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Abstract

This paper describes the design of a CMOS self-timed two by two packet router, using novel circuit
techniques. The packet router is the constituent element of a store-and-forward communication
network for a multiprocessor computer. The self-timed desigh methodology introduced here
partitions the design into data paths and system controllers, the latter consisting of Finite State
Machines and Distributed Control Structures. This organization allows the exploitation of
concurrency in the design and is well suited for systems requiring parallel operation. A CMOS router
was designed, fabricated and tested, a maximum throughput rate of 10.9MHz was achieved.
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1. Introduction

This paper describes a design of a self-timed two by two packet router, using novel circuit
techniques. The packet router is the constituent element of a store-and-forward communication
network [1] for a data-flow multiprocessor machine [6].  Using the indirect Boolean hypercube
topology, the number of routers required to connect N processors is %Nlog,N. For large N, a
synchronous routing network of this size is difficult to maintain due to clock distribution problems,
and has poor reliability due to different modes of failure; the most significant is failure due to the
synchronizer problem [2]. A network built out of self-timed components can avoid these problems.
The self-timed packet router is implemented in CMOS, and the performance of the fabricated chips is
highly acceptable in terms of area, power and speed. The self-timed design methodology introduced
here is different from previous approaches in that the architecture is partitioned into data path, finite
state machines {FSM) and distributed structures (DS). The FMS's and DS's together constitute the
system controlfers. Data path modules consist of data circuits which perform the desired logic
function, and stage controllers, whose task is to synchronize the modules’ operation with others. Ina
system controller, a FSM provides predicate signals to steer the flow of cortrol in the DS, which can
be partly implemented in CMOS Domino logic. Self-timed control circuits are synthesized using a
graph mode! cailed Signal Transition Graph. Within the context of this paper, we will introduce this
graph as a specification tool; however, this graph approach can allow direct synthesis of self-timed
circuits. This topic will be addressed more fully in another paper [4].

In Section 2, the general characteristics of this design methodology are summarized. Section 3
describes the router and its implementation, we will also present the behavior specification of the
router and the specific realization in CMOS of data path components and their timing control circuitry.
Section 4 is dedicated to the system controller and the implementation of the FSM and DS. Section 5
gives statistcs on CMOS router chips fabricated by MOSIS in terms of area, speed and power
consumption.

2. A Self-timed Methodoiogy

Self-timed circuits form a subclass of the asynchronous switching circuits in which a uniform .
communication discipline such as the reset signaling protocol is enforced throughout the system.
One feature of such an approach is the use of local communication and distributed control, as
opposed to the global communication and central control of the synchronous approach, and it is
well-suited for systems with a great deal of built-in parallelism. Another special property of self-timed
circuits is speed-independence or delay-insentivity, as defined by Muller {9, 8], which indicates that
they operate correctly regardless of the variation in delay of logic components. Such a property is
quite desirable as it implies that self-timed circuits do not fail due to hazard and race conditions, and
that they operate reliably under a wide range of operating conditions that affect the delay
characteristics of components. A basic assumption in the realization of speed-independent circuits is
that gate delays, and in some mare general models, wire delays, are unbounded. However, in most
practical situations, only realizations with unbounded gate delay are possible; circuits with
unbounded wire delay can be built by using data coding schemes such as the dual-rall code [10],
except for feedback wires in basic asynchronous state components (such as SR flipflops and
C-elements} which are assumed to have negligible delays. We have found that a design methodology
based on this unbounded gate and wire delays assumption is too inefficient and results in
unnecessary performance penalties in area and speed, despite the robustness and other desirable
features of such an approach [3].



In this self-timed design methodology, the architecture is partitioned into data paths and system
conirofiers. A data path is broken down into data circuits which perform the desired operation, and
stage controllers, whose task is to synchronize the modules' operation with others. A system
controller is composed of a Finite State Machine (FSM) and a Distributed Structure (DS), and the FSM
is used to produce predicate signals to steer the flow of control in the DS. Control modules
constituting a DS are basic constructs which allow the exploitation of concurrency of control
operations proposed by Dennis [5]. This type of control discipline is a natural and efficient method
for achieving parallelism. For applications where a great deal of concurrency exists, this
decomposition of a system controller is more efficient than the central control organization, as the
latter approach requires either product machines or a large amount of system states to coordinate

" concurrent operations.

In terms of VLSI implementation, the stage controllers for data paths, the DS’s and a part of the
FSM's are basically timing contro! circuits which can be synthesized directly from a graph model
called Signal Transition Graph, which yields efficient and truly speed-independent circuits. Data
circuits can be built using matched delays instead of speed-independent techniques such as dual-rail
code, as the delay of logic gates and wires in a chip with no defects is bounded and can be well
characterized, and one can almost always determine the upper bound of the delay of circuit elements
and construct other circuits to track that delay. Such a delay tracking scheme is more economical,
and in practice, works well over wide ranges of variation in voltage, temperature and circuit layout,
On the other hand, control circuitry normally involves random logic with diverse foading conditions. A
truly self-timed and speed-independent implementation is justified here, as it produces robust circuits
and avoids problems due to races and hazards. Finally, special circuit structures related to the
technology (e.g. CMOS) can be selected, and the internal design of self-timed modules can be
optimized for parallel operation. Techniques used include the exploitation of pipelined and parallel
operation for modules, in particular, the use of parallel resetting in modules to reduce the cycle time
of the reset signaling protocol. In certain cases, CMOS domino logic [7] provides a direct

" implementation of the paratiel reset scheme.

3. Oganization of the Router
3.1 Behavior Specification

The block diagram of the router is shown in Figure 1{a). !t contains two FIFO queues to hold
packets sent in byte-serial format. Packets are of variable length, and an extra bit called Last-Byte is
appended to a byte to delimit the packet boundary. This bitis 1 for the last byte of a packet and 0 for
others. The first byte of a packet contains the address information. The router decodes the address
and forwards the packet to the desired output port, an address bit of 0 will form a link from that input
port to the upper output port, a 1 will form a link to the lower output port. There are two system
controllers, each consists of a FSM and a DS. The controllers read the address bit and the LB
(Last-Byte) signals and generate control signals for the output multiplexors. These control signals are
determined from the first byte of a packet and recycled for other bytes. Two controllers also
communicate as packets from one input port may need to go to the opposite output port. In case
when packets from both input ports require the same output port, an arbiter is used to resoclve
conflicts.



Fig. 1. Block diagram of the Router and Data Path Components
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3.2 Data Path Components

Two main data path modules are self-timed registers which form the FIFO's, and the self-timed
multiplexors. These modules consist of a data circuit and a stage controller which handles the timing
and signaling protocol. Figure 1{b) shows the structure of register and multiplexor modules. This
section will describe their implementation in detalils.

An implementation of the register module is shown in Figure 2. lts data circuit is a pseudo-static
register, where N-channel pass-transistors are used instead of CMOS transmission gates. A feedback
P-type pullup restores the correct High voltage level due to a voltage threshold drop across the
N-channel pass transistors.. The geometries of the N and P devices of the CMOS inverters are sized
such that they are sensitive to low-to-high transition to allow the feedback mechanism to take over
quickly after the input goes High. In the same Figure, a delay register located at the top is used to
accurately track the time required to load the registers, and this tachnique works well even if the
LOAD control signat is propagated on poly-silicon. "Even though this pseudo-CMOS register
configuration certainly reduces layout area, the main reason for using it is to ensure the correct
timing sequence for turning on and off the input and feedback N-type pass transistors, which are
controlled by LOAD and HOLD signals. In a standard CMOS design with transmission gates,
simultaneous transitions of a controlling signal (LOAD or HOLD) and its complement are required to
prevent race conditions. But such requirement may be difficult to achieve in most cases, and special
care must be exercised to make sure the opposite transitions of a control signal are close enough to
each other.

The stage controller operates in pipelined fashion: once data are loaded into the registers, it
notifies both input and output ports by raising A,  and R_ .. The operation of the controller is as
follows. After input data D,, are stable, R, is raised, which causes HOLD to go Low and then LOAD to
go High. Thus, the N-type pass gate in the feedback path is turned off before the input pass gate is
turned on, ensuring that registers in the current stage do not drive the outputs of registers in the
preceding stage, as this may cause data to shift backward while the contro! signals move forward.
This may happen if the transient persists long enough and registers in the preceding stage have their
feedback N-type transistors on and their input N-type transistors off. By only using LOAD and HOLD -
signals but not their complements, their correct timing relation can be guaranteed easily. After data
are loaded, DONE signal goes High which in turns causes HOLD to go High and LOAD Low. Atthe
same time, R, , and A, are raised. However, in order to prevent input data from changing while
LOAD is still High, one has to wait until LOAD goes Low before raising A,,. When R, goes Low and
Ry 8 High (indicating that data are available at the output), the DONE signal, being the ouput of the
delay register, is reset through a strong N-type pull-down device. Subsequently, A, drops and R,y
also drops aiter Aot has gone High, signifying that the succeeding module has read the data.

This controller supports pipelined operation, makes use of internal parailelism to speed up the
module and reduce the reset time. Another feature of this design is it permits data to be stored in
consecutive stage without overwrite problem even though a master/slave register configuration is not
used. It was synthesized using a graph mode! called Signal Transition Graph (STG). Figure 3 shows
an STG specification of the register stage controller, where a node corresponds to a signal transition
in the circuit, an arc specifies a timing constraint between signal transitions. The + and - signs
indicate the direction of the transtion. In this graph, an internal node x has been introduced, this
node is the output of a C-element. A Join operation is depicted by a number of arcs from different
transitions joining at one transition, and it specifies that the resulting transition occurs or fires only



Fig. 2. Implementation of Register mddule
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after all transitions that cause it have occurred. A Fork operation is depicted by a number of arcs
emanating from one transition to a number of different ones, indicating that these fire only after the
causing transition has fired. Since there is no specific time metric assignéd to each arc, the
occurence of the resulting transitions is concurrent. Thus the Fork is the basic mechanism for
creating parallel operation. A method for synthesizing self-timed controt circuits directly from Signal
Transition Graphs is described in [4]. Within the scope of this paper, we will not discuss the synthesis
technique and only use the graph as a behavior specification for the circuit.

The Multiplexor module (Figure 4) consists of a controller and data circuits. The latter are built
from register cells with input N-type multiplexors controlled by LOAD, and LOAD, signals. The

_ controller is a modification of one of the register modules. C,, C, form a dual-rail signal (they cannot

both be 1 at the same time) which selects the input multipiexors. This signal is generated by the
system controllers. The operation of the Multiplexor module is similar to the Register module and is
quite obvious from Figure 4. The Multiplexor module is also pipelined and uses internal parallel
operation to improve speed. :



Fig. 3. Signal Transition Graph of Stage Controller of Register Module
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4. System controllers

As mentioned earlier, a system controller is partitioned into a FSM and a DS. The FSM provides
predicate signals to steer the flow of control in the DS. This control structure is based on the ideas in
[5], and we have found that CMOS Domino logic can provide a well-suited and efficient
implementation.

4.1 Finite State Machine

The block diagram of the FSM is shown in Figure 5(a). Basically, it consists of a combinational
logic function (a multiplexor in this case), a master and a stave register to hold the current and next
state. The FSM accepts the address dj,-in and the Last-Byte signal /b-in from the FIFO and produces
three predicate signals fb, /b and dir, where fb = 1 only if the current packet byte is the first one, /b =
1 only if it the last, and dir is the address bit, sampled during the first packet byte and recycled for
other bytes. Module S* accepts the input request signal R, and produces a clock pulse @ and its
- complement $ at link 1. As shown in Figure 5(b), the same feedback timing loop as used in the
register module is employed here to generate a clock puise whose duration is guaranteed to be long
enough for loading the data into register cells. Note that due to a more relaxing timing requirement,
transmission gates are used and controlled by both @ and &, whose transitions in opposite direction
need not be strictly simultaneous to prevent race conditions. The $* and D modules in Figure 5(a)
are examples of control modules, S* is a modified Sequence madule which produces a pulse (instead
of a level signal as in the normal S-module) and then activates a request/acknowledge cycle at link 2.
This pulse is the clock signal ® which loads data into the master registers. Immediately after ® goes
low, & becomes High and the state information is moved to the siave registers. D module is a
Decision module which activates a cycle at link F if the predicate signal is false, and link T if itis true.



.7-

Fig. 4. Implementation of Multiplexor Module
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'4.2 Distributed Structure

The distributes structure consists of control modules which communicate locally through .

request/acknowledge signat links. The representation and logic implementation of some modules
are shown in Figure 6(a), where heavy arcs indicate links and signal wires with a p are predicates
(those with an e are enabling signals for domino logic discussed later). An S-module serially activates
links 1 and then 2, in that order. A D-module activates link T if the predicate signal is true, and link F if
the predicate is false. The UD-module is a composite moduie which can accept request from either
input link and raise either a True or False signal at the output port. As shown in Figure 8(a), it will
raise C, if the upper input link is active, and C, if the lower link is, the Acknowledge signal is routed
back to the proper sender through AND gates. Due to the fact that concurrent requests from both
FSM’s can occur, the DS needs an arbiter module, as shown in Figure 6(b}. This particular device
contains an arbiter circuit and other circuitry for two Engage and two Release ports, Once it is
engaged by a request from one port, the other portis locked out. The state of the arbiter also remains

locked until it is released by a Release request for the same port.  The self-timed arbiter circuit (Fig.

6c) contains a cross-coupled flipflop, a threshold detector to prevent problems due to the metastable
state (a similar NMOS design is given in {10]) and two strong N-type pull-down devices which reset the
arbiter through a global Reset signal. It allows each port (1 or 2) to go through a complete
request/acknowledge cycle before a request from the other port is processed.



Fig. 5. Structure and Implementation of Finite State Machine
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Fig. 6. Control Modules for Distributed Structure
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The operation of the distributed structure (Fig. 7) can be described as follows. On receiving
requests R-u and/or R-d from the state machines, DS checks if the current byte is the first byte (the
address), and if so, it sends an Engage request to the Arbiter module. Subsequently, after receiving
an acknowledge from the Arbiter module, it activates a dual rail signal (C,C,) to control the
Multiplexor. Upon receiving an acknowledge from the Multiplexor, it then checks if the current byte is
the last byte; in this case, a Release request is sent to release the engaged Arbiter. Due to the design
of the Arbiter module, Engage/Release action cannot take place in the same cycle, therefore, a
packet must contains at least two bytes, the first byte causes an £ngage cycle, the last a Release
cycle. '

In searching for a fast circuit implementation for the DS, we have found that CMOS domino logic
[7] is an elegant and efficient way to realize these control structures. Figure 8(a) shows a domino
logic gate which perform a sum of product togic function x = ab + cd. This function is implemented
by N-type transistor network in the rectangular box shown. When the enable signal e is Low, the
P-type pullup is turned on and it keeps the internal node y High, therefore the output Law. When e
goes High, the pullup is turned off and the N-type pulldown is turned on. If a pulldown path in the
N-type network exists, the internal node will be discharged to Ground and the output becomes High,
otherwise, the internal remains High due to a weak feedback P-type device marked with *. Note that
while e is High, if the internal node is accidentally discharged by some input transient, it cannot be
restared to High, unless e goes Low again. In Figure 8(b), a CMOS implementation of a C-element is
shown (this implementation is not a Domino logic gate), where the inverter marked with an * is a
weak one, i.e., it is easily overpowered by the series pullup and pulldown devices. As indicated in
Figures 6(a) and 7, the e signals are enabling signal for domino logic gates. Domino logic provides a
natural and efficient way for implementing self-timed circuits. During the active phase of a cycle of
operation, signals are propagated forward from one moduie to another to perform the control

Fig. 7. Distributed Control Structure for the Router
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Fig. 8. Special CMOS circuits
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functions. During the reset phase (when request and acknowledge signals go Low), all modules can
be reset at the same time in some cases. A domino logic imptementation does exactly this, and the
time required for resetting is reduced to about two {inverting) logic stage delays. Due to the nature of
precharged circuits, domino logic can only be used to imptement multi-stage logic with no inverting
intermediate variables. These variables become High in the reset state (when the enable signale is
Low) and they may cause accidental discharge of internal nodes through temporary pulldown paths
in the NMQOS networks when the enabte signal e starts to go High. There are methods to overcome
this limitation but in general will make the structure unduly complicated. The best solution is to use
dual-rail code for inverted signals and single rail for others. In our case, even though inverted signals
such as b’ and /b’ are used in D modules, no accidental discharge will occur because they are inputs
io AND gates controlied by other inputs which are guaranteed to be Low in reset state; no special
technique is required here because no pulidown paths exist when e starts to go High.

Self-timed circuit modules operating in pipelined fashion cannot be implemented with domino
logic, as their state (reset or active) depends on both input and output signals. A chain of
non-pipelined modules can be considered to belong to the same domain which can be driven from
the same enabling signal. In Figure 7{a)}, the first two modules, D (with predicate fb) and UD in a
- chain, belong to the same domain and are enabled by the same reguest signal R-u. The last
D-module (with predicate ib) belongs to another domain and is enabled by signat Ack from the
Multiplexor module.

Another optimization used here is to collapse and-or logic stages into single domino logic gates,
even though they may not belong to the same control modules. We have been able to achieve about
30% speed-up in the controller design by using domino logic instead of a straight-forward CMOS
implementation of the control modules.

5. Results and Conclusions

A 2x2 packet router was designed and submitted for fabrication through MOSIS, an
ARPA-sponsored foundry. The router is implemented in 3 micron CMOS technolegy (A = 1.5), it
contains 2456 transistors and occupies a layout area of 3.13 x 2.34 mm?. We tested 46 chips in total
and obtained 30 fully operational chips. The throughput rates {(bytes/second) are 10.9 MHz
maximum, 4.76 MHz minimum and 5.96 MHz average. The average latency is about 1 microsecond,
and average power consumption at full speed is around 75 mW. ' :
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Traditionally, self-timed circuits have been built using a large amount of hardware, because of
this, and also the use of the reset signaling protocol, it also takes a proprotionally large amount of
time to operate. Within the domain of VLS, certain basic assumptions.can be relaxed to reflect the
realism of integrated circuits. By assuming that gate delays are bounded and can be matched
reasonably well in certain cases, one can design self-timed systems with highly acceptable
performance. In the router design, except for a few places in data circuits (e.g. the delay registers)
where delay assumptions are explicitly made and extra care is exercised, all is self-timed and
speed-independent. This claim can be partly verified by noting that, for example, the STG
specification for the Register module contains no specific timing metric but only precedence
constraints between signal changes. These self-timed modules, as seen, are much more efficient
both in terms of the amount of hardware and speed in comparison to other traditional approaches.
Therefore, this approach may provide a method for managing the timing complexity of large systems
yet to be implemented using VLS| technology.
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