LABORATORY FOR MASSACHUSETTS
INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

r

\—

Why Dataflow Architectures

Computation Structures Group Memo 229-1
28 September 1983

Arvind
David E. Culler

This report describes research done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology. Fundir}g for this project is provided in part
by the Advanced Research Projects Agency of the Department of Defense under
Office of Naval Research contract N00014-75-C-0661 and in part through various
grants from the International Business Machines Corporation,

345 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

~

_

Abstract |

Key words and phrases: data flow, multiported memories, multiprocessors, packet communication
network, von Neumann architecture

Why Dataflow Architectures

1. Introduction

The possibility of many independent computers cooperating on a single computational task has
been a prevalent issue since the very beginning of modern computing. The technology of single
processors has advanced nearly to its inherent physical limits. The production of complex
computers on a single chip has become routine. The demands for performance grow exponentially.
And yet, successful large scale multi-processor systems remain an elusive goal,

Computers with a handful of CPUs sharing a common memory have been built (eg., B6500,
PLURIBUS, IBM 360-67, and IBM 370) and serious attempts have been made to extend these
architectures to systems with many (ie. more than fifty) processors2 3.4, However, even on
problems with ample parallelism, these systems have not been able to achieve a sufficient level of
cooperation to make use of many processors. We believe this is not simply an engineering problem,
but a fundamental shortcoming in the conventional von Neumann computer architecture and the
programming languages so closely akin to that method of computation. Dataflow architectures and
functional languages offer an alternative model of computation, one which is novel and yet natural
for parallel computation.

2. Conventional computation

The conventional method of computation is conceptually very simple; it is much like following a
recipe. A specific sequence of actions is encoded and stored in a memory. These directives are
sequentially read up and carried out; causing data portions of the memory to be modified. A more
sophisticated program is formed by a more elaborate sequence of instructions. Programming
languages, such as FORTRAN and PASCAL, allow many of the details and vagaries of such a
system to be hidden, but have a similar style. The programmer has a variety of control constructs
(e.g, loops and procedures) with which to build sequences of instructions. He is not concerned
with memory directly, but with many small symbolic pieces of memory, (i.e, variables and arrays).
This imperative style of programming is built entirely upon the concept of a single sequence of
operations®. As such, it is inherently difficult to express parallelism in a conventional language.

Various methods of exploiting (local) parallelism within this context have been explored. Many
processors today attempt to overlap the basic execution cycle. High speed computers provide
multiple, pipelined instruction units and vector instructions, Simple vector operations can be
gleaned from analysis of high level program sources, but the amount of parallelism exploited is
small compared to that in the program potentially.

Let us start at the very basics; parallel computation, by its very nature, requires many
simuitaneous operations, synchronized appropriately, and distributed over many processors. In any
multi-processor system, parallelism and dependency must be expressed in the language and
exploited in the hardware, This implies certain software and hardware issues must be addressed,
We wili 2eal with these in turn. Much of this discussion is abstracted from the work of Arvind and
lannucci®,

3. Dataflow: Soltware Issnes

There are two basic software issues: independence and synchronization. In order to exploit
paralielism it must be possible to determine when portions of the computation are independent.
Conversely, if one portion of a program depends on another, they must be performed in proper
sequence. The essential aspect of a program is the set of operations it specifies and the operands to
each of those operations. One operation can be dependent on another if they make use of a
Common resource or if the results of one contribute to the input of the other, If two operations are
independent, they may be executed in any order or simultaneously. This latter form of
dependence, termed data dependence, describes the minimal synchronization required for correct
execution of the program. Resource conflicts impose additional constraints, but may be removed

by providing additional resources,

In a dataflow system. data dependence is the sole driving force for the scheduling of operations,
and also the basic mechanism for synchronization. A program consists of a directed graph with
machine operations as nodes and data dependencies as edges. A simple example is given in Figure

3-L

Figure 3-1: Dataflow graph for f{ g(a), b(a))

Each operation depends only on the values of its inputs; it has no state (ie., no memory) and can
not effect any other operation except through supplying operands. The processor’s task is to
propagate data values through a graph, such as this, triggering instructions when the operands are
available. Data values are carried on logical entities called tokens: a token contains not only a data
value, but also the name of the instruction to which it is destined, as part of its /ag. Conceptually,
tokens move about on the edges of the graph. Instructions are enabled for execution when tokens
ar¢ present on all input edges. Upon execution, the instruction absorbs the input tokens, and
produces an output token for the next instruction in the graph. A program is said to terminate when
no enabled instructions remain®.

The virtue of this model of computation is perhaps best seen through comparison with
conventional methods. To express a computation similar to that in Figure 3-1in a language such as

-3-

ADA, the programmer would have to designate g and h as tasks and take on the onus of
determining that they are in fact independent and have completed before f begins. Dataflow
priniciples ensure that g and h are independent, regardless of their internal natures, and that f is
enabled, by definition, when g and h compiete. This essential form of distribution and
synchronization is the basis of dataflow computation.

Data dependence in the conventional method of computation arises from writing and subsequent
reading of variables. Thus essential dependencies are nearly indistinguishable from incidental
resource conflicts. In fact, the programmer is encouraged to introduce additional constraints in
order to reduce memory requirements. This manner of communication thwarts efforts to exploit
parallelism in conventional programs. The techniques for extracting parallelism from conventional
programs primarily involve building dependence graphs and providing additional storage to
remove resource conflicts’. However, these techniques do not apply in the presence of aliasing (i.e.
two variables denoting the same location), which is impossible to exclude in most conventional
languages.

The close relationship between dataflow and functional languages is easily observed in the
example presented in Figure 3-1. A program in a functional language is built by composition of
functions. Each function behaves as a dataflow operation: receiving operands and producing
results. Composition is equivalent to connecting the graphs together. The result is again a function
with dataflow properties®.

4. DataFlow: Hardware Issues

Let us turn now to hardware issues. We have already mentioned mechanisms for determining
when operations should be enabled. In dataflow systems this is determined by the availability of
operands; in conventional systems it is determined either by the explicit control sequence of the
program or by explicit synchronization constructs. The other issues are more subtle: dealing with
memory latency and the ability to share data without constraining parallelism.

4.1. Memory Latency

Latency is the time between issuing a memory request and receiving a response. A multi-
processor system can be viewed, abstractly, as a collection of processing elements and memory
elements, with connecting elements forming a network between. To a first approximation we can
treat the complex of communication and memory elements as a multi-ported memory, Memory
latency has a finite lower bound, for a given technology. Moreover, as the number of ports in the
network increases, it stands to reason that the average latency of a memory request will increase, if
only due to the switching time in the network. Given the rate at which a processing element can
issue memory requests and the bandwidth of each memory element (bits per second per port), it is
clear that at some point, the memory units, on the average, will not be able to respond to each
processor reguest without causing the processor $o idle.

The key observation, then, is that it is absolutely necessary that each processor be able to issue
multiple memory requests in succession without intervening memory responses. It is also quite
reasonable to assume that, because of contention, the memory responses may arrive out of order
unless some constraints are placed on the memories and network interconnections.

-4~

Memory latency has always been a crucial architectural issue: the most popular approach is to
exploit locality to reduce the number of memory requests. The inherent sequentiality of the von
Neumann machine assures substantial spatial locality in instruction references; thus instruction
prefeiching is effective. However, exploiting spatial locality in data references is far more difficult.
General purpose registers serve to reduce the number of references to memory, but their utility is
limited in a multiprocessor context where data must be shared. A technique receiving recent
popularity is to try to exploit temporal locality through the use of caches. This is particularly
difficult to extend to a multiprocessor context because the problem of cache coherency arises. What
happens if two processors attempting to communicate through shared memory both write into their
caches? There are several solutions to this problem, but they inevitably involve substantial
overhead and/or reduced parallelism.

The techniques mentioned above reduce the load on the memory, but fail to address how the
processor can do useful work when it must wait for memory requests. One method of dealing with
this question is to perform context switching at a very low level (analogous to task switching when
an 1/0 request is made in a multiprogrammed operating system). While one computation waits for
the memory to respond, the processor resumes another, parallel computation. Of course, the
scheme works only if the context switching itself does not generate any memory references, It is
accomplished by duplicating programmer-visible registers (i.e, the processor state). Un fortunately,
this method does not allow the system to grow incrementally by addition of processors: as memory
elements are added, the depth of the communication network wili grow. Hence, the number of
low-level contexts to be maintained will also have to increase to match the increase in memory :

latencyé.

The fundamental problem is that the scheduling of operations is determined by the instruction
sequence, rather than the availability of data; the entire sequence must wait because the data for
one operation (a memory reference) is slow to arrive. Dataflow systems remove these artificial
scheduling constraints. While one operation is delayed due to memory latency, others that do not
depend on it may still execute, The critical issue becomes the bandwidth of the memory, not the
latency. Memory bandwidth can be increased almost without bound, through interleaving and
pipelining. Each piece of data identifies its own destination, thus the order of arrival of data is

immaterial, '

4.2. Sharing Data
A more troublesome issue is that of sharing data between two or more processes while

maintaining proper synchronization; there must be some way to assure data is properly written
before it is read. To illustrate this problem, consider two routines running on two different
processors, both accessing a two-dimensional array of numbers. One routine is creating the
elements, in order, and writing them into the array. The other routine is waiting to read the
elements. One way to avoid a read-before-write race is to allow the entire array to be written before
the consumer routine is allowed to begin processing. By this simple minded transfer of control,
there is no synchronization problem, but neither is there any chance for parallelism. This scheme
performs well on a single processor, since the computation cannot be expedited by overlapping the
production and consumption of a data structure. It defeats the purpose of multiprocessing,
however.

A more common scheme is to synchronize on a per-row or per-column basis of the array (as

-5-

appropriate); this incurs more overhead, but constrains parallelism less. The extreme approach
would be to synchronize the two routines on a per-element basis, It should be obvious that doing so
is impractical with current methods and requires fundamental changes at the hardware level.

This example oversimplifies the real situation - consider the case where the elements are not
produced in a regular (ie, row order or column order) way, or the case of a nonuniform data
structure. The question remains: is it necessary to sacrifice parallelism for proper synchronization
of reads-before-writes?

The Tagged Token Architecture offers one solution to this problem: I-structure storageS, If we
associate with each memory cell in a machine special flags (called presence bits) which indicate the
memory cell’s status - written or unwritten - we have the ability to solve the read-before-write race
problem as follows: assume that a memory module has just received a request to read a particular
memory location and to forward the contents to instruction x. The memory module interrogates the
presence bits associated with that location. If the bits indicate that the cell has already been written
into, the contents are retrieved and forwarded to instruction x. If the bits indicate that the location is
empty, the memory module puts the read request aside, and marks the empty locauon to indicate
that a read request is outstanding.

Presence Bits (P = Present, A = Absent, W = Waiting)
/ P Data or Deferred Read Pointer

, Tag A D
n: P data Tag C
n+1: { A Tag B
n+2: | W *—
n+3 | W [
n+d: | A

Deferred

nem: [P Sata Read Requests

Possible execution sequence
producing this structure:

* Attempt to READ(n + 2} for instruction A

* WRITE(n + m)

* Attempt to READ(n + 3) for instruction C

* WRITE(n)

* Attempt to READ{n + 2) for instruction B
' * READ{n)

Data Storage

Figure 4-1: I-Structure Storage

Now, when a write request for that location arrives at some time in the future, the memory
module notices the pending read request, and forwards the newly-arrived datum to instruction x (as

-6-

well as writing it into memory and setting the presence bits accordingly). Note that the memory
module must inaintain a list of deferred read requests (see Figure 4-1) as there may be more than
one read of a particular address before the corresponding write. We call this type of memory
I-Structure Storage. The issues involved with building such a memory, and the design for an
I-Structure memory controller are discussed extensively elsewhere’,

This mechanism, when coupled with a processor which is able to issue multiple, overlapped
memory requests and which can tolerate out-of-order responses, allows the uncoupling of memory
latency from the performance of a multiprocessor. The penalty of such a scheme in terms of the
demands placed on memory elements is not excessive, A read operation is as efficient as in a
traditional memory. Write operations take twice as long, however, due to the prefetching of
presence bits. Many different implementation strategies are possible which can largely eliminate

this penalty.

5. The Tagged Token Dataflow Machine

Our machine is a hardware implementation of the U-interpreter for a graphical data flow base
language?®, Programs written in any functional language which can be compiled into this base
language may be executed on our machine. Such a compiler for the high-level data flow language
Id is in use at M.LT. The U-interpreter uncovers parallelism in programs during execution by
uniquely labeling independent activities as they are generated. Each instance of execution of an
operator is called an activity, and is given a unique activity name. Activities that have al] their input *
values available can execute provided a processor is available.

An abstract U-interpreter machine has 5 essential subsystems:

L. a waiting-matching section,

2. an instruction-fetch section which is connected_to a program memory,
3. an arithmetic logic unit,

4. an output section, and

5. a data structure storage.

These subsystems are connected as shown in Figure 5-1. The first four subsystems form a ring in
which many tokens may circulate in a pipelined fashion. Data structure storage provides an
alternative path to the other four sections. Every token carries, in addition to an activity name, data
and port number, the number of partners needed 0 enable the destination instruction, The
waiting-matching section matches input tokens with their partners. If a match occurs, the
corresponding activity is enabled and matched tokens are forwarded to the instruction Jetch section;
otherwise the incoming token is stored in the waiting-matching section. All code blocks reside in
the program memory. The instruction Jetch section retrieves the instruction specified by the code
block name and statement number part of the activity name from the program memory. Each
instruction contains an opcode and the addresses of the instructions to which the results are to be
sent. The opcode from the instruction and the two operands are passed to the ALU which produces

Dataflow Processing Elements

i s in a Hypercube configuration
PE iﬁ
pa
) PE —_—— e e

Z Local Path —I
l I
| i I

Waiting-
I |
I Matching l
] s . ,
I-Structure Instruction Prog.
l Storage Felch | Mem. I
|] |
| M I
| |
| I
I Output ‘_J I
| | |
| T
A Processing Element

S

Figure 51: A Block Diagram of the Tagged Token Dataflow System

the result data value and passes it to the output section. The output section computes the new
activity name for the result data value, in accordance with the U-interpreter rules, using the input
activity name and the destination instruction address stored in the program memory. An output
token is produced for each of the destination instructions specified in the current instruction. If the
ALU executes a data structure operation (e.g., append or select) , a token for the data structure
storage is generated and routed appropriately. The tokens for the data structure storage are
different from the tokens that enter the waiting-matching section because they carry an opcode (eg.,

-8-

read. write) and do not require matching of activity names or instruction fetching.

A multiprocessor U-interpreter machine is formed by replicating the abstract machine of Figure
5-1 and connecting these machines by a packet communication network. The system is (logically)
configured into a collection of physical domains: these will generally be a group of PE’s in which
intragroup communication distances are as short as possible. Loops and procedures are compiled
into individual code blocks which are loaded dynamically into physical domains, just prior to
execution. The mapping of programs onto this system is divided into two phases: code-blocks are
assigned to physical domains at the time of invocation by a semi-centralized scheduler, and ail
activities comprising the invocation of a code-block are distributed over processors in the domain
by a hardware hashing mechanism which incorporates parameters set by the compiler. The
mapping attemps to assign a code-block that uses a data structure in the locality of the code-block
that produces the structure, and to allocate the data structure also in that locality.

The architecture of the PE for the Tagged Token Dataflow machine is closely related to the
architecture of the abstract U-interpreter machine. The PE has 8 asynchronously functioning
subsystems which are connected by finite size buffers and communicate with each other using a
send-acknowledge protocol. A central PE control is included for general operations such as [/Q
and diagnostics. Although the activity names generated by the U-interpreter may become
arbitrarily large, in the Tagged Token Machine alt activity names are represented by finite size lags,
tags must be reused as computation progresses. This is achieved by manipulating tags in a manner
which is isomorphic to the way the U-interpreter manipulates activity names. The instruction set of]
the machine is presented by Arvind and Iannucci’® For details of the architecture, including
address translation and tag generation, the reader is referred to Arvind, et al 11,

6. Current Status

The Functional Languages and Architecture group at MLLT. is refining the Tagged Token
Dataflow Architecture through a series of 'soft’ prototypes. We have developed a detailed
simulation of the architecture, in conjunction with the IBM T. J. Watson Research Laboratory, to
study the relationships of each of the components in the system and to determine the performance
specifications for each component. This simulation is being run stand-alone on an IBM 4341. We
expect o simulate approximately 20 million dataflow instructions in 24 CPU hours,

The second project is a large scale emulation of the machine, with somewhat less internal detail.
A Muliiprocessor Emulation Facility is being developed at M.LT. to support this and similar
applications. It will comprise 64 Symbolics 3600 machines connected by a high speed packet
switched network: The network is built out of 8X8 routers being developed by our group. These
routers will provide 2000 bytes of buffering per port and a bandwidth of 4 megabytes per port per
second'?, This emulation experiment will allow us to test the viability of the dataflow approach on

applications of substantial size,

The final goal is to migrate the architecture onto a small collection of custom VLSI chips. Select
portions of the machine have already been implemented in VLSI as preliminary studies.

Acknowledgments

The development of the Tagged Token Dataflow Architecture has been a concerted effort of the
members of the Functional Languages and Architecture Group at M.LT. We wish to thank Robert
lannucci for his contributions and his fine graphics.

10.

11

12.

-10-

References

Bouknight, W.J.. Denenberg, S.A., Mcintyre. D.E., Randall, J.M.. Sameh. A.H. and Slotnick,
D.L., “ The ILLIAC IV System," Proc. of the IEEE, Vol. 60, No. 4, April 1972, .

Wulf, W., Levin, A.R., and Harbison, S., Hydra/C.mmp: An Experimental Computer System
McGraw-Hill Book Company, New York, 1981. :

Swan, R.J., Fuller, S.H., and Siewiorek, D.P., “Cm* - A Modular Multiprocessor,”
Proceedings of the National Computer Conference, 1977, .

Swan, R.J. Bechtolsheim, A., Lai, Kwok-Woon. and Ousterhout, John, “ The
Implementation of the Cm* Multi-microprocessor,” Proceedings of the National Computer

Conference, 1977, .

Backus, J.. “Can Programming Be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs,” Communications of the ACM, Vol. 21, No. 8, August
1978, pp. 613-641.

Arvind, and R. A. lannucci, “A Critique of Multiprocessing von Neumann Style,” Proc. of
the 10°" International S ymposium on Computer Architecture, June 1983, .

Kuck, D. J., Kuhn, R. H. Padua, D. A. Leasure, B. and Wolfe M., “Dependence Graphs and
Compiler Optimizations,” Proceeding of ACM Symposium on Principles of Programming *
Languages, January 1981, '

Arvind, K. P. Gostelow, and W. Plouffe, “An Asynchronous Programming Language and
Computing Machine,” Tech. report 114a, Department of Information and Computer

Science, University of California, Irvine, California, December 1978,

Heller, S. K., “An I-Structure Memory Controller,” Master’s thesis, Dept. of Electrical
Engineering and Computer Science, MIT, Cambridge, Mass., June 1983.

Arvind, and R. A. lannucci, “Instruction Set definition for a Tagged-token Dataflow
Machine,” Tech, report 212, Computation Structures Group, Laboratory for Computer
Science, MIT, Cambridge, Mass,, December 1981,

Arvind, et al, “The Tagged Token Dataflow Architecture”, to be published as an MIT
Technical Report, August 1983

lannucci, R.A., “Packet Communication Switch for a Multiprocessor Computer
Architecture Emulation Facility,” Memo 220, Computation Structures Group, Laboratory
for Computer Science, MIT, Canibridge, Mass., October 1982.

