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Abstract

Many approaches have been developed for designing large, high perfor-
mance computer systems. Classical synchronous approaches are susceptible
to synchronization problems at the clock pulse level. Newer asynchronous
approaches, on the other hand, avuid such problems but are expensive to
implement, This paper proposes a compromise approach that builds on the
well developed synchronous system design techniques and at the same time
avoids the clock pulse level synchronization problems. In this approach, a
system has a totally synchronous core with a “stoppable” clock and uses an
asynchronous interface for external communication. With the clock not run-
ning, the asynchronous interface receives and sends information in the form
of packets, setting up the proper input values and initial state for the syn-
chronous core. The clock is then started and the synchronous core behaves
as a sequential state machine initialized to the proper state and subjected
to the proper input values. When the core is done with its computation, the
clock is stopped and the process is repeated. A methodology for building
such systems is presented in this paper.

Index terms -— Asynchronous communication, clocks, design methodol-
ogy, multi-processor systems, packet communication, state machines, syn-
chronization.
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1. Introduction

Large computer systems, capable of exploiting a high degree of paral-
lelisin, are being developed in the areas of artificial intelligence [6], vision
[1,2], and data flow [5]. The number of processors in such systems is typically
in the range of a few hundreds to several thousands. Such a large number of
processors poses several problems in the design and implementation of such
systems. As the number of processors increases the distances separating the
processors become significant. It is not the magnitude of actual physical
distances that is important but rather the relative difference in distances
between the longest and shortest communication links between processors.
Hence it does not matter if the processors are all in the same chip, printed
circuit board, rack or room. Whatever communication discipline is used and
however large the number of processors involved, there must be no large fluc-
tuations in the transmission delays. It is imnpractical to do this by the fine
tuning, through carcful design, of cach individual inter-processor link in the
system. A more general design have to be used for all links. It is important
to note that the communication discipline used does influence the internal
structure of the processors. -

Conventional approaches to processor design have been centered on syn-
chronous state machines, i.e. a processor driven by a single clock. Such ap-
proaches are not feasible for implementing large, high performance systems.
This is due.in part to the fact that an extremely slow clock has to be used
to insure that all parts of the system, however far apart, will sense the clock
pulses for synchronous operation. The next obvious choice would be to use
multiple clocks in the system, letting say cach processor have its own clock.
This introduces another problem. Since the data sent by a processor is only
dependent on its own clock and hence is totally independent of the clock at
the destination processor, the arriving data have to be synchronized with
respect to the destination’s clock. It has been found [3,4] that the receiving
party can at times fail to detect all the arrivals of such externally generated
data leading to what is termed a synchronizer failure. Technigues have been
developed to avoid synchronizer failures [10,11,12]. Such techniques include
the introduction of special clocks where the generation of clock pulses can
be stopped by control signals from the system being clocked. Such clocks
are frequently referred to as pausable or stoppable clocks. Another approach
to avoid the nced for synchronization is to use a totally asynchronous or
“clockless” system. An example of such systems is the self-timed system
of Secitz [11]. If such a system is composed entirely of primitive self-timed
elaiments which are similar in functional complexity to logic gates, the cost
would be prohibitive.

This paper describes a methodology for designing large digital computer
systems that are based on stoppable clocks and on the communication prin-
ciples of asynchronous systems. Such systemns termed stoppable clock sys-
terns, are not new. They have been used by Seitz [11] and Péchouctk [10].
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The methodology is particularly well snited for building systems where the
component processors are activated only when necessary. In such systems,
the processors’ clocks need be running only when the actual processing of
the data is taking place, i.e. after the data have arrived at the destination
processor. Once the data are processed, the clock can be turned off. No
synchronization is necessary since the clock is not running when the data
arrive. As there are subtleties in how the clock can be starled and stopped
as well as in how such systeins can be used, the methodology enforces a
discipline in the design of the communication links and the processors.

A stoppable clock system is a more gencral form of a sequential state
machine. This is illustrated in Section 2 which defines the model for stop-
pable clock systems. The methodology, discussed in Section 3, is based on
the model. Three simple examples are given in Section 4 to illustrate the
use of the methodology. This is followed by the conclusion of the paper
presented in Section 5.

2. A Model for Stoppable Clock Systems

The model presented here is an extension of the classical finite state
machine model of synchronous machines [7]. The set of values that an input
can have is extended from the set 8 = {0, 1} of Boolean values to the set € =
{¢, 1, 1, |} where T and | represent the low-to-high and high- to low signal
transitions, respectively. If a value is in the set C, then it is termed a signal
value. All signal inputs cycle through the four values in C. Since signal
values are used instead of Boolean values and a clock is explicitly included
in the model, the term finite state system is used instead of finite state
machine. When the clock is running, all signals that are used in computing
the output values and the next state of the system must be in the set 8, It
is assumed that the system will only process those inputs that have stable
values when the clock is running. That is, all the other inputs are treated
as “don’t cares”.

Before the clock of a stoppable clock system can be started, the system
must be set in the proper initial state. Since the initial state can be the
final state of the last state transition (i.e. the last time the clock is run), the
term rest state is used instead. Two special functions — the elock control
function f for starting the clock, and the state initialization function I for
setting the initial state of the system —- are used in the model. These are
the only functions that can be computed when the clock iz not running.
They use inputs with signal values and produce Boolean outputs. Let [ be
the set of vectors of signal values for the inputs and R the sct consisting of
the initial and the final states, then the functions have the mappings:

f:IxR—8
I: I xR-—+§
2



The following is the definition of a stoppable clock system obtained
by adding f and I to the tuple defining the state machine that forms the
synchronous core of the system.

Definition 1: A stoppable clock system is a finite state system (§, I, 0, T,
0, I, f) where ‘

S is the sct of states,

I is the set of input signal vectors,

O is the set of output vectors,

T:Ix§ — §,is the state transition function,
0:]x8 — 0, is the output function,

[: I x R — B, is the clock control function, and,

I:7 x R — 8, is the state initialization function, with
R C § being the set of rest states.

3. The Methodology

Before going into the details of the methodology, a couple of terms
are defined. Each part of the system that runs on a single clock is termed a
module. Since the number of modules in a system and the distances between
modules can be large, asynchronous communication is used. The type of
communication adopted is packcet oriented in the sense that information is
transmitted in the form of streams of entities termed packets.

The methodology covers the following issues — the protocol for inter-
module communication, functional elements used for implementing stop-
pable clock systems, and implementations of the clock and the state initial-

ization functions.

3.1. The Communication Protocol

Tach transmission of a packet from a source module to a destination
module proceeds as follows. The source sends a packet of information to
the destination. Arrival of the packet at the destination is indicated via an
event, termed a ready event, that is initiated cxplicitly or implicitly by the
source. Explicit initiation of that event is done by sending a special signal to
the destination. In implicit initiation, the occurrence of the event is derived
from the arrivals of the data signals. On detecting the occurrence of the
ready event, the destination accepts the packet and initiates another event
termed an acknowledge event that indicates to the source that the packet
has been accepted. The source must not send another packet until it has
detected the acknowledge event.

The data carried by a packet are sent in parallel through the data lines.
If the ready event is to be explicitly initiated, a special signal termed the
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Input Pairs Output
(1, 1), (1, 0), (1, 1), (1, 1) 1

(t, 1), (1,0 )

(0, 0) 0

(l’ l)’ (l) 0) l

(1, 1) undefined

Table 1: Functionality of an OR Gate

ready signal is used. This signal must not arrive at the destination sooner
than any of the data signals. If this cannot be ensured, then the implicit
ready signal scheme must be used. In this scheme, the ready signal is en-
coded in the data. The “M out of N” encoding method, where the data
and ready signals are scnt as M concurrent transitions over NV signal lines
with N > M, is commonly used for this purpose. If M = 1 and ¥ = 2,
the signaling convention is referred to as dual-rail signaling [11]. The “M
out of N7 form of signaling is more reliable than the explicit ready signaling
scheme. However the circuitry for detecting (or deriving) the ready signal is
more complex. In both schemes, the acknowledge event is conveyed via an
acknowledge signal. To avoid problems with initialization of the detection
circuits, it is required that all signals return to zero, i.e. the transmission
of a packet iz always preccded by all the data lines being reset (viz. the
“spacer” state in dual rail signaling) as well as the acknowledge signal be
deasserted. After the source has received the acknowledge signal, it resets
all the data and ready (if used) lines and wait for the acknowledge line to
reset. The destination on secing the data and ready lines being reset will
reset its acknowledge linec and will set up its input circunits to receive the next
packet. The source on sceing the deassertion of the acknowledge signal will
then send the next packet and the cycle is repeated for subsequent packets,

3.2. Functional Elements of a Stoppable Clock System

The functional elements used for implementing a stoppable clock system

are:
1. logic gates — AND, OR and NOT gates,
2. stoppable clocks,
3. arbiters,
4. 1/0 ports.

The functionality of thec OR and AND gates are defined in Tables 1
and 2, respectively. Note that the outputs of the gates are undefined (i.e.
not in the set () if the input signal values are transitions going in opposite
dircctions. It is the occurrence of such illegal signal values that causes
synchronizer failures.



Input Pairs Output
(05 0)3 (0’ 1)? (0, T)’ (0! l) 0

(T, 1) (1, 1) ‘ T

(1, 1) 1

(4 1) (1) l

(1, 1) undefined

Table 2: Functionality of an AND Gate

Even though stoppable clocks, arbiters, and the I/O ports can be built
using the logic gates, they are treated separately to emphasize their uses in
stoppable clock systems. Note that the arbiters and I/O ports can only be
used for implementing f and L

TFunctionally, a stoppable clock has a stop and a run state which can be
set by an input to the clock. When the clock is in the run state, clock pulses
are generated. Clock pulse generation stops when the input is set to low.
Correct implementation of such clocks require that the input be set low only
when the clock is not about to generate a clock pulse. I the input signal is
set low well before the generation of the next clock pulse, then clock pulse
generation can be successfully inhibited. Furthermore if the input signal is
set low well after the next clock pulse is generated, then the generation of
that clock pulse cannot be inhibiied. Unpredictable clock behavior resuilts
when the input signal is set low just as the clock pulse is being generated.
Knowing the clock period and the time of generation of the last clock pulse,
the clock input can be controlled such that it will be set low well before the
next clock pulse is generated. It is assumed that such a constraint on the
clock input is always met.

An arbiter is a two-input and two-output mutual cxclusion device which
produces exactly one high output when one or both of its inputs is high. The
output that is high indicates which input is the ‘first’ to become high. The
two inputs to the arbiter, R0 and R, carry the rcquest signals while the
cutputs, GO and G1, are for the grant signals generated in response to the
request signals. It is assumned here that the outputs of the arbiters are always
logically defined.

An input or an output port is a buffer capable of holding one packet.
Figure 1 shows both kinds of ports. For the input port, the signals at the
mput side are asynchronous. There is a set of data lines and two control
lines at the output side of the port. One of the control lines (the FULL line)
is for indicating if the buffer is full while the other (the READ line) is for
clearing the buffer, i.e. sctting it to the empty state. A packet can only be
received by an input port if it is empty. It will not send an acknowledge
signal back to the source if it is still full. For the output port, the data lines
and control signals are on the input side while the asynchronous signal lines
are on the output side. One of the control lines (the WRITE line} is used for
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INPUT PORT QUTPUT PORT
ASYNC. *  DpaTA DATA ASYNC.
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fr——p e
FULL READ WRITE  EMPTY

Figure 1: Input and Output Ports

writing to the buffer while the other (the EMPTY line} is for indicating if the
buffer is empty or full i.e. has been read or not. The necessary asynchronous
signaling for loading a packet to an input port or unloading a packet from
an output port is performed by the port itsclf. Note that the READ and
WRITE signals are synchronous since they are generated by the system
when the clock is running.

3.3. Implementing f and I

The FULL signals of the input and ouiput ports are used for imple-
menting [ and I. Note that since the ports are loaded or unloaded asyn-
chronously, the FULL/EMPTY signals are asynchronous signals. Thus it is
important that the sensing of these signals be done only when the clock is
- not running. IEven though a system can selectively activate and deactivate
certain ports, for simplicity it is assumed here that all the ports are active
i.e. all the FULL/EMPTY signals are used for implementing f and I. Hence
f is a function mapping the FULL/EMPTY signals to a Boolean value. It
essentially detects the conditions (expressed in terms of the FULL/EMPTY
signals) under which the clock is started. Note that the condition for stop-
ping the clock is strictly determined by the system, i.e. the clock is stopped
synchronously.

The initial state of a system when the clock is started has two compo-
nents — the state of the system when the clock is started and the state of
the ports. The former is the same as the state of the system when the clock
was stopped. However that component alone may not be suflicient to take
into account the state changes of the ports when the clock is not running.
Thus the second component is ueeded to completely specify the initial state.
In the methodology presented here, the function T is restricted to map from
the set of FULL/EMPTY signals to a Boolean vector. This function essen-
tially identifies the condition that starts the clock while f merely detects
that condition.

Note that the signals representing the values of f and I are asynchronous
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Figure 2: Control Circuit for f and I
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Figure 3: A Stoppable Clock System



since they are produced by asynchronous inputs. It is itnportant that their
values do not change while the clock is running. Thus the generation of
new values for these functions can only occur when the clock is not running,
This basically mecans that the hardware that implements these functions
must have enabled /disabled modes such that when the clock is running, the
hardware is set in the disabled mode which prevents further changes in the
FULL/EMPTY signals from affecting the current values of the functions.
When the clock is stopped, the hardware is enabled allowing new values for
the functions to be computed. A circuit employing edge-triggered storage
clements for doing this is shown in Figure 2. The values for f and I are
applied to the inputs of the circuit and the outputs are Boolean signals that
remain unchanged while the clock is running. The RUN output is used to
start the clock. The system stops the clock by asserting the STOP line.
Figure 3 shows how the control circuit is used in a stoppable clock system.

4. Some Examples

Three examples are used to illustrate how f and I can be implemented.
The first two are simple modules that basically operate en a “demand”
basis, i.e. they only get activated when they receive input packets. A more
interesting case is the third example where the module is always active. That
is, it always have something to do cven when there are no input packets.
The arrival of input packets canses the internal activities to be interrupted..

4.1. A Simple Module

Consider a simple one-input, one-output module. The module absorbs
a packet, performs some computation with it and sends out a packet at the
end of the computation. For this module, the clock is started when the input
port is FULL and the output port is EMPTY. Once the input packet is read,
the READ signal is sent clecaring the input port. The clock is stopped after
the output packet is written to the output port. For this case, f is merely
the AND of the TULL and EMPTY signals. When the clock is started, it
means that the input port is full and the output port is empty. Hence there
is no need for computing additional state information and thus I need not
be implemented.

4.2. A Two-Input Server

Figure 4 shows the circuits for implement f and I for a module acting
as a server to two other modules. Each user module sends a packet to the
server requesting for scrvice. The server tends to the requests on a first-
come first-serve basis. When a request is served, packets are sent out via
the output ports. An arbiter is used for enforcing the first-come first-serve
policy. The FULL signals of the input ports arc connected to the inputs of
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Tigure 4;: A Two-Input Server
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Figure 5: A Tree of Arbiters

the arbiter. The clock function f is implemented by taking the OR of the
arbiter’s outputs and ANDing that with the EMPTY signals of the output
ports. For T, the outpnut values produced are just those of the arbiter’s
outputs. The system uses these two values to determnine which input port
to serve once the clock is started. Just before the clock is started, the GO
output value of the arbiter is stored in CTL. Since the START CLOCK
input is high only when one of the arbiter outputs is high, a low (high)
value of the GO output will indicate that INPUTO (INPUT1} is the input
to serve. The hardware in CTL will then disable the sensing of the arbiter
outputs so that processing of the request can proceed. Once the packet at
that input port is processed the port is reset by setting the READ input
and hence that port can accept another packet while the current request is
being processed. After processing the current request, the clock is stopped
and sensing of the arbiter outputs is enabled by asserting the STOP line,

The server can be generalized to serve more than two inputs by using
a tree of arbiters. Figure 5§ illustrates how f can be implemented for this
case. In general, an input to the arbiter at an interior node of the tree is the
OR of the outputs of one of the two “descendant” arbiters. Multiplexors are
used for implementing I which essentially identifies the port to be served.
This is done by tracing a path from the root of the tree to the input port at
the leaf. All arbiters on that path have a matching pair of input and output
that are both asserted.

4.3. An Operation Module

Figure 6 shows how f and I can be implemented for a one-input and
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Figure 6: An Opcration Module

one-output operation module. Unlike the case discussed in Section 4.1, this
module always has something to do and the arrival of a packet merely causes
those activities to be interrupted. For simplicity assume that the output port
is always empty when the module writes to it. The module “checks” the
status of its input port every now and then. An arbiter is used to implement
/. As the clock is stopped, a signal is sent by the module to an input of
the arbiter. The other input of the arbiter is driven by the FULL gignal
of the input port. Hence the arbiter outputs will indicate if there is a full
input port. In either case the clock is always restarted. Thus f is just the
OR of the arbiter’s outputs. The function I is similar to that discussed in
Section 4.2. When the arbiter outputs indicate that the input port is full,
the module will start in a state indicating that there is an interrupt and will
then service that interrupt accordingly. That interrupt mode will not be
activated if the input port is not full. The time interval between “checking”
of the port is variable and can be as short as one clock period. Hence the
module can vary the frequency of “checks” accordingly to the situation.
Turthermore this module can be generalized to handle more input ports.

The arbiter in this module performs a function very much like that of a
synchronizer. However it must be noted that in this case, all signals that are
scnsed when the clock is started is always logically defined. This is unlike
the delay-based synchronizer where there is no guarantee that its output is
logically defined when sensed. The scheme has some similarities with the
pausable clock scheme [10,11,12] where the synchronizer has a special output
to indicate if it is in the metastable state and the clock is paused until the
synchronizer is out of the metastable state. For the scheme presented here,
the synchronizer being in the metastable state is equivalent to the arbiter
not being able to assert one of its output in response to the simultaneous
appearance of signals at it inputs. The clock is stopped in both cases. It
is extremely rare that the clock will be stopped for such a long time as to
have adverse effects on the performance the module [8,9].

5. Conclusions

The design methodology proposed here exploits the advantages of both
synchronous and asynchronous systems. It does not require a radically new
approach but rather builds on the familiar and extensive expericnce that
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has been accumulated in the design of synchronous systems. Hence as far as
the core sequential machine that drives the stoppable system is concerned,
classical synchronous system approaches can still be used. The methodology
avoids the problem of clock pulse level synchronization that plagues classical
synchronous systems by adopting some of the principles developed for asyn-
chronous systems. This is done at a small cost compared to that incurred
when a totally asynchronous approach is used. The approach presented in
this paper offers a good compromise between the two classical approaches.
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