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Abstract

This report presents the design, implementation and testing of a two by two packet router. An
experimental version of the router has been fabricated as 2 NMOS L SI chip. Athorough discussion of
a self-timed design methodology is carried out, including some basic definitions and classification of
self-timed systems. The design and layout of the router are then presented in detail. A test strategy is
introduced, which would atlow testing of ali multiple stuck at faults in the system at constant cost. An.
evaluation of the design methodology shows that despite of the relatively large amount of area
required for layout, it provides many advantages over other conventional design approaches in terms

of speed, ease of design and modification, and lastly, verification and testing.
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1. _lntroduction

This report describes the design, implementation and testing of a NMOS LSI router chip, using a
design methodology different from other conventional ones, namely, the self-timed design
methodology. The reason for investigating this design methodology is twofold. First, as has been
pointed out in [17], as the basic dimension of the devices on an IC chip is scaled down, the rate of
signal transmission in the interconnects would scale up quadratically , whereas the switching time of
the devices scales down linearly. Thus the ratio of signal transmission time to gate delay would be
increased as the cubic power of the scaling factor. In a synchronous system with scaled down
dimensions, then, most of the available time has to be allocated for signal transmission, and the real
data processing will take up only a small fraction. Moreover, additional time must be allowed to
deskew global signals reaching different parts of the system, and this will also consume a part of the
total time. If a synchronous system is to be built this way, it will be very inefficient. These problems
may become un.manageabie as the system gets more complex, and a feasible solution is to partition
the system into synchronous blocks communicéting with each other asynchronously. However, such
a scheme would necessitate the use of a communication protocol between these blocks and a
mechanism for synchronizing asynchronous signals. Unfortunately, it has been shown that all
synchronizers can be induced into the meta-stabie state by coincident asynchronous inputs [3]. In
the meta-stable state, the output of the synchronizer is not correct and valid, and therefore will be
interpreted inconsistently by different parts of the system. Self-timed systems, on the other hand,
use the asynchronous corﬁmunication protocol as a means of transferring data between modules;

also, since no clock is required, meta-stability is not a problem.

Another motivation for using self-timed design is its direct and straightforward implementation of
packet communication systems [7], being systems composed of modules communicating with each

other by sending data packets to each other using an asynchronous communication protocol.

This report is organized as follows. Section 2 gives the background information about a
particular self-timed design method, including a definition of self-timed circuits and the assumptions
on gate and wire delays. The implementation of basic self-timed modules is presented in Section 3.
Section 4 presents a top down design approach for self-timed systems and its apHication to the design
of a router, and information about the physical chip including the layout and floor plan. Section 5
discusses a test strategy for the router, and a test circuit is described. Section 6 evaluates the design

methodology based on the projected area, power consumption and speed of the IC, related issues



such as optimization, design modification and verification are considered. Section 7 summarizes the

main results and suggests directions for further research.
2. Basic Theory

In this section, we attempt to introduce a number of fundamental notions related to self-timed
design. First, it is necessary to have a definition of self-timed circuits and to state a number of
assumptions on the properties of circuit elements used to realize them. Then, we will discuss
methods of implementing self-timed modules, including combinational logic modules, state machines,

and other determinate and non-determinate ones.

2.1 Definitions

A self-timed system can be defined as a system consisting of circuit modules, communicating
with each other locally, without using any global reference signal. The circuit modules "time" the
processing and transmission of data by themselves, and the sequence of operations is indicated by
the start and completion of modules instead of by clock ticks. In this sense, we can consider
self-timed circuit as a subclass of asynchronous digital circuits, being different from the conventional
ones in that it imposes a uniform communication protocol on all system modules, whereas the iatter
do not have a systematic restriction on how signals change and interact in the system. Experiences
demonstrated that conventional asynchronous design is at best difficult and therefore can only be
applied to smail designs. On the contrary, by enforcing a global discipline, self-timed design is
reasonably straightforward : large and complex systems can be implemented with ease by

composition of smaller components.

A closely related notion to self-timed system design is speed-independence or
delay-insensitiveness, meaning that the correct operation of a system is not affected by the variation
of delays of logic gates and wires. Usually, in most designs, wire delays are assumed negligible, and
this assumption would lead to a particular implementation of self-timed modules. The importance of
the basic assumptions on gate and wire delays will be discussed later in this section. One should note
that a self-timed system could be designed to be completely operational without being speed-
independent, therefore, speed-independence can be considered a highly desirable, but not an

essential property of self-timed systems.



2.2 Assumptions on Gate and Wire Delays

As mentioned earlier, gate and wire defays assumptions are fundamental to the design and
implementation of self-timed systems. A statement of the models used for gate and wire delays is
required before one can proceed to the implementation stage. First, we would like to discern between

two delay models.

A pure delay [21] D can be visualized as a lumped network with one input and one output. If the
delay is excited by a pulse whose width is larger than the time duration D, then a delayed version of
the pulse will be propagated to the output, otherwise, it will be suppressed completely. Pure delays

can be used to model logic gate delays with reasonable accuracy.

A stray delay is due to wires’ parasitic resistance and capacitance, it delays the input signais
and distorts their shapes. This type of delay reflects the property of interconnects. Since signal
transmission in wires is basically an analog process, a simplified linear model usually will not be
_sufficiently accurate. For example, the stray delays do not add up linearly, as opposed to pure delays.

" To avoid this difficulty, we will in general neglect wire delays if wire lengths are sufficiently short.

One can assume that gate/wire delays are either bounded or unbounded. The unboundedness
of a delay should be interpreted as the inability to characterize a delay and place a bound on it,
evehthough it may be finite. Traditionally, this has been true : in the early days, logic gates were built
from discreet components with such a wide range of parameter variations that it was almost
impossible to characterize each component accurately. The term time dispersion had been

appropriately used to describe the property of these badly timed elements [12].
The particular set of self-timed modules ‘described later is designed using the following
assumptions :
1. Logic gates have unbounded delays.
2. Wires within a module have negligible delays.

3. Wires connecting modules can have unbounded delays.



Other methods of implementation. of self-timed systems can be classified according to the
assumptions on gate and wire delays. If a gate is defined as a basic logic element built from
transistors and not containing any feedback, then we can tdentify the following three classes, as

shown in Figure 1.

1. In the first class, both gates and wires are assumed to have unbounded
delays. This type of design was proposed by Muller [14]. The synthesized
modules are self-timed, speed independent and pipelined. it was assumed
that perfect C-elements (see section 3.3) were available, i.e., they were
basic logic elements and not synthesized from logic gates with feedback.
Dual rail coded signals were used to transmit data between modules, this
would ensure correct operation under the unbounded wire delays
assumption.

2. In the second class, gates are assumed to have unbounded delays,
whereas wires negligible delays. Self-timed circuits synthesized using Petri
nets fit under this class and are speed-independent. An implementation of
the control logic for the CDC 6600 and of some data logic including
registers/counters have been reported in [6, 8], Petri nets realization using
logic circuits and asynchronous logic arrays in [15, 16], Petri nets modeling
of self-timed circuits in [13).

3. The third class of salf-timed circuits implementation assumes logic gates
with bounded delays and wires with negligible delays. Circuits realizable
under this class is not speed independence. Some examples are the
TriMosBus reported in [20], and a design of the FIFO found in [18].

gate-UB
wire-UB

gate-UB
wire-B

module interconnect

wire-B

wire-UB

Class 1 Class 2 Class 3

UB : unbounded delay
B : bounded delay

Figure 1. Classes of Self-timed Design



The above classification is somewhat artificial in that the division depends completely on how
one defines a basic logic element. If the C-element were defined as such a basic element, then the
division would change. However, we have chosen to define the logic gate with no feedback as the_
basic element, and this allows us to categorize and discuss about these classes more systematically.
Even though this report focuses on one class of implementation only, this classification emphasizes

the importance of assumptions on gate/wire delays.



3. Implementation of Self-timed Systems

A seif-timed system is a network of interconnected seif-timed modules, each of them has a

number of characteristics, as described below.

3.1 General Characteristics of Sel-timed Modules

1. From the above definition of self-timed circuits, a closed loop communication between
modules is found necessary. This is accomplished through the use of an asynchronous signaling
protocol with ready and acknowledge signals, used to signal the transfer of data between modules.
We propose the use of the reset signaling protocol, in which a signaling cycle contains an active
phase aﬁd a reset phase as shown in Figure 2. This signaling protocol is preferred over the two-cycle
one as it requires less circuitry to implement, and also allows system initialization to be done more

easily.

2. For a self-timed module, the relationship between the input and output data is strictly causal.
In the active phase of the signaling cycle, input data have to be completely defined and stable before
the output data are; in the reset phase, input data have to reset to an idle state before the output data,
Such strictly causal relationships are termed the weak-conditions in [18] and shown in Figure 3. As
discussed later, they can be violated during the reset phase without affecting the operation of the

system. The reason for this flexibility is that the weak-conditions constitute only a part of the

data ready I data reset
1 J’ i ‘L
Ready |
0 data received I acknowledge reset
1 v |
Acknowledge '
0
active phase I reset phase

Figure 2. The Reset Signaling Protocol



specification of the communication protocol. A complete protocol also needs to specify the relation

between the data and the ready/acknowledge signals at the input and output ports of the modules.

3. By coupling the temporal relations between data signals and ready/acknowledge (R/A}
signals at the input and output ports, the complete terminal behavior of a self-timed module can be
described. At each input or output port, R/A signals are related to data signals as shown in Figure 4.

A module can be a pipelined or non-pipelined one, depending on the relation between the input R/A

— completely defined
Input data —I% ____ intransition
- completely undefined

— completely defined

Output data —— intransition
— completely undefined

Figure 3. Input/Output Relation of a Self-limed Module

Data-in —_— e Data-out
Ready-in _—y E——N R?ady—out
Ack-in P — le—— Ack-out

self-timed module

completely defined

Data-in/Data-out H in transition
e campletely undefined

Ready-in/Ready-out

Ack-in/Ack-out \,I

Q a O a

Figure 4. Relation between Data and R/A Signals in the Signaling Protocol
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and output R/A signals, as shown in Figure 5. It also shows the precedence graphs for both cases,
where more parallelism can be detected in the graph associated with the pipelined modules. A
non-pipelined module merely propagates the R/A signals through to other modules, whereas a
pipelined one actually returns the R/A signals as soon as it could so that subsequent data can be sent
immediately. There are many uses of a pipelined module : it can pipeline the system operation, form
feedback loops in state machines, and lastly, it can be used for resynchronizing the timing relation

between the R/A signals and the data in case explicit R/A signals are used.

4. Dual rail coded signals are used to transmit data between modules. In the dual rail format, a
data signal x will be coded in two wires Xy Xg- For x equal to 0 and 1, X, and x, are coded with data
states 01 and 10, respectively. The 00 state corresponds to the spacer, where no signal is
transmitted, state 11 is prohibited. At each port of a module, data and spacer states have to alternate,
as shown in Figure 6. The use of dual raill code is much more fundamental than just an
implementation detail, as it has direct consequences on the size and design of modules, the
correctness of system operation, -and on fault modeling and testing of self-timed systems. These
implications will be explored in later sections. One immediate consequence of the use of dual rail

code is that an explicit ready signal is no longer required, and signal transmission between modules is

Ri Ri
Ro Ro
Ao Ao
] \
Ai i Ai
r>Rit—Rot—» Aot — Aif-l —_ Fli‘} Aif—»Ril A} —>
LRi,}—bRo{—r Ao&—»Ai,}—J—. —» Rot—+»Ao—Ro}—>A0 }—»
Non-pipelined relation and precedence graph Pipelined relation and precedence graph

Figure 5. Non-Pipelined and Pipelined Relations
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insensitive to wire delays.
3.2 Construction of Self-timed Systems

Arbitrary self-timed systems can be constructed from modules with the above characteristics.

The carrectness of the a system is guaranteed if the following rules for construction are observed :

1. The input/output links of modules match each other (A link consists of
data and R/A signal wires).

2. No links are left dangling, i.e., every port has to be terminated by other
modules or at the input/output of the system.

3. The system configuration or connection does not cause deadlock. For
example, a non-pipelined module with an output link connected to one of its
input links will cause deadlock.

It can be proved easily by induction that systems constructed from self-timed modules following
these construction rules are also self-timed. One can draw an arbitrary boundary around a number of
modules to obtain a new self-timed module. We define a primary module is a self-timed module which
can not be decomposed further to other self-timed modules; a secondary module is one consisting of

more than one primary one.

spacer state

zero-data one-data
state state

illegal state

Figure 6. The Duval Rail Code
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3.3 Synthesis of Seif-timed Modules

In this section, we describe a method for synthesizing self-timed modules from 'etementar'y logic
gates such as ANDs, ORs, etc.. The C-element and the arbiter circuit, being two critical and basic
building blocks will also be described. Determinate, nondeterminate and non well-formed modules

will be then introduced to complete the set of self-timed modules.

3.3.1 Basic Building Blocks

The implementation of self-timed modules requires the use of common logic gates such as
ANDs, ORs, and also Muller's C-element and the arbiter circuit. The symbol and logic circuit diagram
of the C-element are shown in Figure 7. It is an asynchronous state machine whose output changes
only when two inputs are the same but different from the current output state. As discussed in [5], the
correct operation of the system is guaranteed if the C-element is designed such that its loop delay is
less than the time interval between two input transitions in oppaosite directions. Another important
element is the arbiter circuit, which consists of a cross-coupled NOR gates front-end and a threshold
detection circuit, as shown in Figure 8. The threshold circuit will suppress the illegal voltage level
associated with the bistable device when it is in the metastable state. The metastable state behavior

and the design of the arbiter circuit have been analyzed in [5].

majority gate . aboo 01 11 10
a | .
: \ b M [ 0 @ @ m @
C
: BO B Do | TR
symbai implementation transition table

Figure 7. C-element
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Ack?’

Request?’ Threshold

Detector
Request2’

Ack2'

Figure 8. The Arbiter Circuit

3.3.2 Combinational Logic Modules

Realization of combinational logic for self-timed circuits under the unbounded gate delay
assumption is unique in that it is different from both the conventional synchronous and
asynchronous methods. For logic gates with unbounded delays, a particular logic implementation
can be free of static and dynamic hazards but a new type of hazard, called delay hazard, can still exist
in the circuit [1]. If one assumes a combinational logic function § and lets lys 1y, 15 be three

consecutive input states to the function f, then static and dynamic delay hazards can be defined as

Static — Input sequence L,y vields output sequence f(|1)f(l2)f’(f2)f(ls),
where f(1,) = f(l5).

Dynamic - Input sequence I1I2I3 vields output sequence
f(|1)f(l2)f(la)f(Iz)i(ls)..., where f(l,) # f(ia).

Figure 9 show examples of static and dynamic delay hazards. A common technique for
eliminating delay hazards in combinational logic circuits is to code the data in a pure code, such as
the m out of n (m/n) code. Each code word is n bit long and a valid code contains m 1's, where m is
called the weight. The dual rail code is such a pure code, namely the 172 code. The 1/2 code is
chosen instead of other m/n codes with m greater than Y2n because for the 1/2 code, encoding and
decoding circuits are simple, and the amount of circuitry required is linearly proportional to the fan-in

or fan-out of the modules.
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D>>d

1

1 — Cc

1

> —
A __I A r—l |

s 1
c ] S e

Static delay hazard Dynamic delay hazard

Figure 9. Examples of Static and Dynamic Delay Hazards

In using this code to implement combinational logic, we require that data alternate between a
valid code word and a spacer (corresponding to the all zero word). In order to avoid any type of
hazard, the logic function has to map any input word with weight less than m to an output spacer, and
any valid input code word to a valid output code word. It is assumed that the code words with weight
greater than m never occur, and these would carrespond to don’t care conditions in the logic

realization. This mapping process is depicted graphically in Figure 10.

spacir valid‘l’code
0/n m/n n/n
Weight of | | | | | | ] i |
input code ! ! | ] 1 ] { | |
%‘/ T unused code
Weight of | | |
output code | | l

Figure 10. Input/Output Mapping for 1/2 Code
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For dual rail code, the logic equation for a hazard free implementation of a function can simply
be extracted from the Karnaugh's map representation of the original uncoded function, where the
1-signal of the coded function is the sum of ail minterms corresponding to the 1's in the map, the
0-signal the sum of all minterms corresponding to the 0's in the map. For example, the logic

equations for the dual rail coded AND function are

Xg = ao-bo + ao.b1 + b1.a0
X

1 a1.b1

Hence, the dual rail implementation of a function y= F(x1,x2,...,xn) requires 2" minterms, each is

a unique vector belonging to the interval
<:-(1><2...xn XX g X' D

Also, in a sum of product realization, every variable x; and its complement x’i are used 2™ times

each. Thus, this type of implementation can be quite expensive.

It combinational logic functions are implemented using this method, we can see that the
weak-conditions mentioned earlier are indeed satisfied in the active phase, when input and output
signals change from spacer to data state. However, they are not in the reset phase, when the input
and output signals return to the spacer state. In order to enforce the weak-conditions in this phase,
C-elements are used in place of AND gates. For example, a duai rail AND module shown at the top of

Figure 11 has no delay hazards and satisfies the weak-conditions.

Since the C-elements are storage devices, the combinational logic modules can be pipelined in
a similar fashion to those designed by Muller [14]. Figure 11 also shows a pipelined version of the

AND module, which is almost the same as before with a little additional hardware.

The most simple NMOS circuit for the C-element contains eight transistors, therefore the
amount of circuitry required for combinational logic implementation can be excessively large. Htis
more economical sometimes to implement the combinational logic modules using AND gates instead
of C-elements when non-pipelined modules are used. Such an implementation for the AND module is
shown at the bottom of Figure 11, in which an OR gate is used to detect the input spacer. In this
implementation, the weak-conditions are violéted in the reset phase, however, the module is still

self-timed and can be connected to other modules to form a correct self-timed system,
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Figure 11. Implementations of Self-timed AND Module
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3.3.3 Self-timed State Machine

The following implementation of state machine has been proposed in [19], and is shown in
Figure 12. It contains a core of seli-timed combinational logic, a feedback register, a fork and a join
module. The feedback register contains three register stages, whose implementation is described in
[11]. The initial state of the machine is programmed into the middle register stage, sandwiched
between two spacer-ed register stages. Such an arrangement is necessary so that once reset, the

combinational logic will be in the spacer state.
3.3.4 Other modules

There are a number of nondeterminate and non well-formed modules which are very important
for the construction of self-timed systems in general, and of their control structures in particular. The
merge module, comprising of an arbiter circuit internally, is such a nondeterminate module; the
switch and multiplexor modules are determinate but non well-formed ones. Their implementations
can be found in [11]. The question of which modules should be included to form a universal set of
modules has been addressed in [9]. For most of the systems we are concerned with, all modules

described above together with the source and sink modules [11] form such a set.

F

J ' Data-out
-

> < C
STCL N
P

Data-in

N

R

J - Join moduie |, F - Fork module
R - Register module , STCL - Seif-timed Combinational Logic

Figure 12, Implementation of a Self-timed State Machine
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4. Design of the Two by Two Router

In this section, we describe a top down design methodology and its application to the design of
the router. This methodology was developed and presented in [11]. In summary, it consists of three

main steps :

1. A high level description using a hardware description language is used to
specily the behavior and structure of the system. This description can be
refined gradually as the design proceeds to produce a more detailed and
accurate specification. A description in PADL [10] for the 2x2 router is
included in the Appendix.

2. The next step is to translate this description into a data flow graph
representation, which can then be directly mapped into the hardware
self-timed modules as described earlier.

3. In this step, the final hardware representation of the system is obtained. In
this form, the feedback loops and the nodes in the arcs are expanded into
their hardware equivalences, being sets of three register stages and the fork
and join modules, respectively. One interesting thing to note is that since all
combinational logic rnodules have states (due to the C-elements), the system
is initialized by resetting all feedback registers and source modules to
spacer state so that combinationat logic modules also reset to spacer state.

4.1 Description of the Router Chip

We now describe the physical iayout and floor plan of an experimental version of the 2x2 router

chip with two-bit wide data path.

The 2x2 router is implemented in NMOS, using Mead and Conway’s design rules. Self-timed
modules, the basic undecomposable building blocks of self-timed systems, were first designed, laid
out and electrically simulated by the circuit simulation program SPICE and then saved in a ceil library.,

The chip design was done by placing these macro-cells and making interconnects between them.

The layout system on which the artwork was generated consists of the symbolic design
language DPL [2] and the graphic editing system Daedalus on the LISP machine. Macro-ceils were
designed and entered graphically through Daedalus. DPL codes were written to place modules and
make interconnects. The amount of work had been substantially reduced as everything could be
described symbolically and relatively to each other. The final layout had been checked for

design-rule violations and simulated, using a switch level simulator.
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4.2 Structure and Floor Plan of the Experimental Chip

Structurally, the 2x2 router is composed of four subsystems of two types : Control Modules (CM)
and Cutput Modules (OM), connected as shown in Figure 13. The control section of CM is a simple
state machine which takes the address bit (bit 0) of the input packet, decodes it and sends out
appropriate control signals to the input switch and request signals to two OMs. Its data path is simply
a switch modules which routes the two-bit dual-rail inputs to either the upper or the lower OM. The
control section of OM consists of a merge module to arbitrate two asynchronous requests from CM's,
and a state machine to control the output multiplexor. Its data path is a multiplexor module,

- forwarding either the upper of lower packets to the output port.

Figure 14 shows the floor plan and other features of the chip. The one-to-two converters
(denoted as 1->2) convert single-rail signals into dual-rail signals; likewise, the two-to-one converters
convert dual-rail signals back to normal ones. The merge modules (M) of om’s are shown explicitly,
from which test points are connected. The small squares denote the test buffers, atiowing external
access to control signals of the modules. Their structures will be presented later. In this chip, input

queues are not included as should be, so that access to the data path can be readily mada.

The test chip has 40 pins, 20 are reserved for active signals, power and ground. The other 20
are test pins, providing access to the control signals. Four test pins monitor the outputs of the
arbiters in the merge modules, they allow thorough testing and evaluation of the arbiters’
characteristics. The active signals are :

*Ibin-u, lbin-d, Ibout-u, lbout-d : 'last byte’ signals of the input and output ports.

*din-u, din-d, dout-u, dout-d:data signals. For this chip, each port has only one data bit,

inu =—=ppi CM om p——p out-u

ind —» CM OM — oyt g

Figure 13. Structure of the 2x2 Router
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Figure 14. Floor Plan and Test Buffers of the 2x2 Router

however, the data path width can be expanded without altering the design of the control parts.
*Reg,Ack : request and acknowledge signals to implement the reset signaling protocol for the
ports.

*Init : the initialize signal. When asserted, all registers are set to their initial states, all source

modules to their initial values.
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*Read : this signal is used for testing. When read = 1, the test buffers output the control signals
to bidirectional i/o pads. When read =0, external signals can be connected to the control lines

of the modules.
4.3 Struture of CM and OM

The layouts of CM and OM are described in the following short parégraphs. Modules are shown
as blocks, but their locations, sizes and interconnections reflect the actual layout. Figure 15 shows
the block fayout for CM, whose control section consists of a state machine, a bit delay, an F-gate
(constructed from a switch module and a sink module), and another switch module. The state
machine is constructed from three NAND modules and a feedback register. This register consists of
three self-timed register stages, the middle one is initialized to zero-data state, the other two spacer

state. The data path of CMis simply a two-bit wide switch module.

Figure 16 is the block layout for OM. The control section is slightly more complicated. The
merge module accepts two request tokens (which are actually direction bits) from two OM’s, passes
one and blocks the other until the first one disappears. The winning token is sent to the lower mux
module and T-gate, and then cycled through the feedback path feedback-a. The other two feedback
paths and the upper mux module monitor the /b token and reset the direction bit when the last byte of

a packet has gone through the router. The data path of OM is simply a two-bit wide mux module.
4.4 The Test Buffers

Two types of buffers are used to bring important signals to test pins. They are the unidirectional
and bidirectional buffers. Their symbols and implementations are shown in Figures 17 a, 177 b and 17
¢. The unidirectional buffer is a non-inverting one, it provides a buffering stage between the internal
signai and the i/o pad and allows signals to be observed externally. The bidirectional buffer can be
configured in read or write mode, as shown in Figure 17 b. Its implementation {Figure 17 ¢) requires a
level-restoring buffer, a MOS switch, and a bidirectional i/o0 pad with tristate buffers controlied by the

read signal.
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4.5 Power and Signal Routing
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Two requirements of the router design make the routing problem important : first, the use of
dual-rail coded signals increase the number of wires needed by at least a factor of two over
conventional design; secondly, interconnection of subsystems of the router requires some attention
in layout so that both straight and cross-over connections between modules can be made using a

minimom amount of area.

Since the first problem is inherent in the design methodology, one acceptable solution is to use
single rail signals with explicit Ready/Acknowledge or other methods of encoding. Certainly, i.n using
single rail signals, one of the basic assumptions of the methodology has to be relaxed : one now has
to be able to guarantee that he can account for all gate and wire delays within small regions of the
chip. This is usually possible in the real world as a chip may contain many subsystems, each small
enough to conform with the above requirement. It is noted here that the use of dual-rail signais
results in penalty in area, but not in terms of the time required to perform the routing, as dual-rail

signals always travel in pairs.
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Routing of power buses for the chip is also aimed at facilitating signal routing between
subsystems. Usually, power and ground buses are made as inter-digitated forks. In the router chip,
the power buses are in a formation which can be termed "two-level forks", as shown in Figure 18. By
doing this, an empty region can be reserved for channel routing, where signals can be routed on both
metal and polysilicon layers, Another advantage of such power busing scheme is it allows some
hierarchy in power signal routing, corresponding to the same levels of hierarchy of the subsystems.
The power buses provided for each subsystem need only produce enough current as required. Note
that this is not necessarily true for regular struétures such as PLA's, where power buses have to be

targe enough to sustain the maximum current requirement.

Routing between subsystems compaosing the router is another nontrivial issue, as it is necessary
to make both the straight and cross-over connections. The cross-over connection is made as in
Figure 19, since the vertical distances between subsystems are much larger than the horizontal
spacings, vertical interconnects are run in metal, horizontal ones in polysilicon. This helps
minimizing delay between port signal and improves perfofmance, even though the design should be
insensitive to delays in wires connecting modules. For this kind of channel routing, if there are N

signals at each port, the width of the routing channel is 3N.

Vdd bus
A — L]
] L]
P R
channel
L]
[ ] [ ]
L] L ]
T L ]
Ground bus

Figure 18. Power Bus Routing for the Router
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5. Design of the Test Circuit for the Two by Two Router

A test circuit for the router is being designed and constructed. The test circuit has a number of
extra functions designed solely for this experimental chip, and not required in the final version. The
test circuit itself is synchronous and has interfaces to 2 PDP11. This allows automatic control and
testing of the router from the PDP11. Since the router is a self-timed chip with Ready/Acknowledge
signals at input and output ports, it is necessary to design the control circuit for the

synchronous/asynchronous interface.

Two types of test will be administered on the router chip : functional and electrical. In functional
testing stage, the function of the router is checked by transmitting data packets to the chip, reading
them back and comparing them in the computer. All configurations of the router (cross connection,
straight connection, contention) will be tested by setting the.address bits of the data packets. With
the additional test pins provided, functional testing can be carried out with ease. For electrical
testing, the test circuit will be designed to allow the router to operate at its maximum rate, from which
delays and throughput rates can be estimated. Also, the electrical characteristics of the arbiters
residing in the Merge modules can be determined as test pins allow access to their inputs and
outputs. Before showing the design of the test circuit, we present a fault model and discuss the
effects of such faults on the router. The test circuit should be able to detect a large number of faults if
they occur at all. As it turns out, the characteristics of self-timed modules and the use of dual rai
code tremendously aid the testing process, and we claim that a simple test set for multiple stuck-at

faults can have one hundred percent test coverage for the router.

5.1 A Fault Model and its Effects

We assume the most simple type of faults for digital systems : stuck-at faults. In reality, the more
common type of faults in integrated circuits are bridging fauits, corresponding to signal wires shorted
to each other. Stuck-at faults are special cases where signal wires are shorted to either ground or the
power supply. In general, bridging faults are difficult to detect as the effects of such faults vary. A
bridging fauit might manifest as a stuck-at fault or an intermittent fault in the case when the input and
output of a combinational logic circuit are shorted together and cause an analog voltage fevel. Thus,
it is desirable to be able to deal with stuck-at faults alone, as this would greatly simplify the task of

detecting faults. By using some layout techniques as discussed in (4], we can reduce most bridging
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faults to stuck-at and analyze their effects on the system.

Consider now what happens if a single stuck-at fault occurs in a self-timed system. First, it is
claimed that for self-timed modules belonging to the set described earlier, any stu.ck-at fault inside
them can be modeled as stuck-at fault at their input or output. Part of the reason is that the self-timed
modules described are not state-intensive, and the states of C-elements are in general accessible
from either the input or output of the modules. This can be verified by simply checking all the
médules exhau_stively. Also, due to the use of the dual rail code, we need only consider sel-timed
systems with stuck-at faults on data and acknowledge signals. We will deliberate on several cases,
correspond to stuck-at-1, stuck-at-0 faults and to whether the faults are on data or acknowledge

signals.
5.1.1 Effects of Stuck-at Faults on Acknowledge Signals

it an Acknowledge signal is either stuck at 1 or stuck at 0, the communication between modules
using the reset signaling protocoi can not be executed to a completion, i.e., a signaling cycle may not
return to its reset phase. This breakdown in communication at a local link between two modules will
eventually propagate to other parts and to the input and output of the system. Thus, the whole system
will hang up and no further operation is possible. Note that in the case of stuck-at faults on
acknowledge signals, it is not important whether a stuck-at-0 or stuck-at-1 fault occurs, the effect will

be the same.

5.1.2 Effects of Stuck-at Faults on Data Signals

Because of the way data are coded, stuck-at-0 and stuck-at-1 faults have slightly different
effects on the system. In dual-rail code, the 00 state corresponds o the spacer, while the 11 state is
an illegal state which can cause illegal output. If an input signal is stuck-at-0, it can cause either an
incompletely or a completely defined input, depending whether that signal wire has to go to 1 or not.
In the first case, the output of the module will be a spacer due to the constraint of the weak-conditions
and the method of synthesizing combinational logic (any incompletely defined input is mapped to an
output spacer). In the latter, a correct output is produced. Thus in order to detect a stuck-at-0, one

needs to excite each coded input with both a zero- and a one-data.



For a stuck-at-1 input signal, during the active phase of the signaling cycle, either a correct or
an iliegal output will be generated. However, in the reset phase, the autput will not reset to a spacer
because the stuck input will not return to the spacer state. This will hang the communication at the
module and subsequently of the whole system. Hence, the detection of stuck-at-1 faults requires only

one input excitation, either by a zero- or a one-data.

We can now study the more general case of multiple stuck-at-faults in the system. Beside being
a delay insensitive method of data transmission, the dual rail code is a error-detection code. One
particularly useful property of this so called auto-synchronous code [1] is that the encoding or
decoding is bit-wise independent, i.e., each coded signal is isolated and independent of the other.
This property allows us to deduce that the effect due to multiple stuck-at faults in a self-time system is
the collection of effects due to each individual fault. This implies that each stuck-at-fault can be
detected independently of others. For example, a direct consequence of this property is that for a
module with n-bit caded input, a complete test set contains two n-bit vectors {e.g.,an all one-data and
an all zero-data vector) for stuck-at-0 faults and one vector (any valid input code) for the stuck-at-1

case.

5.2 A Test Strategy

The following statement summarizes the above discussion about fault modeling and detection in

self-timed systems ;

If a self-timed system is constructed from self-timed modules with characteristics described in

the previous section, and if stuck-at faults are assumed, then

Any stuck-at fault on acknowledge signals is detectable by exciting the
module having the stuck-at faults once by any valid coded data vector.

Any stuck-at-1 fault on data signals is detectable by exciting that data port
once with any valid coded data vector.

Any stuck-at-0 fault on data signals is detectable by exciting that data port
with two valid coded data vectors, one being the complement of the other.



For these cases, faults are detected by inducing the system into hung-up states in which no
further communication and processing is possible, as the presence of stuck-at faults will finally freeze

the communication of the system.

In particular, for the router, we can use the following test sequence. The minimum length of a
packet is two bytes, with the first being the address, the second the data byte. In order to detect ali
stuck-at-faults, an arbitrary coded vector X and its complement X' are needed. From each input port,
we need to check the straight and the cross-over paths to the output ports. This requires two
packets, one containing two bytes XX', the other X'X, where X is any valid coded data byte. Since
there are two input ports, the total number of test bytes is eight. However, parallel checking can be

carried out at two input ports using, for example, the following test sequences :

First packet Second packet
input port 1 XX XX
Input port 2 XX XX

Such a simple test will cover all multiple stuck-at faults in the router.

5.3 Details of the Test Circuit

The test circuit is composed of the following components : two input ports, two output ports and

the bus interface circuit, as in Figure 20. The input and output ports are driven by the same clock.

Each input port contains a set of shift registers. Data are loaded from the Unibus into these
registers, then they are shifted into the input of the router when a Go control signal is sent from the
computer. A simple state machine is used to provide the handshake signals and also additional
functions such as Go/Stop, Hold/Cyclic. The state machine_ receives control signals from the bus
and the asynchronous acknowledge signal from the router, it sends contro! signals to the shift
registers. Go/Stop will start or stop the shift registers, Hold/Cyclic will allow the input ports to either

send a fixed number of packets or keep cycling the packets and send them to the router continupusly.
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Figure 20. Block diagram of the Test Circuit

The output ports are simply shift registers with one extra flip-flop to generate the acknowliedge
signal. Data are loaded into them by the request signal coming out of the router. When the shift
registers are full, data can be read back to the computer through the bus. Since one does not know
exactly when all data are shifted out to the registers, a time-out mechanism can be used. The
computer waits a fixed amount of time - long enough for the output shift registers to be filled by the
test chip in normal operation, and starts reading their contents. If stuck-at faults exist and hang the

system under test, the output data will be faulty and different from the input data sent to the chip.
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The bus interface circuit consists of the address selector and the bus control signal decoders.
Four bus addresses are dedicated for the test circuit. There are two control registers and two data
registers. The first control register (CRO) is a write-only register, it has 5 bits for selecting a pair of
input and output shift registers (out of sixteen) for writing or reading data, the rest is used to control
the function of the input ports (Go/Stop, Hold/Cyclic). The second control register {CR1) is a
read/write register connected to the test pins of the router, thus allowing access to the internal
signais. In the final version of the test circuit, CR1 will not be used at all. Two data registers DO and
D1 are used for the input ports and output ports. DO is write-only, allowing data to be loaded into the
input shift register whose address is selected by CRO. D1 is read-only, allowing data to be read by the
computer from the output shift register selected by the same address in CRO. Note that DO and D1 are

actually sets of (shift) registers, however, they are muitiplexed to look like single ones to the bus.
5.4 The Asynchronous Interface Circuits

Few words should be said about the refiability of the asynchronous interface circuits between
the input/output ports and the router. In the above design, asynchronous handshake signals from
the router are synchronized using clocked flip-flops. There is always a chance that this scheme will
fail due to the behavior of the latch in metastable state. However, the probability of failure is so small
that it can be neglected. The reason is that the NMOS router is expected to be slow compared to the
test circuit built from high speed components such as Schottky TTL (or even low power Schottky
TTL).



6. .Eva!uation

In this section, we evaluate several aspects of the self-timed design methodology described
above. By comparing the self-timed implementation of systems to other standard approaches,
specifically, the synchronous system design methodology, we can determine the advantages and
drawbacks of this methodology. One of the most important performance-related measures of digital
integrated circuits are area, speed and power consumption. Other indicators are ease of design and

modification, optimization, and verification or testing.
6.1 Area, Speed and Power Consumption

Area consumption is perhaps one negative aspect of seli-timed circuit design. Based solely on
the fact that dual-rail code is used, the area required for circuit implementation is at least twice as
much as that of a similar synchronous design. Also, the implementation of the self-timed

communication scheme results in expensive realization of combinational logic and other modules.

tn terms of speed, it is strongly believed that self-timed circuits will offer farge improvement over
synchronous design. There are two main reasons : first, since only local communication is allowed,
individual modules dictate the speed of operation, and therefore it reflects the average speed of the
modules instead of the slowest ones. Secondly, as mentioned earlier, delays due to long distant
communication will dominate the circuit delays as (MOS) devices are made smaller, however, such
type of communication does not exist in self-timed systems. It has been and will remain true that the

motivation for going to asynchronous design is the greed for speed.

A NMOS implementation of a self-timed system would consume at least twice the amount of
powér required for a corresponding synchronous design, as the power consumption is approximately‘
proportional to the amount of circuitry used. Another reason is the fact that self-timed circuits are
inherently static, therefore no dynamic techniques available in MOS technologies can be exploited.

However, this problem is not as serious if a low power technology such as CMOS is used.

6.2 Ease of Design and Modification



Two imporiant characteristics of the above design methodology are : it is modular and itis a top
down approach that reflects the hierarchical structure of the system. These imply that design of
systems using the seif-timed approach is easier because it adheres to the way the designer thinks and
proceeds from the top level all the way through, up to a low level of hardware representation. On the
contrary, a resulting synchronous system may bear little resemblance to the conceptual picture the
designer had in mind. Also, since the system is modular, modification is easier and simpler as

changes are local to certain modules and do not affect the system globally.

6.3 Optimization

Low level optimization is very limited for self-timed systems in general. The bare fact that the
system is constructed from self-timed modules places severe restrictions on what kind of optimization
is allowed. As mentioned earlier, since a clock is not available, no dynamic techniques can be
afforded, and all circuits have to be static. This is a big drawback if MOS technologies are used,
because the basic logic forms do not include the pass transistor logic. Due to the same reason,
precharging, bootstrapping are not realizable. However, optimization at higher level is easier and
more straightforward for self-timed systems, as the modularity and uniform characteristics of the
system modules give the designer more flexibility in constructing and aftering the network of modules

intended to implement the system.

6.4 Verification and Testing

As discussed in [5], correct operation of a self-timed modules implies correctness of function,
and of their electrical and temporal specifications. Once the modules are designed and guaranteed
to have no local logical or timing errors, no unanticipated timing problems will occur when systems
are put together from modules. Because of that, correct operation of self-timed systems are verifiable
from a high level simulation; one is freed from worrying about the timing problem of the system. Ina
synchronous system, precharged buses, shared buses are some of numerous sources of timing

problems which can not be verified bir simple simulations.



In terms of testing, as presented earlier, one can obtain order-of-magnitude gain in testing of
and test generation for self-timed systems. Two important consequences of the self-timed discipline
in terms of testing are the following. First, stuck-at faults always induce hang-ups in a system.
Secondly, effects of multiple stuck-at faults can be considered as the coliection of effects contributed
by individual faults. These permit the detection of multiple stuck-at faults using short and simple test

sets.
7. Conclusion

Despite of many advantages of seif-timed design, one single most critical drawback of the
approach, experienced from this project is the large amount of area consumed by the final integrated
circuit. This had led us to reevaluate the basic assumptions on gate and wire delays, and found that
perhaps a less stringent assumption could allow more practical and area-efficient implementation.
After all, logic gates are elements with finite and bounded response times (otherwise, synchronous
systems could not be realized at all); the only case where circuit with unbounded delay exists is the
arbiter circuit in metastable state. If the potential errors caused by the metastable state are kept
below some acceptable bound, then more efficient self-timed systems can be designed under the
bounded gate and wire delay assumption. A preliminary. study has shown that an array structure
approach is particularly attractive, as the uniform nature of the array allows one to account for the
delays accurately at a high level of system representation. Certain circuit topology such as CMOS

Domino logic can be readily incorporated into array structures to form self-timed logic arrays.
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Appendix

The following is a detailed description of the 2x2 router in PADL. The structure part describes
the interconnection of major components, consisting of the control modules (CM) and output
modules (OM). The behavior of CM and OM are described in the behavior part of the program,

type Router = module(inlet IN_U[0:8], IN_D[0:8] : bitstr:
outlet OUT_u[0:8], OUT_D[0:8] : bitstr)

submodule cm_u, cm_d : cm;
submodule om_u, om_d : om;

% Structure of the 2x2 Router

structure
IN_U =>em_ulIN;
IND ->cm_d.IN;

%
cm_u.OUT_U ->om_uw.IN_U;
cm_u.OUT_D ->om_d.IN_U ;
cm_u.REQ_U ->om_u.REQ_U:

-cm_u.REQD ->om_d.REQ_U:

cm_d.OUT_U ->om_u.IN_D;
cm_d.OQUT_D ->om_d.IN_D;
cm_d.REQ_U ->om_u.REQ_D;
cm_d.REQ.D ->om_d.REQ_D;

om_u.OUT ->0UT._U;
om_d.OUT -> QUT_D;

endstruct;



%
% Behavior description of Control Module (CM).
%
type CM = module(inlet IN[0:8]: bitstr:
outlet OUT_Uj0:8], OUT_D[0:8], REQ_U, REQ_D : bitstr)

%
% Variable First indicates the first byte of a packet.
% Variable Dir is the direction bit of the packet.

%
UP, DOWN : bitstr:= "0, '1;
var First: bitstr:= '1;
Dir : bitstr:= UP;
cycle .
tet pkt = from IN
in
ODIR : bitstr:= if First
then pkt[0]
else Dir endif;
if First then
ifODIR = = UP
then begin
send UP at REQ_U;
send pkt at QUT_L)
end;
else begin
send DOWN at REQ_D;
send pkt at OUT_D;
end,;
endif;
%
else
if ODIR = = UP
then send pkt at OUT_U
else send pkt at OUT_D
endif;
endif;
%
Dir:= ODIR;
First: = pki[8];
endlet;
endcycle;

endmod;



% ,
% Structure description of Output Module (OM)
%

type OM = module(inlet IN_U[0:8], IN_D[0:8], REQ_U, REQ_D : bitstr;
outlet OUT[0:8] : bitstr)

%

% Variable Odir indicates the direction the output packet comes from.

% Variable First_Not is true when the byte is not the first byte of a packet.
%

UP, DOWN : bitstr:= '0,'1;
var Qdir : bitstr;
First_Not : bitstr:= '0;

cycle

let IDIR : bitstr := if ~First_Not
then from_either IN_U, IN_D

else Odir
endif;
in :
let pkt:= if ldir= =UP
then from IN_U
else from IN_D
endif;
in  send pkt at OUT;
endlet;
Odir := IDIR;
First_Not := ~pki[8];
endiet;
endcycle;

endmod



