LABORATORY FOR MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE TECHNOLOGY

~

_

A Parser for the Language PADL

Computation Structures Group Memo 234
February 1984

James Edward Holderle

Thesis submitted in partial fulfillment of the requirements for the S.B. degree at the
Massachusetts Instituie of Technology

~

545 TECHNOL.OGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Bt W L

A Parser for the Language PADL

by
James Edward Holderle

Submitted to the
Department of Electrical Engineering and Computer Science
on September 28, 1983 in partial fulfiliment of the requirements
for the Degree of Bachelor of Science in Computer Science and Engineering

Abstract

PADL is a high-level digital hardware specification language that will be used as
a specification tool in the FUNCHARD CAD package for the automated design
of VLSI hardware for packet communication systems. Descriptions written in
the PADL language are the specifications of the structure and the behavior of
packet communication systems. The FUNCHARD CAD package will take as
input a PADL description—the high-level specification of a system —and
generate the VLSI design which implements the specified system.

The hardware generator component of the FUNCHARD package requires for
its input a packet communication system specification in a data flow graph
format. The purpose of the PADL parser is to begin the translation of a PADL
description from the original PADL source code to an equivalent data flow
graph representation. The parser performs complete syntactic checking and
much of the semantic checking of the PADL source code. The output of the
parser, a parse tree representation of the PADL description, is input to the
PADL semantic analyzer, which completes the translation of the system
specifications to.a-data flow graph representation.

The PADL parser is implemented in the language CLU. The parser uses the
recursive-descent technigue to parse all PADL constructs except for expressions;
PADL cxpressions are parsed by the operator-precedence method. The parser
support utilities —including the lexical analyzer, the output file generator, and
the symbol table—are grouped into a single data abstraction. This data
abstraction conveniently provides, to the parser’s many recursive-descent parsing
procedures, the access to the support utilities that they all require.

FRATNE YN

An important consideration in the design of the PADL parser was its ability to
handle errors in its source code input. The parser detects all syntactic errors and
most of the semantic errors in the source code. The parser provides, to the user,
mearingful error messages that specify well the location and the nature of errors.
The parser, having encountered an error in its input, is able 1o recover and
continue its parsing in order to search for more errors in remainder of the source
code. The parser has no single routine that handles all errors; errors are handled

within the individual recursive-descent parsing procedures.

The PADL parser, now implemented as a independent system, can be easily
modified to be incorporated as an internal component in the completed

FUNCHARD package.

Thesis Supervisor: Jack B. Dennis
Title: Professor of Computer Science and Engineering

Acknowledgments

The research for the design of the PADL language was supported by the
National Science Foundation under research grant 7915255-MCS.

The language VAL [6], designed at M.LT. by William B. Ackerman and
Jack B. Dennis, contains many constructs (especially those for expressions and
functions) that are very similar to those of the PADL language. The VAL
translator, written by William B. Ackerman, was an indispensable guide in my
designing and implementing the PADL parser. Several features of the PADL
parser are direct imitations of those found in the VAL translator. I am greatly
indebted to Bill Ackerman for the opportunity to peruse and make use of so

many of the implementation techniques that I found in his VAL translator code.

[thank Willie Lim for all the time he spent with me discussing the PADL
syntax, for his taking time so often to show me around the building and the

computer systems, and for his putting up with my using his office.

I thank Professor Dennis for his reading this manuscript and for his

offering helpful comments concerning its contents and style.

I can now, at last, thank my parents and my family for their having waited

so long for me to finish.

And to my Ef‘riends who have helped out so much in these past few weeks, [
give many warm thanks. I could not have finished this work without their

generosity.

~ Table of Contents

Chapter One: Introduction to PADL

1.1 The Purpose of PADL

1.2 The PADL Description

1.3 The PADL Language
1.3.1 Data Types
1.3.2 Expressions and Functions
1.3.3 Actions |
1.3.4 Syntax

Chapter Two: The Parser Design

2.1 Functional Requirements

2.2 Mode of Operation
2.2.1 Inputs and Outputs
2.2.2 Contents of the Output File
2.2.3 Command Options

2.3 The Function of the Parser

Chapter Three: The Implementation of the Parser

3.1 Parsing Techniques

3.2 The Parser Data Abstraction
3.2.1 The Lexical Analyzer
3.2.2 Output File Production
3.2.3 Formatted Messages
3.2.4 Parse Tree Data Storage
3.2.5 Name Scoping Procedures

3.3 The Symbol Table

3.4 The Type Specification List
3.4.1 The Structure of the List

3.5 Scoping of Name Identifiers
3.5.1 Data Type Names
3.5.2 Function Names
3.5.3 Data Value Names

3.6 Error Recovery

Chapter Four: Conclusions and Further Work

10
12
12
13
14

16

16
17
18
19
19
20

26
27
29

32
32
33
36
37
41
43

50

Appendix A: PADL Formal Syntax
Appendix B: The Parser Output File

4.1 Contents

4.2 Data Structures
4.2.1 Expressions, Actions, and Connections

66

66
67
79

Table of Figures

Figure 1-1: PADL as a specification tool in the FUNCHARD CAD

package.
Figure 2-1: Inputs and outputs of the parser program.
Figure 3-1: Functions of the parser data abstraction
Figure 3-2: Sample error messages

18
27
31

Chapter One

Introduction to PADL

The language PADL (Packet Architecture Description Language) is a
high-level hardware description language. PADL is intended for use as a tool in
the automated design of the digital hardware for packet communication systems.
Specifications written in PADL describe the structure and the behavior of packet

communication systems [1, 2}.

The PADL language was designed at the Laboratory for Computer Science
at M.IT. by by Clement K. C. Leung and William Y-P. Lim, members of the

Computation Structures Group, under the direction of Jack B. Dennis.

1.1 The Purpose of PADL

It is planned that the PADL language be incorporated as part of the
FUNCHARD system, a computer aided design (CAD) package that will aid the
designer of VLSI hardware for packet communication systems [3]. Figure
1-1 shows the basic structure of the FUNCHARD system. The FUNCHARD
system takes as input the high-level specification of a packet communication
system and generates the design of VLSI hardware that implements the system.
The designer writes, in the PADL language, the structure and behavior
specifications for some packet communication system. The PADL parser and
the PADL semantic analyzer translate the packet communication system
specification from the PADL language to an equivalent data flow graph
representation. The hardware structure generator and the silicon compiler of the
FUNCHARD system then produce, from the data flow graph representation, a

Packet Communication System
Specifications in
PADL

}

PADL Parser
v

Semantic Analyzer

" Z— Data Flow Graph

A 4
Hardware Structure Generator

v

Silicon Compiler

VLS! Hardware
System Design

Figure 1-1:
PADL as a specification tool in the FUNCHARD CAD package.

VLSI design for the specified packet communication system.

A system specification written in PADL is a high-level description,
conzerned with packet communication system structure and behavior rather
than with details of the structure and operation of system hardware. By using
PADL to specify the structure and behavior of a system before it is implemented
in hardware, it should be easier for the designer to produce systems that operate
completely in accordance with their specifications. The designer, using PADL,
can first specify the system on a high level, in terms of its behavior, and then

generate a hardware design that correctly implements the intended system

design, instead of first designing the system hardware and deriving from the
completed hardware design the actual system behavior specifications. Because
the specifications written in PADL describe packet communication systems on a
high level, PADL system specifications are not as strongly influenced by specific
hardware technologies as are hardware-oriented system specifications. The same
PADL specifications can be used to generate several different hardware
implementation designs, designs using different types of hardware devices or
designs with different emphases on such constraints as cost and speed. The
specifications written in PADL for a system need not become out-dated or

obsolete because of technological advances.

1.2 The PADL Description
The PADL language is used to write PADL descriptions. A PADL

description is a textual representation of the specifications for the structure and
behavior of a packet communication system. The input to the FUNCHARD
CAD package of Figure 1-1 is a PADL description for the packet

communication system being designed.

A packet communication system is composed of modules that operate
independently and perhaps concurrently. Each module in the system has input
and output ports through which it communicates with other modules in the
system. Modules communicate by data packets transmitted on channels that
connect the module ports. Data packets are the only means of communication

between modules.

A PADL description specifies the structure and behavior of a packet
communication system. The modules defined in a PADL description are
independent and operate concurrently. The PADL description specifies input

i

10

and output ports for each module in the system. Each module in the PADL

description is defined in terms of the behavior of the module or in terms of the

module’s structure.

A behavior module definition in PADL specifies the input and output
ports of the module (the module must have at least one port); state variables for
the inodule, which may be used to describe register or memory storage; what
operations are performed on data packets received from which of the module’s
input ports; and what data packets are sent from which of the module’s output
port.. The operations specified in a behavior module are strictly limited to

sequential algorithms. Concurrent operations within a behavior module cannot

be specified.

A PADL structure module definition specifies the input and output ports
of tke module (each module must have at least one port), a list of modules
contained within the structure module as submodules, and how the ports of the
submodules and the ports of the module itseif are connected. The submodules
specified in the structure module definition may be any mixture of behavior or

strucure modules. The submodules in a PADL structure module operate

concurrently.

The two kinds of module definition, behavior and structure, allow the
designer of packet communication systems to specify, with different PADL
descriptions, a system in varying levels of detail. A behavior module definition
Is a detailed specification of a module: it defines exactly a module's behavior. A
structure module definition may represent a less detailed specification of the
module’s behavior. The PADL language supports structural composition and
decoraposition techniques of system design; it allows for step-wise refinement of

system specifications,

11

A PADL description, which comprises the complete packet
communication system specification, is composed of definitions written in the
PADL language. There arc three kinds of definitions in a PADL description:
module type definitions (for both behavior and structure modules), function
definitions, and data type definitions. The system designer may include, in the
PADL description, definitions for functions and data types that he finds useful

for specifying the behavior or the structure of the defined module types.

A PADL description is contained in one or more text files, each containing
one or more PADL definitions. The files éontaining the PADL description are
the PADL source files.

1.3 The PADL Language

1.3.1 Data Types

The PADL definition for a module type must specify the data types of the
module’s ports. The type of a port is determined by the type of data packets that
it transmits. Each port can transmit only one type of data packet. Only ports of

the same type may be connected.

PADL supports the primitive data types integer, bitstr (bit string), and
null: and the compound types array, record, and oneof (tagged, discriminated
union). There is, for each of the PADL data types, a complete set of operations

for its use.

The hardware designed to implement a system specified in PADL must
contain enough physical resources to store and manipulate the data types found
in the PADL description. It is important that the amount of such resources

12

necessary to implement a system be discernible from its PADL description. The
size of each PADL data type, primitive or complex, is static and must be
explicitly specified. A PADL array has exactly one dimension; array bounds

must be specified and they do not change.

PADL is a strongly typed language. The types of all PADL data
elements— ports, state variables, function arguments and return values, and
named data values—must be explicitly declared in the PADL description. All
PAD. constructs that include these data elements must contain data elements

with “ypes compatible with those required by the constructs.

Data types, primitive or compound, may be defined and referred to by
name. Defined data types are useful for frequently used data types and for data
types with complicated specifications. A defined data type is not a new type; it is

equivalent to the PADL type that it represents.

1.3.2 Expressions and Functions
Each PADL data type represents a domain of data values. A value is a
single element of data. Each value is of a particular data type.

In PADL, an expression is an abstract representation of one or more data
values. The number of values that an expression denotes is defined as the arity
of the expression. An expression of arity one denotes a single value; an
expression of arity three denotes three distinct values. Each value in an
expression is of a particular data type. The types of the values in an expression

of arity greater than one need not be the same.

Functions in PADL, like expressions, are abstract representations of

values. The invocation of a function results in an expression. Like any

13

expression, the expression resulting from a functicn invocation is of some
particular, explicitly declared arity. The values of a function’s resulting
expression may be dependent on values provided as arguments to the function in
its invocation. The values resulting from a function invocation can depend only
on the values within the function definition itself and on the values passed to the

function as arguments,

1.3.3 Actions

A PADL description represents specifications for a hardware system.
There is, in the hardware system, some concept of the state of the system. The
state of the hardware system is dependent on the contents of the memory storage
and the contents and operational status of the module ports and their
connections. PADL expressions and functions are abstract; they have no direct
affinity with the state of the underlying system hardware. Those PADL
constructs that are involved with the hardware state are the PADL actions.

Actions are a part of the operation specifications in behavior module
definitions. The basic actions are the PADL constructs that receive a data packet
from an input port, send a data packet from an output port, access the value of a
state variable, or assign a value to a state variable. A basic action is an
imperative statement, like the statements in conventional programming
languages. The execution of an action directly involves the state of the hardware
system; an action either modifies the hardware state, produces a value that is

dependent on the state, or does both things.

The action that receives a data packet and the action that accesses a state
variable both produce data values. These data values are, like those represented

by expressions, of a particular, explicitly defined type. These action values can

14

be used in some PADL constructs in place of the values of expressions; however,
any construct that contains the value from an action is itself classified as an

action, for it is not abstract, but is involved with the hardware state.

1.3.4 Syntax
The syntax of PADL—which must represent module type, function, and

data type definitions; expressions; actions; and all other PADL constructs—is

quite extensive.

The PADL syntax is highly structured; a construct is readily identified by
its position in the PADL source text or by the unique PADL keywords that

delimit the more complex constructs.

The PADL syntax is very explicit; PADL is a strongly typed language, and
its expﬁcit syntax allows complete type checking within each definition in the
PADL description. A definition in a PADL description may contain references
to other function and module type definitions in the description. Within a
definition, such a reference to an external definition must be preceded by a
decleration of the external reference. The external declarations contain enough
information so that each definition in the PADL description may be examined
independently from the others and still be checked completely for type
correctness of its constructs, including its constructs that involve external

definitions.

Appendix A contzins the formal definition, in a BNF format, of the
complete PADL syntax.

15

Chapter Two

The Parser Design

The PADL parser is the first component in the FUNCHARD CAD
package shown in Figure 1-1. The parser receives for its input the PADL
source code, input to the CAD package, that comprises a PADL description.
The function of the parser is to read through the PADL source code and to
translate it from its original textual form to some representation, equivalent in
meaning, that the next component of the CAD system, the PADL semantic

analyzer, can more easily understand.

2.1 Functional Requirements

It is the responsibility of the parser to verify that the PADL source code
that it translates is syntactically correct. The parser must perform all syntax
checking of the source code so that the output that it produces for the PADL -
semantic analyzer represents a PADL description that is free from syntactic
errors. The parser also checks the correctness of a great deal of the source code’s
semantics. The parser performs as much of the semantic checking as it can do
without beginning to interpret the source code; for example, the parser can
discover, directly from the source code syntax, the data type of an expression,
but it does not attempt to evaluate an expression to ascertain its value. The
semantic checking completed by the parser includes the verification of
adherence to the PADL sroping rules for name identifiers and the verification of
the type-correctness of all PADL expressions, function invocations, and module

port operations; the parser does no checking of array bounds or bitstr lengths,

16

nor any other checking of imits that requires knowledge of expression values.

It is the responsibility of the parser to identify all the syntactic and
sementic errors that it detects in its PADL source code input. A major
cons deration in designing the parser was its ability to detect, identify, and
recover from errors encountered while parsing the source code. As has been
already noted, it is most important that the parser detect all syntactic errors; the
parser must not produce output that is not syntactically correct. It is very
impcrtant that the parser, having detected an error, is able to identify the error
and communicate well of its discovery to the user. The parser must generate
error messages that are understandable and meaningful to the user, so that the
user may easily identify, locate, and correct the errors. It is also important that
the parser, having detected and identified an error in the source code, is not
disabled and forced to terminate parsing. The parser should attermnpt to recover
from every error that it encounters and should continue to check for other

syntactic and semantic errors that may exist in the remainder of the code.

The PADL semantic analyzer, which continues the source code translation
begun by the parser, is also apt to detect errors—semantic errors for which the
parse: did not check —in the PADL code. The semantic analyzer should be able,
like the parser, to provide understandable error messages to the user. It is
important that the parser include in its output enough information to allow the

semartic analyzer to generate meaningful error messages.

2.2 Mode of Operation
The PADL parser is the first component of the FUNCHARD system to

have been implemented. The current implementation of the parser is a

complete, independent system, performing its own input and output operations

17

and interacting with the user in a friendly manner.

2.2.1-1nputs and Qutputs
The inputs and outputs of the PADL parser program are shown in

Figure 2-1.

PADL Source File 1 OQutput File
_ | ™ P
arse Tree)
PADL Parser
Command Line | —L.
Options Messages
Figure 2-1:

Inputs and outputs of the parser program.

The parser receives its PADL source code input from a single PADL source file,
produces a translation of the source file’s contents, and generates a single output
file. When invoked, the parser program requests from the user a command line.
The command line specifies the name of the PADL source file to be translated
and the list of options which the user selects to alter the normal behavior of the
parser. The parser program’s output consists of an output file and a list of the

messages that the parser generates during its execution.

An entire PADL description, which represents the specification for a
packet communication system, may consist of more than one PADL source file.
The parser program translates only one source file. In order to translate all the
definitions in a PADL description that is contained in more than one source file,

the parser must be invoked once to translate each of the individual source files.

18

The parser produces a separate output file for each of the source files that it

transiates.

2.2.2 Contents of the Qutput File

The output files produced by the parser are the only means of
comniunication between the parser and the subsequent segments of the
FUNCHARD CAD package. The remaining segments of the FUNCHARD
systern have no access-to the PADL source files. The parser’s output files must

contain all the information necessary to complete the interpretation of the PADL

source code,

Each output file contains the name and création date of the source file
from which the output file was generated; the translations, in parse tree format,
of all the module type definitions, function definitions, and data type definitions
found in the source file; lists of name identifiers and data type specifications
from all the PADL definitions in the source file: and a flag that indicates
whether the parser detected any errors while translating the the source file,

A listing of the definitions for the actual data stfuctures used in the parser's
outpu: file appears in Appendix B. Those definitions are a complete, formal
specification of the contents and the structure of the output file.

2.2.3 Command Options

‘The basic command issued to the parser specifies only the name of the
PADL source file to be translated. The suffix of the source file name must
be .pdl. The command may include, in addition to the source file name, a list of

options which modify the operation of the parser program.

19

In normal operation, the parser produces an output file with the same
name as the input source file and the suffix .bnp. An output file name, perhaps
different from that of the input file, may be explicitly requested. The output file
name must have the suffix, .bnp. 1f the parser finds no file with the rame
(specified or assumed) for the output file, it creates a new file; if the output file

already exists, its contents are replaced with the new output of the parser.

The parser normally sends the messages generated during its execution
directly to the terminal display. The user may specify the name of a list file so
that parser messages are sent to the list file, not to the terminal. If the parser
finds no existing file with the specified list file name, it creates a new file; if the
list file already exists, its contents are preserved and the new messages of the

parser are appended to its end.

The user may choose to suppress the generation of the output file. If so,
the parser translates the input source file, performs its usual checking of syntax
and semantics, generates its usual error messages, but does not produce an
output file. The user may choose also to suppress parser messages that list
informative details of the definitions in the source file being translated.

2.3 The Function of the Parser
Many of the functional requirements that the PADL parser must fulfill

(especially those concerning source code €rrors) were discussed in Section 2.1.
This section contains a discussion of the extent of the parser's functional
responsibilities. In this section are presented some of the tasks that the parser

does nct perform, tasks that must be performed by the PADL semantic analyzer.

The parser translates only one source file and produces an output file for

20

the source file translated. The source files of a PADL description that consists of
more than one file must be parsed individually: there must be one parser
execution for each source file translation. The parser maintains no memory of its
previous executions. Each output file that the parser creates is independent from
any others it has produced. The PADL semantic analyzer must have the
capability to assemble the separate output files of the parsed PADL description

into a unified whole; the parser makes no attempt to do so.

Each PADL source file contains one or more PADL definitions. The
parser translates each PADL definition as an independent, self-contained unit.
Each definition is parsed independently of all others, separately from even those
definttions contained in the same source file. The parser makes no attempt to
check references between different definitions in a PADL description. If a
definition includes references to other definitions, it must include an external
declaration for each external definition referenced. The external declarations
supply all the information that the parser requires 1o complete its syntactic and
semantic checking of the current definition. In order to verify the correctness of
a construct that involves an external definition, the parser examines the
corretponding external declaration that is contained within the current
definition. The parser does not verify that the information in an external
declavation is correct, that the information in the external declaration
corresponds to the actual external definition; the parser does not attempt to
verify even that a declared external definition actually exists somewhere in the
PADIL. description. Each PADL definition is parsed separately from all others,
The s:mantic analyzer must be able to assemble not only the individual output
files, but also all the individually parsed definitions of the PADL description into
a unified whole. The semantic analyzer must verify that each external
declaration refers to a definition that does exist in the PADL description, and

21

i

that the information in the external declaration 1s correct.

The parser does not attempt to correct €rrors that it detects in the PADL
source file. When the parser detects an error, it notifies the user of the error and
then, in order to proceed with the translation of the remaining source file, it tries
to recover from the error. The parser attempts to ignore the error condition by
assuming that the source file contents are different; it tries to correct the erratic
code. These corrections that the parser performs are in no way attempts to
repair the source file; the source file is never modified. However, the parser’s
correction assumptions may effect the contents of the output file. When an error
is detected in the source file, the parser's attempt to ignore the error condition
may result in output file contents that are not accurate translations of the actual
source file contents. The error flag in the output file is set to indicate that an
error was detected during parsing of the input file and that the output file itself
may contain errors. The semantic analyzer should not attempt to process further

the contents of an output file whose error flag is set.

Chapter Three

The Implementation of the Parser

The PADL parser program is written in the langu age CLU[5]. The
progtam was developed on the TOPS-20! operating system. The parser program
should be easily transportable to any other operating system that supports CLU.
All o>erations in the parser that interact with the operating systern — input and
"output to the terminal and input and output to files—are performed with CLU
~ strears. The names of files, whose format is dependent on the operating system,
are manipulated with CLU file_name routines. The CLU language should deal
with most of, if not with all, the differences in operating systems. Few, if any,
changes to the parser program should be necessary to adapt it for execution on a

different operating system.

3.1 Parsing Techniques

The PADL parser is implemented as a recursive-descent parser. The
parse: uses the recursive-descent technique to parse all PADL constructs except

for erpressions; PADL expressions are parsed using the operator-precedence
methaod.

There are several reasons why the recursive-descent parsing technique is
an appropriate choice for the PADL language. The PADL syntax is easily
parsed by the recursive-descent method. The grammar that defines the PADL

syntax (with the exception of that for expressions) contains no left-recursive

1.'?"OPS~2() is a trademark of Digital Equipment Corporation.

23

rules: a PADL construct is unambiguously identified by its first token and by its
position in the source code. The parser for PADL source code requires no look-

ahead and no backtracking capabilities.

A recursive-descent parser is easily implemented incrementally. The
parsing procedures for syntax constructs, which comprise most of the code in a
recursive-descent parser, are independent units. The parsing procedures can be
added to the parser gradually as they are implemented. The recursive-descent
parser being implemented, incomplete without its full complement of parsing
procedures, is a fully functioning parser, although it can parse only those
language constructs for which it has parsing procedures. Individual parsing

procedures can be tested as they are added, one at a time, to the parser.

A recursive-descent parser can be modified readily to accept different
language constructs. The independence of parsing procedures that makes easy
the incremental implementation of a recursive-descent parser also makes easy
the modification of the parser. The modification of one parsing procedure
should not make necessary the modification of others. The syntax specifications
of PADL were changed as the PADL parser was being implemented; they are
apt to be further modified as the remainder of the FUNCHARD system is
developed and the PADL language is actually used. It is important that the
PADL parser can be easily modified to accept changes and additions to the
PADL syntax.

A recursive-descent parser has the valid prefix property. the parser can
detect an error in the source code as soon as it encounters code that is not the
beginning of a valid construct. Not all parsers have the valid prefix property; an
operator-precedence parser, for example, may read far past a mistake in the

source code before it detects the error. The valid prefix property of a recursive-

24

descent parser improves the parser’'s ability to handle errors in the source code.
The =xact location of an error is known and can be told to the user. An error can
be identified and repaired before any more code is parsed; the parser never
needs to unparse and parse again the code, following a mistake, that was

translated before the error was detected.

The grammar for PADL expressions is full of left-recursive rules.
Attemnpting to parse PADL expressions using the recursive-descent technique
would be very difficult. The grammar for PADL expressions is, however, a true
operalor grammar. any two terms in a PADL expression must be separated by
an (perator; no two terms may appear together. The syntax for PADL
exprossions is easily parsed with the operator-precedence method. The PADL
parser therefore uses the operator-precedence technique to parse the parts of
PADL expressions concerned with operators; the remaining PADL constructs,

including the terms in expressions, are parsed using the recursive-descent

technique.

The PADL parser is a one-pass parser; it scans the input file only once in
orde: to parse the source code. In all situations (with one exception), when the
parser encounters a name identifier in the PADL source code, it knows already,
from having examined the preceding code, the translation value of the name.,
All name identifiers used in the PADL code must be explicitly declared. Only
one PADL construct allows the use of a name identifier in the code to precede
the name’s declaration. A discussion of the construct, and the manner in which

it is parsed in one pass, appears in Section 3.5.3.

25

3.2 The Parser Data Abstraction

The PADL parser consists of a set of parsing procedures and a set of
parsing support utilities. The support utilities provide the parser's necessary
functional capabilities, such as reading the source file, creating the output file,
and generating error messages. The parsing procedures use the support utilities

in order to perform their parsing functions.

Fach of the parser’s parsing procedures must have access to the parser’s
support utilities. In the CLU language, a procedure has access to only those
items passed to it as arguments. Each of tﬁe parsing procedures, a CLU
procedure, must receive as arguments all the parser's support utilities. The
number of parsing procedures in the PADL parser is large; the number of
parsing procedure calls in the parser is larger still. In order to avoid the task of
listing explicitly several times, as arguments in each of the many parsing
procedure calls, the entire list of parser support utilities, all of the parser’s
support utilities are grouped together into a single data abstraction.

The parser data abstraction contains the parser's support utilities. The
functions that the parser abstraction supports are shown in Figure 3-1. The
parser abstraction is passed as the first argument to each of the parsing
procedures. It provides a convenient means through which to give all the
parsing procedures access to the support utilities. Grouping all the parser's
support utilities into one data abstraction makes explicit the separation and the
interface of the utilities and the parsing procedures. Because the parser is a data
abstraction, the only means of access to the contained support utilities is through
the parser abstraction’s defined routines. The parser abstraction decreases the
interdependence of the utilities and the parsing procedures. If the parser access

routines remain unchanged, the support utilities within the parser abstraction

26

parser

Lexical OutputFile Message Parse Tree Name Symbol
Analysis Production Formatting Data Storage Scoping Table

Figure 3-1:
Functions of the parser data abstraction

can be modified without making necessary the modification of all the parsing

procedures that use them.

A discussion of the support utilities contained in the parser abstraction

follows,

3.2.1 The Lexical Analyzer

The tokrdr (token reader) data abstraction is the lexical analyzer for the
PADL parser. It 1s contained in and accessed through the parser data
abstrzction. The tokrdr reads the PADL source code from the parser’s input file.

It is the parser’s only means of access to the source file.

The tokrdr reads characters from the source file; ignores insignificant
blank spaces, tabs, new line characters, and comments: and recognizes groups of
characters that constitute valid PADL tokens. PADL tokens are punctuation
and operator symbols (having one or two characters), integer constants, bitstr
constants (in binary, octal, or hexadecimal format), PADL keywords, and name

identifier strings. When the tokrdr recognizes a token in the source file, it creates

27

[T —

a token object. A roken object identifies the type and the value of a token, and,

if the token is a name identifier string, denotes the current name bindings of the

identifier.

The tokrdr lexical analyzer contains two subordinate data abstractions: the
chrdr and the line_buff. The line_buff (line buffer) abstraction reads the source
file; it contains the stream through which the source file is read. The line_huff
keeps the characters of one source file line in a buffer with a pointer to the
character that is next to be read. When all of the characters in the buffer have
been rezd, the line_buff reads into the buffer the next line from the source file.
The line_buff counts and assigns numbers to the source file lines. The chrdr
(character reader) abstraction contains the line_buff. The chrdr makes simple the

interface: between the tokrdr and the line_buff; it supplies to the tokrdr the source

file characters, one at a time.

The tokrdr provides two basic routines, peek and flush, which give the
parsing routines access to the source file tokens. The peek routine does not read
from the source file; it returns the foken object for the token last read.
Subsequent calls to peek, before an intervening call to flush, will return the same
token object. The flush routine reads characters from the chrdr to identify the
next token in the source file. The peek calls following a flush will return the
token object for the new token; the previous foken object is discarded and can be

accessed no more,

The PADL lexical analyzer needs no look-ahead capabilities to identify
tokens. The last character in a PADL token is readily identified when the
character itself or the character following it is read. Neither the chrdr nor the
line_buff supports look-ahead. Like the tokrdr, the chrdr abstraction provides

peek and flush routines with which the tokrdr can access the source file

28

characters. The chrdr peek routine allows the tokrdr to identify the end of a

token by viewing, and not discarding, the character following the token.

The tokrdr abstraction contains and maintains the symbol table for the

PADL parser. The symbol table is discussed in Section 3.3

The PADL lexical analyzer makes no attempt to detect errors in the
spelling of identifier names or PADL keywords. Each identifier encountered in
the source file is assumed to be a valid identifier name and is listed in the symbol
table. Because the PADL syntax requires that the binding of every identifier
nam: be explicitly declared, any errors in the spelling of identifier names should
be dztected in the parsing procedures, which can identify all invalid uses of an

undeclared (possibly misspelled) identifier name.,

3.2.2 Output File Production

The bnper data abstraction, part of the parser abstraction, controls the
creation of the parser output file. The parser output file is a CLU image file. It
is written and must be accessed through a CLU istream. The use of an istream to
acces; the ouiput file is no more difficult than would be the use of a normal
CLU stream. A parser output file written as an image file is much smaller than
the sume output file written as a normal CLU data file: a CLU image file
contans no explicit CLU data type specifications intermixed with the actual
data. The use of the image file instead of the normal data file for the parser
output file introduces no real dangers of data misinterpretation. The output file
is wriiten by the pafser is and read by the semantic analyzer; the user has no
need to access—to interfere with— the output file contents. The contents of the
parser output file are highly structured: it is not likely that the semantic
analyzer’s attempt to read a corrupted output file could be successful,

29

The bnper abstraction (named for the parser output file .bnp suffix)
performs two functions. The bnper generates the output file. It contains the
istream to the output file. It sends the output data, in the correct output file
format, through the istream to the output file. Because the production of the
parser output file is controlled within a data abstraction, only the bnper, and not
the rest of the parser, need be changed if the structure of the output file must be

alterec.

The structure of the output file requires that all the file contents be sent
through the output istream at one time, when the parsing of the entire PADL
source file is complete. The individual definitions in a PADL source file are
parsed separately. The parser abstraction is used to translate only one PADL
definition at a time. The bnper provides storage for the translations of PADL
definitions. When the parsing of a definition is complete, the definition's
translation is stored in the bnper abstraction until all the other definitions in the
source file are parsed. When the entire source file is parsed, the bnper generates

the output file.

3.2.3 Formatted Messages

The messages generated by the parser are sent to the user through the list
stream. The list stream connects the parser with either the user’s terminal or with
a message output file. The /st stream is contained in the msger, another part of
the parser abstraction. The msger (messenger) data abstraction controls the
format of the parser messages. The msger formats and sends through the list
stream all the different kinds of parser messages: error messages, waming
messages, and messages providing helpful helpful diagnostic information.
Because the formats of the parser messages are controlled within the ‘rnsger

abstraction, only the msger need be changed if the format of any parser messages

30

must be modified.

The most important function of the msger is its generation of error
messages. An important functional requirement of the PADL parser is that its
error messages be meaningful and easy to understand. An error message should
make clear the nature of the error and should indicate the error’s exact location
in the source file. A sample of the parser's error messages, showing the format of

two raessages generated by the msger, is shown in Figure 3-2.

ERROR AT LINE 36:
type packet = record[address: bitstr[0:7], value: pval]
—-—f-

A ';' must separate record field specifications. Assuming

this 1s a ';°’.
* Resuming translation...

ERROR AT LINE 206:
et x: integer = from inport 1m x + sum,
-fu

Expecting "in" to begin LET construct body.
* Skipping to --

LINE 208:
~ andlet

-f-
* Resuming translation..,

Figure 3-2:
Sample error messages

Each error message generated by the msger indicates the source file line number
on which the error occurs. It includes the text of the line containing the error
and « pointer to the exact position of the error. The message explains clearly

what type of error is being indicated and how the parser intends to handle the

€ITOor

31

The information that specifies the the error's location and context;_- is
obtained from the line_buff abstraction (Section 3.2.1). The line_buff returns
(through the tokrdr) the place objects that are used by the msger to depict the
location of errors, A place object contains a string containing the characters in a
source file line, a pointer to a character in the line, and the line number of the

source file line represented.

3.2.4 Parse Tree Data Storage

The parser abstraction contains data structures to hold the parse tree
representation being constructed for the PADL definition being parsed. The
parser must be able to translate the three kinds of PADL definition: module
type definitions, function definitions, and data type definitions. Each kind has a
different parse tree representation. The parser abstraction contains data
structures to hold the parse tree representations for all three kinds of PADL
definition, along with an indicator that denotes what kind of definition is being

translated.

The parse tree storage structures contain data for only one PADL
definition, the definition being currently parsed. The completed translations of
the definitions in the file that were previously parsed are stored in the bnper

abstraction (Section 3.2.2).

3.2.5 Name Scoping Procedures

The PADL language specifies rules that define the scopes of bindings to
name identifiers. There are several different kinds of name bindings iz PADL;
each kind has defined for it a different scoping rule. The parser abstraction
provides routines and data structures that the parsing procedures use to

- implement some of the name scoping rules. The scoping rules that are easily

32

implemented are accomplished entirely within the parsing procedures.

A more detailed discussion of the PADL scoping rules for name identifiers

and how the parser implements them is contained in Section 35,

3.3 The Symbol Table

The symbol table of the PADL parser is used to store information
regarding the name bindings of the name identifiers in a PADL definition. In
PADL, a name identifier may be bound to a data value (an abstract value or a
state variable), a function, a data type specification, a record field, or a oneof tag.
A single name identifier may have (at the same time, without conflict) more than
one or all of these bindings. The information for the bindings of record field
names and oneof tag names is not stored in the symbol table. The manner in

which record field and oneof tag name references are resolved is discussed in

Section 3.4.

The symbol table is contained in the tokrdr, a part of the parser data
 abstraction (Section 3.2.1). The symbo! table is a CLU table; it is a hash table
data structure. There are entries in the symbol table for name identifiers and for
the PADL reserved words. PADL keywords are reserved words; they cannot be
used 1s name identifiers. The symbol table entry denoted by a PADL reserved
word string indicates that the string is a reserved word. The symbol table entry
for a name identifier contains the symbol object for the identifier, A symbol
objec: is a data structure that records a name identifier’s current bindings to data
values, functions, and data types. Each name identifier found in the PADL
definition has exactly one entry in the symbol table: there is a unique symbol

object for each identifier name.

33

The keys for the symbol table entries are identifier strings. The case
(upper or lower) of the characters in PADL reserved words is not distinguished;
the symbol table keys for the PADL reserved words are lower case strings. The
case of the characters in name identifiers is distinguished. The symbol table keys

for name identifiers are strings containing both upper and lower case characters.

The tokrdr accesses and updates the symbol table. When the tokrdr
encounters an identifier string in the source file, it accesses the symbol table to
ascertain the identifier's name bindings. Using as a key the identifier string,
converted to all lower case characters, the tokrdr checks first for a symbol table
entry -denoting a reserved word. If the identifier is a reserved word, the tokrdr
simply creates a foken object (Section 3.2.1) that signifies the particular PADL
keyword. If the indicated symbol table entry 1s not for a reserved word, or if no
entry having the lower case string key exists, the tokrdr again checks the symbol
table, using as a key the original identifier string with its correct capitalization. If
the identifier string does denote a symbol table entry, the tokrdr creates a loken
object that contains the name identifier’s symbo! object. If there is no entry in
the symbol table for the identifier, then the identifier has not yet been
encountered while parsing the current definition. The tokrdr creates a new
symbol object for the name identifier. The new symbol object indicates that the
name identifier has no current bindings. The tokrdr creates, with the new

symbol, a new symbol table entry and a foken object for the new name identifier.

The tokrdr never modifies the symbol objects stored in the symbol table.
The tokrdr gives the parsing procedures access to symbol objects through the
token objects for name identifiers. The parsing procedures can, through the
token object, modify the symbol object for a name identifier in order to change

its binding information.

34

The PADL parser parses separately the individual definitions in a source
file; the parser requires a separate symbol table for each definition that it parses,
The parser's symbol table must contain entries for only those name identifiers
fromr the definition being currently parsed. Name identifiers appearing only in
previously parsed definitions should not have entries in the current symbo] table,
The tokrdr provides a routine, refresh, that must be called before the parsing of
each definition in the source file. The refresh routine creates a new symbol table
for t1e tokrdr. The new symbol table contains entries for the PADL reserved
worcs only. The tokrdr adds symbol table entries for name identifiers as the

identifiers are encountered in the definition being parsed.

The parser translates all name references. The parser output file,
contzining the parse tree representations for PADL definitions, has in it no
unresolved name identifier references. Name identifier references in the source
code are encoded in the parser output file as integer indices to arrays, arrays that
contain representations of objects appropriate to the name identifier references,
such as the translations of function, module type, or data type definitions.
Becauise the parser implements the PADL rules for name identifier scoping and
resolves the references to all name identifiers in the source file, the PADL
semantic analyzer has no need of the parser’s symbol table. The hash table

symbo! table is not included in the parser output file,

[n addition to the hash table symbol table, the tokrdr contains a list of
identi fier name strings. This name list contains all the identifier strings from all
the dcfinitions in the source file. The name list contains both the identifier
strings of those pame identifiers with entries in the symbol tables and the
identifier strings of those names used as record field names and oneof tag names,
The strings in the name list are not in any sorted order, and the same name string

may appear in the list more than once.,

35

The name list array is included in the parser output file. It is the only data
structure in the output file that contains identifier name strings. In the output
file, all name identifier strings are represented by integer indices to this array.
The external references (between separate definitions), which the PADL parser
does not attempt to resolve, must be resolved by the PADL semantic analyzer.
The semantic analyzer needs name identifier strings in order to match external
declarazions with the actual PADL definitions to which they refer. The inclusion
of the name list in the output file also allows the semantic analyzer to provide, to
the user, meaningful messages concerning name identifier references. The
indication of the actual identifier in the encoded translation of a resolved name
reference is unnecessary; the PADL semantic analyzer does not need to know
the identifier string for a name reference that the parser already resolved. The
parser, however, encodes into the translation of every resolved name reference.
the name list index of the identifier string used in the reference. The semantic
analyzer can use the actual name identifier strings to generate meaningful error

messages concerning name references.

3.4 The Type Specification List

The parser stores all information concerning the type specifications for
PADL data elements in a single data structure, the type specification list. PADL
is a strongly typed language. In the PADL source code, the type specifications
for the data elements—module ports, state variables, function arguments and
return values, and named data values—must be explicitly declared before the
data element may be used in PADL constructs. The parser can discern the type
specification for the resulting data values of all PADL operations and
express'ons by examining the type specifications of the data elements used in

composing such constructs.

36

The parser needs access to the information in the type specification list in
order to perform its type checking of the PADL source code. The parser must
verify that the type specifications of data elements contained in PADL constructs
conform with the type specifications required by the constructs. The subsequent
segments of the FUNCHARD system also need the information in the type
specification list. The type specification of a data element indicates the amount
of paysical resources required to store and to manipulate the data element. The

| semiintic analyzer' needs access to the information in the type specification list in
order to complete the type checking of the PADL source code; the semantic
anal /zer, not the parser, must verify the type correctness of external references

betw een the separate definitions in the PADL description.

The type specification list is a part of the parser data abstraction in the
PADL parser (Section 3.2). All of the parser's parsing procedures have access to
the type specification list. The parsing procedures read the type specification list -
in order to check the type-correctness of the constructs that they parse; they
modify the type specification list by adding to the list new type specification
entries for the new data elements whose declarations they encounter. The type
specification list is included in in the parser output file so that the remaining

com sonents of the FUNCHARD system may have access to the information in

the list.

3.4.1 The Structure of the List

The type specification list is an array of {ypespec objects. Each typespec
object represents the data type specification of a PADL data element. In the
parser’'s parse tree translations of PADL definitions, all data type specifications
are represented by indices to the type specification list. The data type of each

data element is represented by an integer, the index to the type specification list

37

for the fypespec object representing the element’s data type.

The first entries in the type specification list are reserved for the typespec
objects that represent the PADL primitive types null, integer, and bitstr{1:1}.
These primitive types appear frequently in the PADL source code. The parser’s
parsing procedures know the indices of these primitive types; the same indices

are always used to represent them.

The parser produces and maintains only one type specification list. The
translations of all the definitions in a PADL source file contain index references
to the same type specification list. New typespec entries are added to the type
specification list for every new data element (with the exception of those data
elements having one of the primitive types mentioned above) encountered in the
source code. The translations of different PADL definitions from the same file
do not contain references to the same type specification list entries. The typespec
objects for a single PADL definition are located in a contiguous segment of the

type specification list, apart from those of any other definition.

A typespec object contains the complete type specification for a data type.
The PADL data types are null, integer, bitstr, array, record, and oneof. A
typespec object also indicates the data type’s name, if it exists. (Only user-
defined data types, defined in a type construction, have names.)

A typespec object includes all the type specification information that is
relevant for the particular data type that it represents. For the PADL primitive
types null and integer, the data type indication alone suffices for a complete type
specification. The types bitstr and array require the indication of two integer-
valued expressions for their upper and lower bounds. The PADL compound

types require type specifications for the subtypes from which they are composed.

38

The typespec object for an array type must indicate the data type of the array’s
elements; the rypespec objects for record and oneof types must indicate the
names and the data types of the record fields and the oneof tags. The type
specifications for the subtypes of compound data types are, like all data types,
represented by indices to the type specification list. The complete type
specification of a compound type, such as a record, may involve several of the
typesnec objects in the type specification list. The type specification of a record
requires a fypespec object for the record type itself; the top-level lypespec
contsins the indices of the lypespec objects for the data types of the record fields:
and, f the data types of the record fields are themselves compound types, their

Iypespec objects contain the indices of even more lypespec objects.

The typespec representation for the fields in a record type is contained in
two arrays. The first array is a list of indices to the parser's name list (Section
3.3) that denote the name strings for the record fields. The indices are listed in
canorical order, corresponding to the alphabetical ordering of the field nanie
strings. The second array contains a list of indices to the type specification Ijst.
These indices indicate, in the same canonical order, the data types of the record
fields. The type specifications for the tags in a oneof type are represented in a
similar manner. The Iypespec object for a oneof type contains, to represent the
oneof tags, an array of name list and an array of type specification list indices,

'The indices in both arrays are listed in canonical order, corresponding to the
alphabetical ordering of the tag name strings. A oneof ypespec object may also
include an array of integers or an array of strings to indicate the optional integer
or bitstr encodings for the oneof tag names; this array, if it exists, is also arranged
by the canonical ordering of the tag names.

The canonical ordering of record fields assigns to each field in a record a

unique integer, the index of the field in the lypespec canonical field arrays, hy

39

which it can be identified. In the parser's translation of PADL definitions, a
reference to a record field is represented by two integer indices. The first is an
index to the type specification list; it denotes the (ypespec object for the
specification of the record type. The second is an index to the two canonical
field arrays in the specified fypespec object; it denotes the chosen record field.
The parser represents oneof references in this same manner. A oneof tag is
represznted by the type specification list index of the oneof typespec object and
by the index to the typespec canonical tag arrays that denotes the chosen oneof

tag.

In the PADL source code, the use of name identifiers in reference to
record fields or oneof tags is limited to the few constructs that involve record or
oneof type specifications. It is quite clear, in the context of these type
specification constructs, which name identifiers are used in reference to record
field names and oneof tag names. The binding information of record field and
oneof tag names is not stored in the parser's symbol table (Section 3.3). The
canonically ordered field and tag arrays in the type specification list typespec
objects are used to resolve references to record field and oneof tag names.
When, within a type specification construct, it encounters a name in reference to
a field or a tag, the parser looks through the canonically ordered field or tag
name array in the appropriate fypespec object. If the encountered name
identifier matches an entry in the canonical array of name list indices, the parser
knows that the identifier is bound to the record field or to the oneof tag denoted
by the canonical array index. If the encountered name identifier is not found in
the canonical name list index array, the parser knows that the identifier is not
bound to a record field or oneof tag name. The resolution of identifier bindings
1o record field and oneof tag names is easily accomplished using the canonical

name list arrays in the fypespec objects. There is no need to clutter the parser’s

symbol table with the information for these record and oneof field and tag name

bindings.

Adherence to the PADL scoping rules for name identifier bindings to
record field and oneof tag names occurs automatically. An identifier name used
as a record field or oneof tag has the same scope as the type specification of the
record or oneof to which it belongs. All Iypespec objects that are referenced
Tepresent type specifications that are defined within the current scoping block of
the PADL source code. Ifa Iypespec object is referenced, the type specification
that it represents is defined and the name identifiers for its record fields or oneof

tags are bound in the current scoping block. A valid reference to an unbound

field or tag name identifier cannot Occur.

3.5 Scoping of Name Identifiers

A scoping block in the PADL source code is a PADL construct that cap
contain the declarations of name identifiers, Each name identifier in the source
code is associated with the scoping block in which it is declared. The declaration
of a name identifier results in a new binding for the identifier. The binding ofa

name identifier exists only within the scoping block of its declaration,

The symbol objects in the parser’s symbol table (Section 3.3) denote the
currert bindings of name identifiers to data values, function definitions, and
data type definitions. The information in the symbol table must be valid always;
a symbol object must always indicate the current bindings of a name identifier,
When, while scanning the source code, the parser encounters a new scoping
block, it must modify the symbol table to reflect all the new name bindings
resulting from the name identifier declarations contained within the block.
When the parser encounters the end of 2 scoping block, it must modify the

41

symbol table to undo the bindings of any name identifiers that were declared
within that block. Upon exiting a scoping block, the bindings of the name
identifiers declared within the block no longer exist; any information denoting

the non-existent bindings must be removed from the symbol table.

The parser assigns a unique number to each scoping block that it finds in a
PADL definition. The block number is used to identify the scoping block itself
and al! the name identifier bindings that are declared within the block. For
example, the parser numbers all the data value names defined in a scoping
block: the first value name declared is numbered one, the second is numbered
two, and so on. In the parser's translation of PADL definitions, a data value
name binding is represented by two integers: the number of the scoping block
in which the value name declaration appears and the number of the value name

within that scoping block.

In the PADL source code, scoping blocks may occur nested within other
scoping blocks. The PADL scoping rules, which define whether a name
identifier binding exists within nested scoping blocks, differ for name identifier
bindings to data type definitions, function definitions, and data values. The
different PADL scoping rules and the manner in which the parser implements

the different rules are discussed below.

The parser data abstraction (Section 3.2) maintains data structures and
provides routines that help the parsing procedures to implement the PADL
name identifier scoping rules. The parser abstraction has a counter that
generates a unique number for each scoping block and a counter that indicates
the current depth of scoping block nesting. The parser abstraction maintains a
stack of scoping frames and provides a set of routines to make use of them. Each

scoping frame contains the scoping information for a single PADL scoping

42

block. A scoping frame contains, in addition to the scoping block and nesting
level numbers, information concerning the name bindings of data values,
funciion definitions, and data type definitions that are declared within the
scop'ng block. When a parsing procedure encounters, in the source code, the
beginning of a scoping block, it calls the parser abstraction's enterscope routine.
The enterscope routine creates a new scoping frame—one that exhibits no name
bind'ngs—and pushes the new frame onto the scoping frame stack. The paiser
abstraction provides routines that record name identifier bindings in the current
(on top of the stack) scoping frame: the parsing procedures call on these routines
as they encounter name identifier declarations in the current scoping block.
When a parsing procedure encounters the end of a scoping block, it calls the
exitscope routine, which pops the current scoping frame from the stack and
unbinds all the name bindings recorded in the frame. The following sections
explain in more detail the parser abstraction’s scoping frames, the associated

scoping routines, and how the parsing procedures use them to implement the

PADL scoping rules,

3.5.1 Data Type Names

The scope of a name identifier binding to a data type definition is the
entire scoping block in which the binding is declared, including all scoping
blocks nested within that block. A name bound to a data type definition may not
be bound again to a data type definition within the scoping block of its
declaration. The redefinition, in a nested scoping block, of a data type name
identifier already declared in an outer scoping block is not permitted.

The scoping rule for data type definition bindings is easily implemented.
When a parsing procedure encounters a data type definition, it calls the parser
abstraction’s add Ic/typ (add local data type definition) routine. The add Icltyp

43

routine first checks the current binding of the name identifier being bound to a
data type specification. It is an error if the name identifier is already bound to a
data type definition. If the name is unbound, add_ic/typ modifies the syrbol
object for the name identifier to reflect its new data type binding and stores the
modified symbol in the current scoping frame. When a scoping block is exited
and its scoping frame is popped from the stack, the bindings of the data types
defined in the scoping block must be undone. The exitscope routine modifies all
the symbol objects for the locally defined data types, which were saved in the

scoping frame, so that they denote no bindings to data type definitions.

3.5.2 Function Names

An external function is a function whose definition appears by itself, not
within another PADL definition. An external function definition is one of the
three kinds of definition of which a PADL description is composed. An external
function may be invoked in any of the other definitions in the PADL
description; a definition that makes use of an external function must include an

external function declaration.

The scope of a name binding to an external function is the entire PADL
definition in which it is declared as an external function, including all nested
scoping blocks. When a parsing procedure encounters an external function
declaration, it modifies the symbol object for the function name identifier to
record the binding to the external function. The binding to an external function
is permanent—it endures throughout the entire PADL definition; the function
binding information in the modified symbol object is not changed during the

subsequent parsing of the PADL definition.

An internal function is one whose definition appears within a PADL

defiaition — within another function or within 2 module type definition. The
scope of a name binding to an internal function definition is the scoping block in
which the function is defined. A name binding to an internal function is not
valid within the function definition itself nor within the other internal functions
defined within the function definition. The scope of a name identifier binding to
an internal function definition is the scoping block immediately enclosing the

internal function definition,

The parser abstraction provigles, to the p&fé%}iﬁ;"brocedures, the same
suﬁport for impféme'ntihg the scoping of internal function name identifiers as it
prov.des for the scoping of data type definitions. The parser abstraction’s
add_lclfun (add local internal function definition) routine modifies the internal
function binding information of the symbol objects for internal function name
identifiers and saveés the modified symbol-objects in the current scoping frame.
A parsing procedure, when it encounters an internal function definition, saves
the symbol object for the internal function name. Without yet calling the
add lelfun routine, the parsing procedure continues and completes the translation
of the internal function definition. When the parsing of the internal function
definition is completed, the procedure calls add iclfun to bind the function name
identifier to the internal function definition just parsed. By waiting until the
function definition itself is parsed before binding its name identifier, the PADL
scoping rule for internal functions is correctly implemented. The function name
identifier is bound within the scoping block immediately enclosing the function
definition, but not within the function definition itself. When a scoping block is
exited and its scoping frame is popped from the stack, the bindings of the
internal functions (like those of the data type definitions) defined in the scoping
block must be undone. The exitscope routine modifies all the symbol objects for
the locally defined internal functions, which were saved in the scoping frame, so

45

g

that they denote no bindings to internal definitions.

A name identifier can be bound to at most one function definition
(external or internal) at any one time. The attempt 0 bind an identifier name,

already bound to a function, to another function definition is an error.

3.5.3 Data Value Names

There are three types of data value names in PADL to which identifiers
may be bound: state variables, formal parameters of functions, and abstract
value names (such as those in the let construct). The scope of a binding to a data
value name identifier is the entire scoping block in which the binding is
declarzd, except for internally nested scoping blocks in which the same name
identifier is declared as another data value. Unlike the name identifiers bound
to data type and function definitions, a name identifier bound to a data value
may be redeclared and bound again inside internally nested scoping blocks. The
binding of a referenced value name identifier is the binding resulting from its
declaration in that scoping block, which, of all the blocks containing declarations

of the value name, most closely surrounds the value name reference.

In the PADL source code, the declaration of a data value name indicates
the type specification for the data type of the value name; the definition specifies
a value name’s actual data value. It is the declaration that results in the binding
of an identifier to the data value name. A value name must be declared before it
is defined. A value name must be defined before it is referenced for its value. In
a symbol Object, the information concerning binding to a data value name
indicates whether the bound value name is declared only or if it is defined as
well as declared. The parser verifies that no value name is referenced for its

value before the data value name is both declared and defined.

The implementation of the PADL scoping rule for data value names is
more difficult than that for data type and function definitions. Value name
bindings may be redefined within nested scoping blocks. If a name identifier is
redefined inside an inner scoping block, the identifier has a new, different data
valu: binding within the inner scoping block. Outside the inner scoping
bloc<—before it and after it—the identifier has its other, older binding. The
scanung parser, when it enters an inner scoping block, must modify the symbol
table information for the name identifiers declared therein so that their symbol
obje:ts reflect their new (inner scope) data value bindings. When the parser
exits an inner scoping block, it cannot simply unbind the value name bindings
decilared within the blbck; the parser must restore, in the symbol table, the
information for the declared identifiers’ previous (outer scope) value name

bindings, the value name bindings that existed before the inner scoping block

was entered.

In the scoping frames of the parser data abstraction, the information for an
identifier’s data value name binding indicates not only its present, but also its
previous value name binding. When a parsing procedure encounters a data
value name declaration, it calls the parser abstréction’s add lelval (add local data
value) routine. The add lc/val routine modifies the symbol object for the name
identifier so that the symbol object indicates the newly declared value name
bindng. The identifier’s previous value name binding is stored in the current
stack frame along with its modified symbol object. The exitscape routine, called
wher the parsing procedure reaches the end of a scoping block, modifies all the
symbol objects for the identifiers declared as value names within the scoping
block; it replaces the value name binding information in the symbol objects with
the previous value name binding information, which was stored in the scoping
frame. The exitscope routine restores to the symbol objects the binding

47

information for the value names to which the identifiers were bound before the

inner scoping block was entered.

The parser must handle the formal parameters of a function differently
than the other kinds of data value names— the state variables and the abstract
value names. A function's formal parameters are declared in the header of the
function definition. The name identifiers declared as formal parameters are
definec (by the actual parameters) when the function is invoked. The definition
of the formal parameter value names is not explicit in the code of the function
definition; the parameters are declared but not defined in the function header.
The parser, in order to translate a function definition as if it had been invoked,
handles the parameter declarations in a function header as if the parameter value
names were defined as well as declared. The parser, when modifying the symbol
object for a name identifier declared as a function’s formal parameter, records

binding information that denotes a defined data value name.

The transiation of formal parameter name declarations presents a special
problem to the parser. In PADL, the header of a function (including the formal
parameter declarations) is the first component in the function definition. The
definitions of data types, which can be used as type specifications throughout the
function definition, are listed after the function header. The PADL language
allows the data types defined in a funétion to be used in the declarations of the
function’s formal parameters. The parameter declarations, which may reference
the defined data type specifications, precede the data type definitions. The
PADL parser, translating the source code in one pass, must be able to transiate
the declaration of a formal parameter that makes use of a data type specification
whose definition has not yet been encountered in the source code. The name
identifier for such a data type definition is not yet bound to the type
specification when it is referenced in the formal parameter declaration. The

48

formial parameter declaration is the only PADL construct in which a name

identifier may be referenced before it has been explicitly declared.

The parser must perform backpatching in order to translate, in one pass,
the ‘ormal parameter declarations of functions. The parser abstraction contains
an a-tay of symbol objects, the undefined list. If, while translating the heading of
a fuction, the parser encounters a name identifier used as a type specification
and the identifier has, at that time, no binding to a data type definition, the
pars:r assumes that the identifier is the name of a data type that has not yet been
defined. The parser adds, to the type specification list (Section 3.4), a new
fypeipec entry that represents the undefined type specification. The parser
modifies the symbol object for the data type name. identifier so that it denotes a
data type binding to the new iypespec object. The parser adds the modified data
type symbbl object to the undefined list in the parser abstraction. The definition
of tte parameter name can then be recorded—in the parameter name’s symbol
object and in the current scoping frame— using the modified data type name
symbol object, which denotes a binding, though undefined, to a data type
definition. When the parser translates a data type definition in the function
body, it checks the undefined list to see if the name identifier being bound to a
data type definition was previously encountered in the function’s formal
paraneter declarations. If the name identifier is included in the undefined list, if
it was referenced as a data type in the function header, the parser modifies the
existing type specification list typespec entry for the data type. The lypespec
object, which represents an undefined data type specification, is changed so that
it represents the actual data type specification indicated in the definition of the

data type,

In brief, if the correct type specification binding for a data type name is not
yet lmown when the parser references the name in a formal parameter

49

declaration, the parser creates a slot—an undefined type specification—to use
temporarily as the data type name binding in the translation of the parameter
declaration. The slot represents a type specification that is not yet defined.
When the actual definition of the data type name is later translated, the slot,
which was used in lieu of the actual data type name binding, is changed to the
real data type binding indicated in the actual data type definition. This
backpatching technique allows the parser to translate, in one pass, the

declarztions of formal parameters.

3.6 Error Recovery

An important functional requirement of the PADL parser is that it, having
encountered an error in its source code input, be able to recover from the error
and continue the parsing of the entire source file. The PADL parser has no
centralized error handling utility that accomplishes the recovery from errors; it
has no single routine that recovers from all possible errors. Instead, in the
parser, errors are handled completely within the individual parsing procedures.
Reporting and recovering from an error is the responsibility of the parsing

procedure that detects the error.

By handling errors within the individual parsing procedures, the parser is
able to handle errors better than if all errors were handled in a single routine.
Because a parsing procedure is so familiar with the correct syntax of the
construct in which it detects an error, it is more likely to identify and recover
from an error than a central error handling routine. Each parsing procedure,
which parses a single PADL construct, knows the exact syntax of the construct
that it parses. A parsing procedure can be aware of errors that are likely to be
found in its construct, and can handle those errors especially well. The parsing

procedure can check for errors likely to occur in its construct; it can readily and

50

accurately identify the common, expected Errors. EVC'I the less expected eITors
can be handled better in the parsing procedures than in a single error routme A
parsing procedure is more likely to recover from an error; it is familiar with the
syntax of its construct and is more likely to be successful in modifying the
incortect source code to arrive at a syntactically valid construct. A single,

cent-alized error handling routine would not know the complete syntax of all

constructs in which errors occur.

A single error handling routine would offer, at best, only generalized
methods of error identification and recovery. Because the PADL parser handles
detected errors directly within the parsing procedures, each different possible
error can be recognized and handled in the best possible way. The parsing
procedures can identify and recover from each error, not in a general way, but in

the raanner best suited to the handling of each particular error.

The parser data abstraction provides, to the parsing procedures, routines
that send error messages to the user (Section 3.2.3). When a parsing routine
detects an error in the source code, it sends an error message that indicates the
location and the nature of the error. An error message also indicates the manner
in wiich the parsing procedure is attempting to recover from the error, Figure

3-2 cn page 31 shows the format of the parser’s error messages.

Although each parsing procedure handles errors in its own, individual
maner, all parsing procedure methods comply with the following general
mett od of error recovery. To recover from an error, a parsing procedure first
atten1pts to remove unnecessary text, add missing text, or modify existing text in
the source code in order to create a valid PADL construct. If the parsing
procedure cannot identify the cause of the error—if it cannot repair the source

text--then, as a last resort, the procedure skips over and ignores the incorrect

31

code. A parsing procedure attempts to skip over as little source code as is
possible in order to overlook the error and to begin parsing again. The
procedure always indicates in an error message if it is about to skip over code,
and it indicates, in another message, the location in the code at which it begins to
parse again. In the worst case, the parsing procedure will skip to the end of the

current PADL definition and begin parsing the next definition in the source file.

52

Chapter Four

Conclusions and Further Work

This chapter contains some criticisms of the design and implementation of
the >ADL parser. During the implementation of the parser, some aspects of the ‘ |
parser design proved to be good; these parts of the design enhanced the
operation of the parser or made easier its implementation. Other aspects of the
parser design were found to be less satisfactory, marring the operation of the
parser or making its implementation more difficult than was necessary. Some
moaifications to the parser design, which should repair the design flaws, are
suggested. The chapter ends with a discussion of how the PADL parser program
can be put to use as a component in the FUNCHARD CAD package.

The PADL parser program is written in the CLU language. CLU has
many features that helped a great deal in implementing the parser. Very helpful
was the rich set of data types in CLU and the rich sets of CLU routines that
access and manipulate .data types. The large variety of CLU data types was
usef1l in defining data structures for the parser output file that are both easily
understandable and easily accessible. The CLU dynamic arrays, along with the
iteration abstractions that yield their indices and elements, were especially useful
for searching through and modifying lists of data objects. There was no use for
data abstractions in the recursive-descent parsing procedures, which comprise
most of the parser code, but implementing the parser support utilities —such as
the Jexical scanner and the message formatter — with data abstractions helped to
obscure the implementation details of the support utilities from the parsing
routines that used them. The language features most helpful in implementing
the PADL parser were the CLU mechanisms for handling flow of control. The

53

Bt

CLU loop constructs and the signal, exit, and break mechanisms made very easy
the coding of procedures that search for data, continue processing when the data
or an error is found, and indicate if their searching was a success or a failure.
Also helpful was the CLU method of argument passing, call by sharing. The call
by sharing technique allows the access to a data object to be shared among many
data structures and procedures. The updating of a data structure, such as the
parser's symbol table, is very easy; access to the data in the symbol table is

- granted to parsing procedures so that the procedures can modify the symbol

table data objects without ever removing them from the table.

Grouping all the parser’s support utilities into a single data abstraction, the
parser abstraction, made the implementation of the parser easier. It is certainly
more convenient to pass the support utilities as a single argument, instead of as
many, to all the parsing procedures. The parser abstraction keeps the parsing
procedures and the support utilities separate and distinct. The data abstraction
allows the parsing procedures to be less dependent on the details of the support

utilities’ implementations.

The PADL parser accomplishes all error handling within the individual
parsing procedures, instead of within a single, centralized error handling routine.
Handling errors in the parsing procedures results in better identification and
recovery from errors than if errors were handled by a single routine. However,
successfully implementing the error handling capabilities completely within the
individual parsing procedures is difficult It is difficult to foresee all the
different errors that a procedure may possibly encounter. It is difficult to verify
that each procedure does indeed detect and attempt to recover from every error
that it may possibly encounter. It is difficult to test all the error handling
capabilities of all the many parsing procedures. There seems always the
possibility tliat an error, which was not anticipated, may exist. Such an error, if

54

enccuntered, could result in a CLU wnhandled exception and the total failure of

the parser.

The PADL parser should not attempt to accomplish all its error handling
within the parsing procedures. The error handling in the parser could be
implemented much more easily, be done no less well than it now is, and be more
easily verified correct and complete if the parser had, in addition to the ertor
hanclling capabilities of the parsing procedures, a single, general error handling
routine. The parsing procedures would still check for and handle the commonly
expected errors that they, with their knowledge of their constructs’ correct
syntax, can handle well. The central error handling routine, which could reside
in tie parser data abstraction, would handle the errors that the parsing
procedures could not or did not handle. The error handling routine wouid
recover from the errors that the parsing procedures could not identify, the errors
that require skipping of source text or other general error recovery techniques.
The parsing procedures would no longer need complete error handling
capabilities. The error handling routine would be called to recover from the
difficult or the commonplace errors. It could be called automatically when an
unhcndled exceﬁrion is raised; the error handling routine could catch the errors

for which the parsing procedures neglected to check.

The parser's error messages often contain insufficient information
depicting an error’s location. An error message shows the source file line in
which an error occurs. The source file line sometimes provides a poor context
from which the user must discern the location of the error, especially when the
line is short or the error occurs at the edge of the line. A better error message
would show, instead of a source file line, the location of the error in the context
of the source file tokens that surround it. If an error message showed the five or

six tokens preceding the error and the five or six tokens following the error, the

35

user should be able to identify more readily the location of the indicated error.
Modifications to the parser’s line_buff and msger abstraction s and a redefinition
of the place object used to depict an error’s context are necessary to implement

this change.

The PADL parser is the first component of the FUNCHARD system to
have been implemented. So that the parser could operate and be tested, it was
implemented as an independent and complete system. The parser program
could be used, just as it is, in the FUNCHARD system; however, some small
modifications to the parser program would make it operate more naturally as a
component in the FUNCHARD system.

The parser need not prompt the user for the names of PADL source files
to parse, one at a time. An input program for the FUNCHARD system could
receive from the user a list of all the source files that comprise a complete PADL
description input. The user should be able to specify all the files in the PADL
description input at one time, in one command line. The input program would
automatically invoke the PADL parser to translate each of the individual source
files in the input description. This would require no change to the parser

program.

The PADL parser and the PADL semantic analyzer need not be separate
components in the FUNCHARD system. The parser need not create an file in
order to pass its transiated output to the PADL semantic analyzer. The parser
could be called by the semantic analyzer as a procedure. The parser could pass
its output to the semantic.analyzer as the output of a procedure, not requiring an
output fite. To accomplish this would require only a minor change in the parser
program. The parser now creates its output file after it has translated the entire

source file. Instead of storing the output information in a file, the parser could

56

simply return the output information (in the same output file format) to the
calling procedure, the semantic analyzer. These minor modifications to the
parser program would allow the PADL parser's incorporation as an internal
component in the FUNCHARD CAD package.

57 '

RS

Appendix A

PADL Formal Syntax

In the following BNF syntax presentationz, pairs of curly braces in
boldface { . .. } indicate zero or more repetitions of the material within; pairs of
square brackets in boldface [. . .] indicate that the material within may appear at

most once. PADL keywords are printed in boldface,

"A <name> is a sequence of alphanumeric or underscore characters

beginning with a letter.

{description> :: = <{definition> { <definition> }

{definition> :: = } <module type def>
| <external function def>

| {data type def>
<module type def> :: = type <mod type header>
module (<port decl list>)
<{module body>
endmod

<mod type header> :: = <{mod type name> [({param decl list>)]
' = module (<port decl list>)

{mod type name> :: = {name>
<param decl list> :: = <decD> { ; <decD }

<port dect list> :: = <port decl sublist> { ; <port decl sublist> }
<port decl sublist> :: = <port type> {port decl> { ; <port decD> }
{port type> :: = inlet | outlet '

2From the PADL Reference Manual [1], Appendix I1.

58

<port decl> :: = <port decl id list) : <data type spec>
<port decl id list> :: = <port decl id> { , <port decl id> }
<port decl id> ::= <name> [< <subscript range list> >]

<{module body> :: = <structure module body> | <behavior module body>

Sstructure module body 1= { <external module type decl list> }
[submodule <submod decl list>]

[<type external def part>]
{ <internal function def> }
{connection body>

<external module type decl list> :: = <external module type decD
{ : <external module type decl> }

<external module type decl) :: = external <mod type header>

<submod dec! lis®> :: = <submod decl> { ; <submod decl> }
<submod decl> :: = <submod decl id list>

: {mod type name> [(<parameter list>)]
<submod dec! id list> ::= <submod decl id> {, <submod decl id> }
<submod decl id> :: = <name> [{ <subscript range list> }]
<parameter list> :: = <expression>

<behavior module body> :: = [<type external def part]
{ <internal function def }
[<state var decl part>]
cycle
<compound action> { ; <compound action) }
endcycle

<external function def> :: = function <function header>
[<type external def part> |
{ <internal function def> }
{expression>
endfun

<function header> :: = <function name> (<decl> { ; <decD> }
returns <data type spec> { , <data type spec> })

<type external def part> :: = <type external def> {; <type external dep }

59

<type external def ::= <data type def> | <external function decl>
<external function decl> :: = external <function header>

<internal function def :: = function <function header>
[<data type def part>]
{ <internal function def> }
{expression>
endfun

<data type def part> :: = <data type def> { ; <data type deD> }
<data type def> :: = type <data type name> = <data type spec>
<{data type name> :: = {name>

<data type spec> :: = <basic data type spec>
| <compound data type spec>
| <data type name>

<basic data type spec> ::= null
| integer
| bitstr [[<subscript range>]]

<compound data type spec> :: = array { <data type spec> <subscript range> |
| record [<field spec> { ; <field spec> }]
| oneof [<tag spec> { ; <tag spec> }]
[where <tag def> { , <tag def> }]
<field spec :; = <field name> { , <field name> } : <data type spec>
<tag spec> 1: = <tag nameD {, <tag name> } [: <data type spec> |
Ctag def> 11 = <tag name> {, <tag name> } = <tag value>

{connection body> :: = structure
<{conn group>
endstruct
<conn group ::= <conn spec> { ; <conn spec> }
<conn spec> ;: = <basic conn spec> | <control conn spec>

<basic conn spec> :: = <explicit conn> | <implicit conn>
<explicit connd :: =<conn port id> -> <port lis>
<implicit conn) :: = <submodule id> (<port list>)
¢port list> ;= <conn port id> { , <conn port id> }
<conn port id> :: = [<submodule id> .] <port id>

60

<subnoduie id> :: = <name> [{ <subscripts> } |

<conrol conn spec> :: = <conditional conn> | <iterative conn>
{con-itional conn> :: = if {condition> then <{conn group>
{ elseif <condition> then <conn group> }
[else <conn group> |
endif
Citerative conn ;= for <control variable> : = <limit1> to <limit2>
{conn group>
endfor
{limitl> :; = <expression>
{limit2> :: = <expression>

- <state var decl part> :; = var <state var dec> { ; <{state var decD }
- Sstate var decl> ;i = <decD> [: = <expression>]

{compound action> :: = <elementary action>

| <action block>

| <conditional action>

| <tagcase action>

| <iteration>

| <definition block>
{eleraentary action> .. = <state variable assignment>

| <state variable reference>

| <input action>

| Coutput action>
{stat: variable assignment> :: = <state var> {, <state var> }

;= <expression>

<{stat: variable reference> :; = <state var>
(state var> :: = <{name> | {state var array ref> | <state var record ref>
<stat var array ref> ;:= <state var>[<subscript range> { , <subscript range> }]
(state var record ref> ;= <state var) . <field name>

<input action> :: = from <port id list> | <tagged from>
{tagged from> :: = tagcase [<value name> =] {from-either list>
<tag list> : <expression>
{ <tag list> : <expression> }
[otherwise : <expression>]
endtag
<frora-either list> :: = from_either <port id>, <port id list>

61

<tag list> :: = tag <port id list>
<output action> :: = send <expression> at <port id list>

<action block> ::= begin
<compound action> { ; <compound action> }
end

{conditional action) :: = if <condition> then <compound action>
[else <compound action> }
endif

<tagcase action) :: = tagcase [<value name> =] <expression>
<tag list> : <compound action>
{ <tag list> ; <compound action> }
[otherwise : <compound action>]
endtag

<iteration) :: = while <condition> do <compound action>
| repeat <compound action> until <condition>

{definition block> :: = let <actdecldef part>
in <compound action>
endlet
<actdecidef part> :: = <actdecldef { ; <actdecldef> }
<actdecldef :: = <decD> '
| <def>
| <dec> {, <decD> } = <actval
Cactval) ;: = <expression> | <input operation>

Cexpression> ::= <levell exp> | <expression> , <levell exp>

dlevell expY :: = <level2 exp> | <levell exp> | <level2 exp>

dlevel2 expd 11 = <level3 exp> | <level2 exp> & <level3 exp>

level3 expd :: = <leveld exp> | ~ <leveld exp?

develd expd ;1= <level5 exp> | <level4 exp> <relational op> <level5 exp>
evels expd ;: = <level6 exp> | <level5 exp> || <level6 exp>

Clevel6 expd :: = <level7 exp> | Clevel6 exp> <adding op> <level7 exp>
devel7 exp> 11 = <level8 exp> | <level7 exp> <multiplying op> <{level8 exp>
level8 exp) :: = <primary> | <unary op> {primary>

62

<relational opd> := < <= | > | d= | == | ~=
{addingop> :ii= + | -

<{mul.iplyingop> ::=* | /

unaryop> = + | -

{primary> :: = <constant
| <value name>
| (<expression>) -
| <function invocation)
| <array ref> | <array generator>
| <record ref> | <record generator)
| <oneof test> | <oneof generator>
| <prefix operation>
| <conditional exp>
| <letin exp>
| <tagcase exp>
| <forall exp>

{constant> :: = nil
| true | false
| <integer number)
| <bit string constant>

<function invocation> :: = <function name { <expression>)

<array ref> ;1= <primary> [<subscripts)] .
<array generator> :: = <primary> [<subscript range list>]

<record ref> :: = <primary> . <field name>
<record generator> :: = record [<field name) {expression>
{ ; <field name> : <expression) } }

<oneoftest> :: = is <tag name> (<{expression>)
<oneof generator) :: = make <data type spec> [<tag name) : <expression>]

<prefix operation :: = <prefix operator) (<expression>)
<prefix operator) :: = abs | exp | mod | shifl | shifr | rotl | rotr | bitstr | integer

<conditional exp> :: = if <condition) then <expression>
{ elseif <condition> then <expression) }

63

else <expression>
endif

<letin exp? :: = let <decldef part>
in <expression>
endlet

<tagcase expY :: = tagcase | <value name> =] <expression>
<tag list> : <expression>
{ <tag list> : <expression> }
[otherwise : <expression>]
endtag

<tag list) 11 = tag <tag> {, <tag> }
tag) :: = <tag value> | <tag name>
Ctag valued :: = <bit string constant> | <integer number>

<forall exp> :: = forall {value name> in [<expression>]
{, <value name> in [<expression>] }

[<decldef part>]

<forall body part>

{ <forall body part> }

endall
<forall body part> :: = construct {expression>

| eval <forall op> <expression>

<forall op> :: = plus | times | min | max | or | and

<bit string constant) :: = *bit string> | # <octal string> | @<hexadecimal string>
<bit string) ;: = <binary char> { <binary char> }

<octal string) ::= <octal char> { <octal char> }

<hexadecimal string) :: = <hex char> { <hex char> }

(binary char> ;= ?]<binary digit>

<octal char) :: = 7] <octal digit>

<hex char) :: = 7} <hexadecimal digit>

{condition> :: = <{expression>
<decldef part> :: = <decldef> { ; <decldef> }

(decldef) :: = <decl> | <def> | <decD> {, <decD> } = <expression>
Kdef) ;1= <name> {, <name> } = <expression>

64

<decl> ::= <name> {, <name> } : <data type spec>
{fielc; name> :: = <name>

{function name> :; = <name>

{tag name> :; = <{name>

{value name> :; = <{name>

<port id list> :: = <portid> {, <port id> }
<port id> ::= <name> | < <subscripts> >]

{subsicript range lis ;1= <subscript range> {, <subscript range> }
{subscript range> :: = {expression> : {expression>

{subscripts> :: = <expression>

65

Appendix B

The Parser Output File

The output file of the PADL parser is written using a CLU istream. 1t
must be read from an istream, using the CLU decode routines for the data types

of its contents.

4.1 Contents

The following is a list of the output file contents. The contents are written

to the file in this order: they must be read from the file in this same order.

error: bool,

source_name: file_name,
source_cdate: date,

name_list: array[string },
typespec_list: array| typespec },
exttype_list: array[int],
extfun_list: array[extfun],
modtype list: array{ modtype]

error is a flag which is true if the parser detected a syntactic or semantic

error in the source file.

source name and source_cdate are the name and creation date of the PADL

source file from which the output file was produced.
The name list is a list of the name identifiers used in the source file.

The typespec_list is a list of the data type specifications used in the source
file for PADL data elements.

The exttype_list, extfun_list, and modiype_list are the translations of the data
type, function, and module type definitions in the PADL source file. The

translations are parse tree representations of the PADL definitions which

comprise the PADL description.

4.2 Data Structures

A listing of the actual CLU equates used to define the data structures of
the PADL parser output file follows. output file. A more detailed explanation
of these data structures —their contents and their meanings—can be found in a

separate document [4].

%% The Name List %%

name list = array][string]

%% The Type Specification List %%
typespec_ list = array|[typespec]

typespec = record{
name: int,
undefined: bool,
dtype: dtype
]

dtyp: = oneof]
terror: null,
tnotype: null,
texttype: int,
tnull: null,
thitstr: range,
tinteger: null,
tarray. arrayspec,
trecord: recordspec,

67

toneof’ oneofspec

]

arrayspec = record[
eltype: int,
bounds: range

]

recordspec = record[
fidnames: array[int],
fidtypes: array[int]
1

oneofspec = record|
tagnames: array[int],
tagcodes: tagcodes,
tagtypes: array[int]

]

tagcodes = oneof]
none: null,
icodes: arrayf int],
beodes: array| string }

range = record[
low: expression,
high: expression
]
%% The External Data Type List %%

exttype_list = array[int]

%% The External Function List %%

extfun list = array[extfun]

extfun = record|
extfun_decl list: array[extfun_decl],
intfun_list: array[funbody],
body: funbody

]

extfun_decl = record]
name: int,
arg_types: array[int],
ret_types: array[int]

]

funbody = record[
name: int,
lineno: int,
blockno: int,
arg_names; array[int],
arg_types: array|[int],
ret_types: array[int],
funval: array[expression

]

%% The Module Type List %%
mod:ype_list = array[modtype]

mod:ype = oneof]
bmod: bmodtype,
smod: smodtype

]

bmoitype = record[
header: modheader,
extfun_decl list: array[extfun_dect],

- intfun_list: array[funbody },

stvar_names; array[int],
stvar_types: array| int],
stvar_values: array[expression],
action_list: array| action]

69

smodtype = record|
header: modheader,
submod _decl_list: array[submod_decl],
extfun_decLlist: array[extfun_dect],
intfun_list: array[funbody],
connection_list: array[connection]

]

modheader = record[
name; int,
lineno: int,
blockno: int,
param_names: array[int },
param_types: array[int],
inport_list: array[port_decl },
outport_list: array[port_dect]

-]
port.dec! = record|
name: int,
dtype: int,
subs: array{ sub]
]
submod_decl = record[
name: int,

subs: array[sub],
modtype_name; int,
params: array| expression]

]

%% PADL Expressions %%

exp = oneof|
none: nufl,
arity_place: null,
nilcon: null,

- 70

btscon: string,

intcon: int,

valname_ref: valname_ref,
array_create: array_create,
array select: array select,
record_create: record create,
record_select: record select,
oneof create: oneof create,
oneof test: oneof test,
operation: operation,
ifthen: ifthen,

letin: letin,

tcase: tcase,

forall; forall,

intfun_call: intfun_call,
extfun_call: extfun_call

]

valname_ref = record[
blockno: int,
valno: int,
ref name: int,
ref type: int,
stvar: hool

]

array_create = record[
start_.idx: expression,
args: array[expression},
arg type: int,
ret_type: int

]

array select = record|
arg: expression,
arg_type: int,
idxs: array[sub],
ret type: int

]

71

e R

sub = oneof]
single: expression,
pair: range

]

record_create = record|
args: array| expression),
arg_types: array[int],
ret_type: int
]

record select = record[
arg. expression,
arg_type: int,
fields: arrayf int],
ret_type: int

]

oneof create = record[
tagno: int,
value: expression,
rettype: int

oneof test = record[
arg. expression,
tagno: int

]

operation = record{
operator: op,
arg types: array| int],
args: array[expression],
ret_type: int

]

ifthen = record|
tests: array| expression],
arms: array| array|[expression]],
ret types: array| int]

72

letin = recordf _
blockno: int,
Icl_names: array[int],
Icl types: array[int],
Icl values; array] expression],
ret_types: array| int],
ret_values: array[expression]

]

tcase = record(

blockno: int,
arg. expression,
arg_type: int,

“Icl.names: array{ int],
tagstype: tagstype,
arms: array| array[expression 1],
arm_types: array|[int],
armtab: array| int]

]

tagstype = oneof[
names: null,
bts: array[int],
ints: null

]

forall = record{

blockno: int,

idx_limits: array| range],
lcl_names: array[int ,

lcl.types: array[int],

Iclvalues: array[expression],
clauses: array] array[expression]],
eval_ops: arrayf eval op },
ret_types: arrayf int]

]

eval.op = oneof]

73

construct,
plus,
times,
min,
max,

or,

and: null

]

intfun_call = record|
intfunno: int,
args: array[expression],
ret_types: array[int]

]

extfun call = record(

extfunno: int,

args: array| expression],
ret types: array[int]

]

op = oneof]
bts_and,
bts_or,
bts_not,
bts_eq,
bts_noteq,
bts_concat,
bts_shifl,
bts_shifr,
bts_rotl,
bts_rotr,
bis_substr,
int_unminus,
int_unplus,
int_plus,
int_minus,
int_times,
int_div,
int_ mod,

74

int_exp,
int_eq,
int_noteq,
int_grtr,
int_less,
int_grtreq,
int_lesseq,
bitsr to_int,
int_to_bts: null

]

%% I’ADL Actions %%

act = oneof[
stvar_assgn: stvar_assgn,
from: from,
fromeither: fromeither,
send: send,
block_act: array] action],
ifthen act: ifthen act,
tcase_act: tcase act,
while_act: while_act,
repeat act: repeat_act,
letin_act: letin_act

]

stvar assgn = record|
stvar refs: array[stvar ref),
assgn_types: array| int],
assgn_values: array[expression]

]

stvar ref’ = oneof]
simple_ref: stv_ref,
array ref’ stvarray ref,
record_ref: stvrec_ref

]

stv_ref = record|

75

ref name: int,
ref type: int,

blockno: int,

stvno: int

!

stvarray_ref = record(
ref arg: stv_ref,
idxs: array{ sub},
ref type: int
]

stvrec_ref = record(
ref arg: stv_ref,
fields: array[int],
ref type: int

]

from = record[
stvar refs: array[stvar_ref],
ports: array[port.id]

]

portid = record{
port: int,
subs: array[sub]

]

fromeither = record(
blockno: int,
stvar refs: array[stvar_ref],
ports: array[port_id],
lcl.names: array[int],
arms; array[array[expression]],
arm_types: array[int],
armtab: array|[int]

]

send = record[
value: expression,

76

ports: array| port.id]

]

block_act = arrayf action]

ifthen_act = record(:
tests: array[expression),
arms: array]| action]

]

tcase_act = record[
blockno: int,
arg: expression,
arg_type: int,
Icl_names: array| int],
tagstype: tagstype,
arms: array[action],
armtab: array[int]

]

while_act = record[
act: action,
test: expression

]

repeat_ act = record[
act: action,
test: expression

]

letin_act = record[
blockno: int,
lcl_names: array| int],
Icl types: array[int],
Ict_values: array{ expression],
act: action

]

%% PADL Connection Specifications %%

77

conn = oneof[
expl_conn: expl.conn,
impl_conn: impl.conn,
ifthen_conn: ifthen_conn,
iter_conn. iter.conn

]

expl.conn = record]
: outport: connportid, -
inports: array[connport_id |

]

connport.id = record|
submod: submod._id,
port_name: int,
- subs: array[sub }

]

submod_id = record|
submodno: int,
subs: array[sub]

]

impl.conn = record(
submod: submod._id,
ports: array| connport_id]

]

ifthen_conn = record(
tests: array| expression },
arms: array[array{ connection]]

]

iter.conn = record{
blockno: int,
cvar_name: int,
limits; range,
conns: array| connection]

78

4.2.1 Expressions, Actions, and Connections

The syntax definitions for PADL expressions, actions, and connection
specifications are self-recursive. CLU equates alone cannot represent recursive
data structures; they cannot represent these PADL constructs. The parser .
output file representations for these constructs are CLU data abstraction clusters.
The data abstractions for expressions, actions, and connections are implemented
with CLU records. The data in an expression, action, or connection object can be
accessed as if the object were simply a record. The abstraction clusters provide
get and set routines for each of their record fields, and also encode and decode

routines for the entire abstract data types.

The following shows the structures of the expression, action, and

connection pseudo-records.

expression = record[
lineno: int,
data: exp,
typ: int,
pure: bool

]

action = record|
lineno: int,
data: act

]

connection = recordf
lineno: int,
data: conn

]

79

[1]

2]

[3}

il

i3]

[6]

References

Leung, Clement K.C., Lim, William Y-P.

PADL — A Packet Architecture Description Language. A Preliminary
Reference Manual. _

Technical Report, Laboratory for Computer Science, M.I.T., Cambridge,
MA, September, 1983.

(To be published)

Lim, Willie Y-P., Leung, Clement K.C.

PADL — A Packet Architecture Description Language.

Computation Structures Group Memo 221, Laboratory for Computer
Science, M.LT., Cambridge, MA, October, 1982.

(Presented at the Sixth International Symposium on Computer Hardware
Description Languages and their A pplications, Carnegie-Mellon
University, Pittsburgh, PA, May 23-25, 1983)

Lim, Willie Y-P., Wanuga, Thomas S.

FUNCHARD — An Expert System for Translating Functional
Specifications to Hardware Structures.

Computation Structures Group, Laboratory for Computer Science,
M.L.T., Cambridge MA. (Unpublished)

Holderle, James E.

PADL Parser Output: The bnp File.

Computation Structures Group, Laboratory for Computer Science,
M.LT., Cambridge MA. (Unpublished)

Liskov, Barbara, et. al.

CLU Reference Manual.

Technical Report MIT/LCS/TR-225, Laboratory for Computer Science,
M.LT., Cambridge, MA, October, 1979.

Ackerman, William B., Dennis, Jack B.

VAL — A Value-Oriented Algorithmic Language: Preliminary Reference
Manual.

Technical Report MIT/LCS/TR-218, Laboratory for Computer Science,
M.LT., Cambridge, MA, June, 1979.

80

