LABORATORY FOR
COMPUTER SCIENCE

INSTITUTE OF
TECHNOLOGY

MASSACHUSETTS

r

A Third Opinion
on
Data Flow Machines and Languages

Computation Structures Group Memo 241
10 October 1984

Richard Mark Soley

This report describes research done at the Laboratory for Computer Science of the
Massachusells Institute of Technology. Funding for this project is provided in part by
the Advanced Research Projects Agency of the Departinent of Defense under Office
of Naval Research contract N0GQO14-75-C-0E61 and in part through various grants
from the Internaticnal Machines Corporation. The author is supported by a
fellowship from the National Science Foundation.

),

545 TECHNOLOGY SQUARLE, CAMBRIDGE, MASSACHUSETTS (02139

introduction

In the February, 1982 issue of the IEEE Computer Society magazine Computer,
authors D. D. Gajski, D. A. Padua, D. J. Kuck, and R. H. Kuhn discussed at length what they
believe are the failings of the dataflow model of parallei computation." The authors
discussed the general bankruptcy they find in the dataflow language technology in
existence. They concluded that “Most data flow researchers are engaged at too iow a level
of abstraction...” and that “While they sometimes imply a radically new approach to
high-speed computation, they are plagued by its standard problems.” Their criticisms led
them to believe that current dataflow technology does not stand up to other paraliel
computation models.

The intent of this article is to dispute this claim. A number of misconceptions,
missing data, and errors clouded the reasoning of the aforementioned paper, guiding it to
what we consider its incorrect conclusions. We will examine the specific criticisms of that
paper, particularly in the light of the dataflow model that we are most familiar with, that of
Arvind.3 The tagged token architecture of that work and the dataflow language /d* will be
used to highlight some of the arguments. We hope to present the promise of the dataflow
work currently under way.

The Dataflow Solution to High-Speed Com in

Since the inception of the von Neumann flow-of-control design computer,
single-processor design has pervaded all computational structures. Even multiprocessor
designs have suffered the ill effects of the von Neumann bottleneck, the problem of limited
access between processor (or processors) and memory.> * 5 Some modern
supercomputers attempt to overcome this problem by means of extensive pipelining within a
single processor;® though this avoids any problem of memory contention among multipie
processors, it introduces either the need to re-code applications in a specially tuned
pipelined/vectorized language, or to use high-powered program compilation techniques.”

* In the dataflow model, asynchrony and functionality form the key to a highly parallel
computationai model in which programs can be run in a parallel fashion without
programmer specification of parailelism.?

With the advent of Very Large Scale integrated circuitry, however, the multiple
processor approach becomes even more attractive. The ability to replicate hundreds, or
even thousands, of relatively complicated processors on a single chip® gives us new impetus
for solving the problems of multiprocessors. The dataflow model, in particular the tagged
token work of Arvind® presented here, solves these problems by using a concept of
computation free of the current control-flow model; datafiow processors are controlled only
by the flow of data in a program. We will present the specifics of the dataflow model as
explanations and answers to the notes put forward by Gajski et. al.

Approach Qverview

Gajski et. al. began their article with a rough comparative characterization of the two
approaches in question, these being (1) the dataflow model and (2) the imperative language
program analyzer Parafrase’, a powerful global data flow analysis and transformation
system. An annotated redrawing of their figure appears here. In their drawing, Gajski et. al.
hoped to show that the compilation of ordinary language programs and the compilation of
dataflow programs were quite similar. In fact, the differences inherent in such transiations
are amazingly great. The previous paper mentioned that *...researchers hope [dataflow
language programs] can be easily compiled into a dependence graph.” This dependence
graph,' more commonly referred to as a dataflow graph, is the basic language of a dataflow
machine, defining a program's structure in terms of the data dependencies between
operations of the program. Compilers for exactly the problem of generating dataflow graphs
have been written, and they are quite simple; a dataflow language such as Id implies its
dependence graph much as a FORTRAN program implies its memory requirements. In
addition, once this dependence graph has been arrived at, code generation for a dataflow
architecture, while not simple, is just as easy as code generation for any other machine, as
parallelism is managed at run time, not compile time.

Ordinary Dataflow
Language Language
Program Program

Extremel \I/
Difﬁcl_.r(|: l Normalization I

Dependence Dependence
Difficuit Graph Graph
Generation Generation
Dependence Grap
Extremet Arc and Node
o y Analysis and
Difficult Transform
-
Code Code
Simple Generation Generation
High Vecior Dataflow
Overhead Machine Machine -

Figure 1

Comparison of Translation Methods

]

Extremely
Simple

Simpie

High
Cverhead

Gajski et. al. noted that “Ordinary languages can also be used [in the dataflow
scheme].” However, as in their own approach, dataflow graph generation from an ordinary
language program, such as one i'n FORTRAN, is extremely difficult due to the implied
memory model. Global dataflow analysis or interprocedural dataftow analysis is prohibitively
expensive on large programs (e.g., FORTRAN programs of greater than 1000 lines). We find
it hard to believe that anyone could consider the program normalization and dependence
graph generation stages of the previous paper (see figure 1) as a simple problem.” The
approach of Gajski et. al. also included an arc and node analysis and transformation stage;
this is a rather complex procedure which is totally un necessary in the dataflow model.?

It is interesting to note that many of the generic arguments opposing the dataflow
architectural point of view specify methods of program analysis within the von Neumann
model for increasing the speed of “ordinary” language programs {for instance, global
datafiow analysis). These arguments generally note that such principles and algorithms are
not used by current dataflow researchers. It is often the case that such methods are in fact
quite easily used within the dataflow scheme to provide even more speed gain. For
instance, array index analysis, while not in great usage by dataflow machine architects, will
certainly be useful in future implementations. That it is not in current use does not imply an
inherent fault in the principles of dataflow architecture and programming. Gajski et. al.
seem to be missing this point when they label some data flow researchers as “unaware™’ of
the powerful methods of programs such as Parafrase; in fact, dataflow researchers such as
ourselves welcome and are considering the use of source manipulation methods like those
presented by Kuck’ as a method of extracting an extra dimension of parallelism from
datafiow programs.

Dataflow Principles

Gajski et, al. then discussed the basic principles of dataflow operation, noting the
problems of re-entering looped portions of dataflow graphs. We include a short overview of
the dataflow model of computation here.

In an operational view of dataflow graphs, data flows along "“wires" connecting
operations, which are enabled tor execution when all of the necessary input data are
available at input data lines. After being enabled the operation is executed, resulting in an
output value emitted from the output data line (or one of several output data lines)

connected to the operation. An example of a dataflow graph can be seen in Figure 2, which
computes the result of adding three and four.

3
Fa
Ly

OR

Figure 2
Simple Dataflow Graph

This model has one problem. Simply stated, the {earlier) operations which output the
values three and four might have computed more output values before the “plus’ operation
had had time to compute. The question then becomes one of which values are “related to
each other” for a given computation. This problem is further aggravated by the presence of
loops in dataflow languages, which are represented by recursive graph structures such as
that in Figure 3, which adds up the integers between one and ten inclusive.

1 o
Loop
Index Sum
\[F'l_ New Sum
.%E} New Index)

L-1

Answer.

Figure 3

Datafiow Loop

Gajski et. al. went through the five best candidates for the resolution of this problem,
pointing out the new problems introduced by each approach. This analysis led them to
conclude that no acceptable solution to the re-entrant graph problem exists. We must agree
with them on four of their five evaluations; however, we find the tagged-token approach a
viable solution. The five possibilities are reiterated and commented upon here;

(1) The use of a re-entrant graph is prohibited. This only solves the
looping problem, and in any case reduces a dataflow machine
to an almost strict von Neumann approach. As such, this
approach is not used by any dataflow projects.

{2) The use of a re-entrant graph is allowed, but an iteration is not
allowed to start before the previous one has finished. As they
note, this solution requires more work for fess parallelism.

(3) The use of a data flow graph is limited by allowing only one
token to reside on each arc of the graph at any time. As Gajski
et. al. noted, this approach is used by Dennis™. Although it
resolves all of the above problems, it reduces the amount of
parallelism realized, possibly increases processor idle time, and
increases communication and static memory overhead, since it
requires a data acknowledgment scheme.

(4) The tokens are queued on arcs in order of their arrival. Again,
this scheme solves the aforementioned problems. But it may
increase processor idle time (and therefore decrease
parallelism of computation) by forcing an operation to wait until
an “earlier” computation (by program analysis) on that
operation is compilete.

(5) The tokens are assumed to carry their index and iteration level
as a label. In the terminology of Arvind®, this iabel is the tag of
the tagged token. This scheme exploits maximum parallelism.
However, tagging requires extra bits on every token, and
additional time to compute tags for newly generated tokens._
But it should be noted that the extra bits used for dynamic
tagging save the large amount of static preallocated token
storage necessitated by scheme (3) above. In addition, the
computation for the new tag for a token is simple, and can be
performed concurrently with the normal ALU operation that
produces the token. Tag sizes may also be kept bounded by
several “tricks” such as the fogical domains and reusable
colors suggested by Arvind.3

After the above outline, Gajski et. al. calculated some total time estimates for a simple
program running on four parallel processors, using each of these approaches. In addition,
they showed possible resuits of running the same program under a vector architecture, after
the use of a vectorizing compiler. Their figure is repeated in figure 4.

P1
P2

P3
P4

P1
P2

P3
P4

P1
P2

P3
P4

at

a2

a3

a4

-10 -

(a) von Neumann. Time = 48, 25% utilization

IE,
I‘R
Ié‘;!.

RS
[P

{b} LAU Dataflow. Time = 27, 44% utilization

ab b3 b5 b7
I MRS .
a7 a8 b8

{c) Best Dataflow. Time = 14, 86% utilization

Figure 4
Scheduling and Timing

P1
P2

P3
P4

P1
P2

P3
P4

P1
P2

P3
P4

al
—

a3

as

a7

o

-11 -

ad b4 a8 b8
NN N U M

b5 a2 bl ¢1 c2 c3 ¢4 ¢5 ¢6 ¢7 cB

a5 b1 b5
IS I IS E R §
ab b2 b6
e S
a7 b3 b7
NS EENE .
as b4 b8
NN S

as b1 b5 s1 t1 ¢t
I NS B E B N
a6 b2 b s2 12 c2
BN B AN @ O u W
a7 b3 b7 s3 3 c3
I SR EEEN W N =
a8 b4 b8 s4 t4 c4
AN TN MR = B N

18, §7% utilization

s/t temporaries

Revised Algorithm

S S 1% mdh

(f) "Good" Vectorized Code. Time = 14, 86% utilization

Figure 4, continued

Scheduling and Timing

-12.

Each block in figure 4 represents a computation: the longer the block, the longer the
amount of processor time needed for that computation. These computations correspond to
the program proposed by Gajski- et. al., which is shown below. It included eight a
operations, eight b operations, and eight ¢ operations, which take (respectively) three, two,
and one time units to complete on some hypothetical ALU. Each b operation is
data-dependent on a corresponding a operation, and each ¢ operation is data-dependent on
a corresponding b operation as well as all previous ¢ operations. This last, of course, is the
most problematic from the viewpoint of scheduling this program on any computer, be it
dataflow, vectorized, or “standard” von Neumann architecture. Their program is repeated
here:

input d, e, f;

Cp = 0;

forifrom 1to 8 begin
a = dr'/ €

b, =a?*fl;
Ci=b+c_y;
end;

oulput a, b, ¢;

All of the patterns in figure 4 show possible computation schedules for this program
when running in paralle! on four processors P, Pz, Pa, and P,, under different scheduling
and architecture schemas. As can be seen in the figure, the timings in (a) and (b), which
correspond to a von Neumann architecture and a dataflow architecture corresponding to
approach (2) above are, as expected, quite high. The next two timings correspond,
essentially, to random process scheduling on an Arvind style dataflow machine, as typified
by approach (5) above. The last two timings represent what might be expected of code
executing on vectorized machines generated by a ““fair” and a "'good" vectorizing compiler,
respectively. As can be seen, timings (¢) and (f) are the best, taking 14 time units, with a
processor utilization coetficient of 12/14 = 86%. It is noted that under a random scheduling
pattern, a dataflow machine may actually be left in pattern (d), with a total time commitment
of 18 units, and a utilization of only 12/18 = 67%.

-13-

Some points are missing in this discussion, however. First, Gajski et. al. claimed that
a mere “good” vectorizing compiler could come up with the required fourteen time unit
code. At closer inspection, however, we find that the actual program algorithm has been
changed in order to only match the best performance of a dataflow machine! The new
algorithm introduces temporaries which reflect a compiete change in the program's
methodology, as well as assuming the addition operator to be associative. Their new
program, ostensibly the output of only a *‘good’’ vectorizing compiler, looks like this:

inputd, e, [;
€y = 0
forifrom 1to 8 begin

a =d/e;

b, = a*f;
end;
S1=b1+b2; Sz=b3+b4; 83=b5+b6; s4=b7+b8;
t, = by + 8,; t, =8, +8,; t = b, + 85; Iy = S3 + 8,
€, =b,+cp; Cy=8,+Cy Cy=t,+Cy; Cq =ty + Cp;
Cs=b5+c4; Cg = S5+ €, 07=!‘3+C4; Cg=1,+¢C,;

output a, b, ¢;

In addition, the 18 unit pattern (d) is a worst case scheduling pattern: even a simple
FIFO operation queue can match that. The outcome of a simple FIFQO scheduling algorithm
is displayed in figure 5 (a). Even figure 4 {d)} can be simply reworked by moving the column
of ¢ operations, leaving a total time pattern of 16 units, with a utilization of 12/16 = 75%, a
noble percentage. This reworked display is shown in figure 5 (b). In addition, two other
scheduling algorithms, designed “on the fly"” by us and named Lookahead and Lookahead
with Priority, result in the greatly improved scheduling outcomes displayed in figure 5 {c) and
(d), with respective processor utilizations of 80% and 86%. Even without recourse to
complicated and domain-dependent scheduling algorithms, we can generate a pattern such
as figure 5 (e), with a utilization of 75%, without any central scheduling algorithm at all. This
is the pattern that would be generated by the tagged-token machine using its current
non-centralized activity “scheduling” algorithm with tour subdomains and a mapping

constant of two.*

P1
P2

P3
P4

P1
P2

P3
P4

P1
P2

P3
P4

P1
P2

P3
P4

at

a2

a3

a4

Im
=y

a2

]
I“’I

ad

Im I
y

az

a3

a4

al

a2

a3

a4

{d) Lockahead /Priority Dataflow. Time = 14, 86% utilization.

a5

a6

a7

a8

-14.

{a) FIFO Dataflow. Time = 18, 18% utilization

a5 b3 a8 b8
N NS D e

bt a7 b7
N s .

b2 b4 b6
I PPEE e

a6 b5 ¢1 ¢2 ¢3 ¢4 c5 ¢6 c7
BN NN N N B N B EE

(b) Dataffow. Time = 18, 75% utilization

¢t ¢2 c3 ¢4 a8 bg 8

a5 c3 cd c5 cb ¢7 cB
NSNS R W R RN

at b5 b8
Maesu NS s
a7 b&

Figure 5
Better Scheduling Algorithms

-15-

Of course, these scheduling algorithms (which are cursorily outlined in figure 6) were
designed for the problem at hand, and reflect the scheduling problems of the program
example. In other words, They define processing element activity scheduling schemes that
seem to optimize processor usage for this particular example. Therefore, they resuit in
timings only slightly more than, and even equal to {in the case of Lookahead with Priority),
that claimed by Gajski et. al. for a “‘good’” vectorized program. This brings us to three

important points:

(1) Not much research has gone into dataflow scheduling
algorithms. No one ever claimed that random operation
scheduling would match timings achievable on powerful vector
machines; more research needs to be, and will be, done. It is
possible that simple, non-random algorithms might go a long
way 1o solving this probiem; if not, specialized methods such as
marking tokens on the critical path of a dataflow graph might be
called for. The interested reader is directed to new work by Ho
and Irani."

(2) There is no reason that a dataflow machine cannot choose a
scheduling algorithm on a per-program basis. A compiler for a
dataflow language, or the programmer, can make some simple
assumptions to help a dataflow machine choose a suitable
scheduling schema. Again, any program analysis that can be
used in a non-dataflow scheme, such as static program
scheduling at compile time, can be included in a dataflow
computing scheme.

(3) Processor “idle” time on a dataflow architecture does not equal
processor idle time on a vector machine. Vector machines are
by nature single-instruction multiple-data in organization:
dataflow machines, in contrast, are muiltiple-instruction
multiple-data architectures. Blank (or “idie") time blocks
sketched for dataflow architectures in figures 4 and 5 need not
be really idle, but could be working on different parts of the

same program or even a different program altogether. Idle time

-16 -

blocks sketched for vector architectures in figure 4 represent
actually idle hardware. An interesting approach to filling the
idle time of a dataflow machine, presented by Burkowski'2,
suggests a multi-user approach to multiprocessing.

ADD-TO-QUEUE: (p):
tailnext = p; Queue Addition
tail = p;
END;
SELECT: .
FiFO Selection
answer = head;
head = head.next; Algorithm
END;
SELECT:
LOQPFORp INqueue DO Lookahead Selection
IF p.projected-time < min
THEN min = projected-time; Algorithm
answer = p;
END;
END;
SELECT:
LOOP FOR p IN queue DO
IF p.projected-time < min
THEN min = p.projected-time; Lockahead with Priority
answer = p; . .
END; Selection Algorithm
IF p.skip > = p.projected-time
THEN min = -1;
answer = p;
END;
p.skip = p.skip + 1;
END:

Note: Projected-time components are in
units of scheduling cycles, nat milliseconds.

Figure 6
Scheduling Algorithms

217 -

Gajski et. al. then continued with a discussion of the problem of data flow computing
under a low degree of parailelism. Their contention, echoed by Abe et. al.'3, was that the
overhead necessitated by the dataflow computation model would render it less useful while
executing a program with less explicit and implicit parallelism (i.e., with a high amount of
data dependency). It is important to note, however, that a dataflow machine is capable of
exploiting parallelism on any fevel. The following program, which utilizes some function f
that we assume has no exploitable parallelism, expresses this point:

total = 0;

forifrom 1to N begin
total = total + f(x);

end;

output total ;

This fragment, which simply sums up a mapped set of numbers, is the ultimate
nightmare for a pipelined processor. Since such a machine is reduced to computing the
mappings f(x,) sequentially, the total running time of this program on a standard pipelined
processor would be N * t, + t; , wheret is the execution time of the function £, and tsum 18
the time necessary to sum the N mapped values. In contraét, on a dataflow architecture, this
program would execute in time 1, + tsur SiNce the f mappings may be performed in parallel.
This is a good example of a program which seems bound to sequential execution methods,

but actually contains enough parallelism for a dataflow machine to exploit.

In addition, even in the rare cases which might actually allow no exploitable
parallelism in a program, the dataflow machine does not need to waste cycles idling. As was
mentioned above, Burkowski’s work involving usage of datatlow machine idle time,'® in a
multi-user system points out that “idle” hardware can be used for processing other
programs simultaneocusly; a dataflow architecture, unlike more standard machine
architectures has some realistic hope of “keeping all of its pipelines full.”

tn conclusion, in theory at least, the Arvind dataftow architecture might hold its own
against a vector machine approach, contrary to the opinions of Gajski et. al.

-18-

Memory Management

Another problem that Gajski et. al. found in the dataflow approach to parallel
processing is that the dataflow architecture implicitly and explicitly uses more storage than a
corresponding von Neumann or vectorized program. In other words,

(1) A dataflow system, by its very architecture, enforces duplication
of data and therefore memory use.

(2) The programmer is given no control over memory management.

Gajski et. al. directed most of their criticism at the major memory users, arrays and
structures. They also discuss the problems of I-structures, the structure memory model
advanced by Arvind and Thomas.'* This model semantically presents a non-ordered list of
pairs, somewhat reminiscent of Lisp’s assoc-lists'® in place of arrays and the like.

The I-structure model of dataflow machine memory, together with the portion of the

-dataflow machine named the /-structure controller,® implement a scheme for non-blocking

concurrent access to data. The most important aspect of I-structure storage is the model,
“read datum and deliver to processor X,” the primitive non-blocking non-local read operator
on the tagged-token dataflow machine.

In addition to supplying this solution to multiple contention-free memory access, the
I-structure model provides a method of cutting down inter-processor (network) traffic. The
semantics of functional languages, upon which the tagged token dataflow scheme is based,
demand that no memory be resident in each dataflow processing activity; all machine
“state” should be available only along the arcs of the dataflow graph. Although in the
physical world this does wipe out the memory contention problems which plague most
multi-processor architectures', it introduces more inter-processor overhead.

The I-structure solution is to provide, for large arrays of data and other carefully
selected related data, array-like storage spread throughout the physical system. Although
this scheme reintroduces memory contention, it can save large amounts of network traffic
which might be unnecessary. For instance, let us consider the Id program;

-19-

x «{initial x « O&; ! nitialize x to the empty structure. !
i+ 1 tnitialize i to one. !
whilei< 11 do
new x [i] «f{i); !On each iteration, set an element of x. !
newi<i+ 1

return x);

This program calls a function f on each iteration, building a structure with what it
returns. This structure can be thought of simply as an array of values. On a non-dataflow
machine, this array would be a portion of some linear memory; each element would be one
of the contiguous cells in this memory.

This model of structure storage would not suffice on a dataflow machine. One of the
features of the tagged token dataflow machine is that separate iterations of a loop will be
executed concurrently if data dependencies allow. Therefore, the separate processors
executing this loop would contend for the central memory in which the structure x resided,
greatly reducing performance. In the I-structure model, however, the structure x is allowed
to encompass memory spread over multiple processors; thus, each processor executing an
iteration of the loop may store a portion of x locally. This solution lessens network overhead
and memory contention, while increasing effort only at compile time. In addition, I-structure
memory solves the problem of attempting to read data before it is created by associating
presence tag bits with each word of I-structure storage and deferring requests for memory
reads until the requested memory address is filled by a write request.

Gajski et. al. found three inherent problems of the I|-structure model, which we

dispute here:

{1) The request/data usage model of I-structure memory doubles
communication traffic through the system. This is untrue; in a
von Neumann architecture, there is an address request
answered by a piece of data returned to the processor. in the
I-structure scheme, there is a request and a data return, the
same amount of traffic as before. Deferred read requests (for
items not yet written} do not increase communication overhead,
only write time overhead. Perhaps Gajski et. al. confused the

hardware issse of conventional circuit switching and
acknowledgment with the dataflow scheme of packet switching.

{2) The problem ot distributing I-structure storage over the
multi-processor is introduced by this scheme. Although this is
true, we refer the reader to reference (3) for discussions of
reduction of this problem by methods such as physical
subdomain problem splitting. Conventional systems face this
same problem when attempting to reduce memory contention;
this is not a “new problem” introduced by datafiow

computation.

(3) The necessity of garbage collection is unnecessarily introduced
into the system by this scheme. The computing literature is rife
with work related to complex schemes reducing the problems of
garbage collection by various means. However, we needn’t use
any of these difficult schemes; since |-structures are by
definition non-circular in nature, Arvind uses a reference-count
storage collection and allocation method, which is well
understood and low overhead in nature.® Dynamic storage
allocation is necessary for a general, powerful programming
model.’® In addition, there is no reason that a datafiow machine
cannot use preallocation where such schemes are notable at
compile or load time. We must also point out the growing
realization that languages that do not provide fully automatic
memory management (and therefore necessarily a garbage
collection scheme) are limited in expressive power. '8

. Data Flow Lanqgquages

Gajski et. al. then turned their criticisms toward the languages in use by data flow
machine architectures, languages sculpted with the limitations and abilities of these
architectures in mind. It is useful here to reiterate the basic properties of data flow

languages as they currently exist, as stated by Ackerman:®

.o1.

(1) Freedom from side effects. This requirement brings
“functional” languages such as FP'® and pure Lisp'® into the

picture.
(2) Locality of effect.

{(3) Data dependencies form the only scheduling constraints. This
property makes a language mirror its related data flow graph.

(4) The single assignment convention. As noted by Gajski et. al.,
this convention is already widely accepted as a programming
methodology; it is enforced by data flow languages.

(5) A different semantic (and therefore syntactic) model for

looping.

It is easy to see how these properties rely on, and are necessitated by, the data flow
machine model. Freedom from side effect clearly simplifies the detection of parallelism in a
program. Points (3) and (4) make data dependency the heart of operation scheduling, while
point (5), a new loop model, is necessitated by points (1) and (4).°

In light of the long section of this paper dealing with scheduling data flow operations
on a multiprocessor architecture, it is interesting to note that in data flow languages, data
dependencies form the only scheduling constraints. It is important to note the difference
between constraints and optimal performance; though a dataflow program will run just as
correctly without any scheduling intelligence (due to this property of dataflow languages), it
is possible that a more machine-cognizant schedule of operations might speed dataflow
processor usage. This is analogous to the old FORTRAN problem of how to allocate and
use a two-dimensional array; although the program will return correct results written in any
particular way, if the array is stepped through in proper order (given the interleaving
constraints of the machine itself), the program will return results more quickly.

Gajski et. al. used one theme while reviewing the above design issues; in their words,
their “main objection to functional semantics is that it denies the programmer direct control
of memory allocation.” They further noted that “..the success of data flow languages
depends on how efficiently garbage collection can be implemented and on the specific

.02,

compiler algorithms used to control memory allocation.”

We find fault in this critique at every possible level. First, giving a programmer “direct
control” of memory allocation means nothing in the context of a dataflow computer; since
memory itself is partitioned among processors, there is no way for a programmer to specify a
“block” wherein he would like to store some cherished variable’s value. Data might be
needed in widely disparate processors at highly indeterminable times; to “‘allocate memory”
in the von Neumann style is a semantic void in the data flow world. In addition, placing this
responsibility in the hands of the programmer has been called “too burdensome and too
error-prone for general purpose systems.”’'®

Of course, this means that we must rely on some sort of garbage collection scheme
to manage memory, since it is highly implausible to give this job to the programmer. As has
been mentioned above, however, we needn’t resort to complex memory management
techniques; the lack of circular data structures in languages like Id* * allows the use of
simple reference count garbage collection schemes.

In addition, several researchers, notably Harrison??, have been doing great amounts
of work in the direction of removing storage overhead needs in functional language
situations. Harrison, in his preface, notes “We propose techniques to remove, or at least to
reduce, [memory usage] inefficiencies and inadequacies in the implementation of functional
languages.” Given the above-noted ability o use low-overhead reference count garbage
collection algorithms and the work by Harrison, it seems clear that memory usage problems
will not be a major overhead factor in functional language implementation. We conclude
that the lack of confidence in functional semantics professed by Gajski et. al. is therefore ill
founded.

Implicit Parallelism

Gajski et. al. launched just one more major attack; they found fault in data flow
languages’ reliance on implicit specification of program parallelism. They mention two
problems with this reliance: (1) that not enough compiler technology is in use by data flow
compilers for unearthing ali of the available parallelism of programs, and (2) there are not
enough methods for representing explicit, programmer-specified parallelism in data flow
languages. As for the first point, it is true in the context of concurrent operations on data

struclures; more attention could be, and undoubtedly will be, focused on finding more

.03

implicit paralielism by advanced compiler techniques. That all such techniques are not
currently found in the data flow literature is not an attack on the method, but on specific
implementations. Datafiow compilers are already using the type of subscript analysis
advocated by Kuck; as a matter of fact, this analysis is greatly simplified by the functional
nature of languages like Id.

The second point, however, is a patent mis-statement about current language
technology. In particular, Gajski et. al. noted that Id *'...has no form of explicit parallelism.”
A glance at some of the Id literature belies this idea; the Id for all and for each constructs
support a scheme of explicit parallel computation and composition of functionality atmost
unmatched in current language technology.® Id streams and managers®' support a
functional method of pipelining operations, as well as controlling parallel use of system
resources. In addition, the basic parallelism apparent in a dataflow language, the freedom
to concurrently evaluate functional arguments, might in any case obviate any need for
explicit programmer-noted paralielism,

Gajski et. al. then went on to state that “...implicit paralielism requires translation
techniques as complicated as those used to extract parallglism from imperative languages.”
This statement is simply incorrect; the basic concurrent argument evaluation strubture of
dataflow languages, as mentioned above, does not have to be extracted; it is immediately
apparent from the surface of the dataflow graph. We acknowledge that there are translation
techniques available for imperative languages that may be useful for even better impiicit
parallelism recognition in datafiow languages; however, the important parallel component of
dataflow languages is evident by simple inspection.

Additional Points

The most interesting, and correct, points noted by Gajski et. al. concerned
marketability and usability. We address them on a point-by-point basis:

(1) Does the conservatism of the high-speed processor market
leave dala flow languages unmarketable? This is a tough
question without market research and timings from actual data
flow machines. Nascent dataflow techniques must be tested far
more thoroughly before this question can be evaluated.
However, it is clear that if dataflow machines are shown to be

.04.

scalable (i.e., doubling the number of processors approximately
doubles performance), it is reasonable to assume that even the
most conservative of high-speed computer users would be
willing to switch to dataflow machines and languages.

(2) Do data flow languages increase programmer productivity?
Most data flow languages approximate extant languages in
look, feel, and functionality; although there is scant data on the
subject, we believe that such languages are not so great a
departure from current languages that they would lower
programmer productivity. In fact, given the functiona!l nature of
dataflow languages and such languages' insistence on
modularity and other good programming practices, it is likely
that programmer productivity will greatly increase.

(3) How are input/output and debugging affected by data flow
architectures? Great amounts of research are necessary in this
area, especially the problem of debugging a program that is
running essentially nondeterministically on many processors,
split at the operation (i.e., a very low) level. We find this area to
be the most interesting and challenging, though not
insurmountable, part of data flow research; some pioneering
work in the field has been done by Bauman and lannucci.?2

Conclusion

We hope that this paper has presented arguments that clear, or at least soften, the
doubts left by Gajski and his colleagues. The data flow multiple computational model,
though new, radical, and substantially untested, is a budding and promising field which may
some day revolutionize, or at least help to revolutionize, high-speed {and perhaps
medium-speed) computing; we hope that its proponents and detractors can join forces to
break through the hardware and software limits which hold back computing speeds as we
know them. That the classic von Neumann styie of computing is out of date is clear, and we
find the data flow model a very acceptable and desirable alternative.

.25.

Acknowledgments

We wish to thank Isabel Szabd and Poh C. Lim, as well as the anonymous reviewers,
for their careful comments and criticism.

References

1. D. D. Gajski, D. A. Padua, D. J. Kuck, and R. H. Kuhn, A Second Opinion on Data
Flow Machines and L.anguages, Computer, February 1982.

2. T. Agerwala and Arvind, Data Flow Systems. Computer, February 1982,

3. Arvind, V. Kathail, and K. Pingali, A Data Flow Architecture with Tagged Tokens,
Laboratory for Computer Science, Technical Memo 174, MIT, Cambridge, MA,
September 1980.

4. Arvind, K. P. Gostelow, and W. E. Plouffe, An Asynchronous Programming
Language and Computing Machine, Dept. of Information and Computer
Science Report TR 114a, University of California, irvine, December 1978.

5. G. M. Amdaht, Validity of the single processor approach to achieving large scale

computing capabilities, Proc. 1967 AFIPS Spring Joint Computer Conf., March
1967.

8. J. E. Thornton, Design of a Computer, The Control Data 6600, Scott, Foresman
and Co., Glenview, lli., 1970.

7. D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, Dependence
Graphs and Compiler Optimizations, Proc. 8th ACM Symp. Principles

Programming Languages, January 1981.

8. C. Mead and L. Conway, Introduction to VLS Systems, Addison-Wesiey
Publishing Co., Reading, Mass. 1980,

8. W. B. Ackerman, Data Flow Langquages, Computer, February 1982,
10. J. B. Dennis, Data Flow Supercomputers. Computer, November 1980.
11. L. Y. Ho and Keki B. Irani, An Algorithin for Processor Allocation in a Dataflow

Multiprocessing Environment, Proc. 1983 int'l. Conf. Paralle! Processing,
August 1983.

12

13.

14,

18.

16.

17.

18.

19.

21,

22

-6 -

F. J. Burkowski, A Multi-User Data Flow Architecture, Proc. Eighth Annual Symp.

Computer Architecture, May. 1981.

S. Abe, R. Hiraoka, Y. Fukunaga, T. Bandoh, K. Hirasawa, and Y. Kawamoto,
Preliminary Performance Evaluation of Data Flow Computing. Proc. Compcon
Spring 1982, February 1982,

Arvind and R. H. Thomas, I-Structures: An Efficient Data Type for Functional
Languages, Laboratory for Computer Science, Technical Memo 178, MIT,
Cambridge, MA, September 1980.

J. McCarthy, Recursive Functions of Symbolic Expressions and their
Computation by Machine, Communications of the ACM, April 1960.

S. K. Heller and Arvind, Design of a Memory Controller for the MIT Tagged Token
Dataflow Machineg, Proc. int’l. Conf. Computer Design ‘83, Portchester New
York, November 1983.

Arvind and R. A. lannucci, A Critique of Multiprocessing von Neumann Style,

Proc. Tenth Int'l. Symp. Computer Architecture, Stockholm, Sweden, June
1983.

G. L. Steele, Multiprocessing Compactifying Garbage C ollection,

Communications of the ACM, September 1975.

J. Backus, Can Programming be Liberated from the von Neumann style? A

Functional Style and lts Algebra of Programs Communications of the ACM,
August 1978.

. P. G. Harrison, Efficient Storage Management for Functional Languages. The

Computer Journal, 25 (2), May 1982,

Arvind, J. D. Brock, Streams and Managers, Computation Structures Group
Memo 217, Laboratory for Computer Science, MIT, Cambridge, MA, June
1982,

N. B. Bauman and R. A. lannucci, A Methodology for Debugqing Data Flow

Programs, Computation Structures Group Memo 219, Laboratory for
Computer Science, MIT, Cambridge, MA, October 1982.

