--===- >| name [-------- >0

T1 4 T2

The" operations plus-all, times-all, min-alf and max-aﬂ are all treated as |f they were
_real/integer operations of the second class. The operations or-ali and and-all constrain T1
and T2 to be of type 'bool. The action routine calls are both SetType (T, bool).

12 Functions

There are two ways a functlon type is encountered in VAL. The first is in a function header

and the second is when the function is referenced. Consider the first case:

function foo (x1, ..., xn)

The graph representation is: -

0-=~--= Dttt tit+
T0 | |
0-—=-=- > A== >0
T1 ) | Tol
| PROCED | ~~--~-- >0 -
...... ] | To2
l l
[ 7] f------- >0
Tn B Ton

Here foo and x1 to xn are placed jn the symboi table with foo pointing at TO and xitoxnat T1
to Tn. The type constraints are that T0 is a function with arguments T1 to Tn, and that T1 is
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equivalent to To1, T2 to To2 and so on. The action routine calls are:

merge (70, T¢) : where

Te := {function} ( (Tr 72 ... Tn) ) O =0
equiv (T1, Tol)

equiv (T2, To2)

-----

equiv (Tn, Ton)

The second case is of the form foo (x1, ..., xn). Its graph representation is :

O-~---- Dttt bat
TO | |
0---~-- > |=------ >0
T1 | To1l
[APPLY |-euueoo >0
...... | ] To2
| |
0~---~->] |-~-—=-- >0
Ta ittt Toq

already. If it was not in the table, foo will point to 7@,

The type constraints arethat TQ is constrained to 'be a funcﬁpn with argument sub-types T1 to

Tn and result sub-types To1 to Toqg. The action routine call is:

merge (TO,'Tc) ; where

Tc := {function} ( (11 12 ... Tn) (Tol Toz ... Toq} ) () ={}

13 Special Nodes

There are two special nodes that are used to help construct the data type graph. These are

the merge nod.e and the fink node.,

The graph representation of the merge node is:

o T1 o T2
| |

r---[]--+
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|
0 T3

The type constraints are that T1,T2and T3 are all equivalent. The action routine calls are:

equiv (T1; T2)
equiv (T1, T3)

The graph representation of the fink node is:

o T1
|

A==+

| |
o T2 o T3 SR

The type constraints are that T1, 72, and T3 are a_ll_equ.i_vq_lenﬂt,ﬁ The action routine calls are:

equiv (T1, T2)
equiv (T1, T3)

—._-..-_...___...-._..._—-._..._-...__..._...___-.._______..___—_.._-._-.._—_-._—-.-._—......
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