LABORATORY FOR MASSACHUSETTS
| INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

()

FP 1:5: Backus’ FP with Higher Order Functions

Computation Structures Group Memo 243
January 1982

Arvind
J. Dean Brock
Keshav K. Pingali

L .

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

FP 1.5: Backus’ FP with Higher Order Functions
(Summary)

Arvind, MIT
J. Dean Brock, UNC-CH
Keshav K. Pingali, MIT

1. Introduction

Programming language design can be regarded as a search for useful constraints that guide
a programmer in the writing of correct programs. From this point of view, extending any
small, elegant language would appear to be an exercise in futility, especially in the absence
of a strong practical need to do so. In spite of this, we would like to carry out this
exercise with Backus’ FP language [2]. We would like to extend FP to permit user-defined
higher order functions. The importance of higher order functions is often not appreciated
because of a lack of experience in programming with them. However, the few examples of
programming with higher order functions that we have seen in the literature 3, 5] tend
to support our viewpoint. It seems to us that there should be a place for higher order

functions in a programming language.

Extensions have a price. At the minimum, the language gets bigger, but more often,
some property of the language gets destroyed inadvertently (e g. pure LISP to LISP1.5).
Introducing higher orde;' functions in FP requires including, at the very least, the apply
primitive. (The meaning of apply :< f,a > is f : a.) There are some technical difficulties
in doing so (see page 632 in [2]): Backus allows apply and user-defined higher order
functions in FFP, but that makes FFP non-extensional. We will show that FP1.5 does
have extensionality. It appears that the only cost of introducing higher order functions is
the complexity of the semantic domain of FP1.5 in comparison with the semantic domain of
FP. Undeniably, the most useful property of FP is the algebraic identities whose variables
range over all FP programs. We will prove that all the algebraic identities given by Backus
[2] for FP programs hold for all FP1.5 programs.

2. The Language

An FP1.5 system is comprised of a set O of objects, and a set E of expressions. The
set O has simple atoms like true, false, the integers, <> (the empty sequence), etc. In
addition, it includes function objects. Function atoms are the usual functions like +, —, 81,
S52... (where Sn is function that returns the n'th element of a sequence) and apply, as well
as four program-building operators called formcomp, formkonst, formnf, and formcond.
A program-building operator takes a sequence of function atoms or objects, and returns
a function object - for example, formcond takes a sequence of three function objects (say
< p, f,g >) and returns the function object (p — f;g); this function object when applied
to an object z, returns f(z) if p(z) is true, and returns g(z) if p(z) is false. The other
program-building operators are similar. A sequence of objects is also an object (but not a

function object}.

No operator is allowed to “look inside” any function objects to which it is applied. This
rule is a must for extensionality. One of its consequences is that there can be no function

which tests for the equality of two function atoms or objects.

An FP1.5 expression is either an FP1.5 object, or a function object applied to an

object. We will now give the syntax of the language.
< expression >u=< object >|< funobject >:< object >
< object >u=< sequence >|< simatom >|< funobject >} L
< sequence >u=<< object >, < object >,... >

< simatom >i= true,false,(,1,2,...

< funobject >::= < funatom >|< composition >|< conditional >|< constructor >

|< konstant >

< funatom >:=+,—,...,51,52,...,apply,formkonst, formcomp, formnf, formcond
< composition >u=< funobject > o < funobject > o... < funobject >

« < conditional >:= (< funobject >—< funobject >; < funobject >)

2

< constructor >::= [< funobject >,... < funobject >|
< konstant >:u= < object >

Like FP, we allow a set of functicn definitions (called the D set). A D set is a sequence
of definitions of the form:

def < funatom >=< funobject >
which associates the function atoms of the D set with function objects. The function §

maps each function atom into its function object definition.

We will now define the meaning function g for FP1.5. g is defined with reference to
two functions: p, which associates function atoms with their function representations, and
8, which associates atoms of the D-set with their function objects. The domains of these

three functions are:
4 i< ezpression >—< object >
p :< funatom >— [< object >—< object >}
§ :< funatom >—< funobject >

The abstract interpreter for these functions is given below. Though not explicitly
stated, it is assumed that function applications in the abstract interpreter are strict or

eITor preserving.

p E=E, if Eisan < object >

pF:E=p(6F:E), ifF anatom in the D-set
= pF(E), if Fisa < funatom >

= 1, otherwise

pF:E=F
pFo G:E=upF:{(uG:E)

p[Frywy |t E=< p Fy: E,..up Fy : E >

3

p(P—-F,G):E=pF:E, iHpP:E==true
=uG:E, ifpgP:E=1=2alge

= 1, otherwise

Finally, the function representation of our five new program-building function atoms

may be defined as:

papply (K F,X>)=p F: X,if Fa < funobject > and X an < object >, otherwise
1L

p formkonst(X) =X
p tormeomp(< F,G>)=Fo G
p tormi(< Fy,..., F, >) = [F},...F},]

p tormeond{< P, F,G >) = (P — F;G)
Note, we have adopted a non-denotational view of the program-building atoms. We do
not consider an application of these atoms to yield an abstract function, but to yield the

FP syntax for a function.

Theorem: FP1.5 is extensional — that is, if X = Y, then for all function objects H,
p H:X = pg H:Y. Intuitively, the idea is that there exists an (interesting) equality
predicate on programs such that if two objects are equal under this predicate, then there is
no function in the language that can distinguish between them. The equality predicate that
we are considering is defined so that X = Y if and only if (1) X and Y are simple atoms
and X = Y;(2) X and Y are functions and forallobjects E, p X : E=pY : E;and (3)
X and Y are sequences of the length n, where X =< Xj,... X, >and ¥ =< 1;,...Y, >,
and X; = Y; forallifrom 1 ton.

Scott’s [4] semantic theory assures us of the existence of such an equality predicate.
Proof of eztensionality:

We will prove that our function is extensional by means of an induction on the inter-

pretation, by g, of expressions in FP1.5.

Case 1 - It is easy to verify that if H isa < funatom > such as +, —, 81, etc,,
pH:X= pH:Y. We will show this for 81. If X is not a sequence, then neither is
Y, and hence, 4 H : X and p H :Y are both L. If X is a sequence, then so is Y, and
they must both be either the empty sequence, in whichcase pS1: X =1 =pu81:Y,
or they are both non-empty, in which case X =< Xi,... > and Y =< ¥;,... >, and
psS1: X=X, = Y,=uS1:Y.

casez-HHisfomkonst,thean:Xisfwhichequais?,asforanz,ﬁf : 2=
X=Y=pY : Z. 1f His formcomp, then if X is not a sequence, neither is ¥ and
pH:X =1 =pH:Y. If the sequence X contains objects that are not function objects,
then againp H : X =1 =p H : Y. Finally, without loss of generality assume
that X is a sequence < FX,GX > of function objects FX and GX. Then Y is an object
< FY,GY >,and FX= FY and GX = GY. Consequently, p H : X =FXo GX
aadpH : Y=FYo GY,andsince p FXo GX : E=pFX : (4GX : E)=
pFY : (4GY : Ey=pFYo GY : Eforal E,pH : X= p H : Y. The proofs

for the remaining program-building operalors are similar.

Case 3 - I H is apply, then let us consider only the error-free case where H is
applied to the sequences < FX,X > and < FY,Y >, where FX and FY are function
objects and FX = FY and X = Y. Then p H : < FX,X >=p FX : X and
pH : < FY,Y >=p FY : Y. Because FX = FY by our definition of function
equality p FX : X = p FY : X, and because X = Y by our induction hypothesis,
WFY : X= pFY : Y. Therefore, p H : <FX,X>= pH : <FY,Y >.

Case 4 — The cases for the conditional, composition, constructor and constant operators

are straightforward.

We have given an outline of a proof of extensionality above - the complete proof will '

be given in the paper.

It is easy to check that the algebraic laws given by Backus for FP also hold for FPL.S.

Two of these laws are given below:

p|F1,F2lo G: E=p [F1,F2]:(p G: E)
=<pFl:(pG:E),uF2:(pG:E)>
=< pFloe G:E,pF20 G:E>
=u[Flo G,F20 G|: E

pHo(P — F;G):E=p H:(y(P—>F;G):E)

=pH:(uF:E), ifpP:Eistrue
=puHoF:E
=u(P— Ho F;Ho G): E

The case where g P : E is false is similar.

In a similar fashion, it is easy to verify that all the relevant laws given by Backus in

[2] are valid in our system.

3. Examples

In his use of s:treams, Burge [3] has shown that expressions with higher order functions can
be used to specify “infinite” computation that can be evaluated in a conventional, non-lazy
manner. This same technique can be used in FP1.5 by representing a stream (list) as a
constant function which maps any non-L value to a pair consisting of the first element of

the stream, a simple value, and the remainder of the stream, itself a stream.

Following this representation, the FP1.5 expression which we call FiveForever, the
infinite sequence of fives, must be defined so that:

p FiveForever : X =< 5, FiveForever >
One FP1.5 expression having this property may be written as:

de? FiveForever =[5, FiveForever]
One can generalize this to an expression Forever which, when applied to a value, yields
the infinite stream consisting only of that value. This stream-generating function may be

defined as:
def Forever = formnf o [formkonst,

formcomp o [apply,
formnf o [formkonst o Forever,

formkonst]]]

An application of u to this admittedly ugly expression (which will soon be beautified
through the application of syntactic sugar) will illustrate that Forever does fulfill its
intended role, for:

p Forever : 5 = [5,apply o [Forever,5]|

and when this stream result is applied to any non-1 argument we see that:
p (p Forever:5): X =< 5,u Forever:5>

=< 5,[5,apply o [Forever,5]| >

Note how functionals have been used to “stop” the evaluation of the infinite stream
after the production of its first element. With this stream representation the operators
first (car), rest (cdr), and cons may be easily defined as:

de? first =S1 o apply [14,0]

def rest = 52 o apply [1d,0]

+ def cons = formkonst

The previously-promised syntactic sugar can greatly improve the readability of the
example FP1.5 expressions. We will use the double circle ® as a sweetener for formcomp
by allowing

o ...0 F,
to stand for

formcomp o [Fy,... F,l.
We will also allow [,], and = to be used in the following abbreviations:

[Fi,...,Fn) = formnt o [Fy,...,F;]
P= F,G formcond o [P, F,G]

Using these sugarings, Forever may be more tastefully defined as:

def Forever = [formkonst,apply © [Forever,formkonst]]

Many FP functional forms such as a (apply to all) can be easily defined using the
extended FP1.5 syntax. For example:
def AA=eq0 © 1n =
i

appndl @ [14 ® 81,
apply © [AA® tormkonst,t1]]

Note again, the use of apply to control a potentially unbounded recursion.

4. FP1.5 and FFP

We illustrate some differences between FFP and FP1.5 using a simple example. Consider
the higher order function twice given in [3].

def twice f z= f(fz)
Of course, twice cannot be written in FP. In FP1.5 it may be written as follows:

def twice = apply o [S1,apply]
where we have assumed that the argument is of the form < f, z >. This definition of twice
can be directly translated in FFP also. However, one could also define a new functional
form < twice, f > which applies f two times. In that case twice would be the FFP
expression corresponding to the following:

apply o[201,apply o[201,2]
This later form canrot be part of FP1.5 because sequences in FP1.5 do not represent

functions {because there is no meta composition rule).

Extensionality is not destroyed by the inclusion of apply or function-forming operations
— it can only be destroyed by operations that tear functions apart. In FFP this power is
provided by permitting the representation of a function to be a sequence which can be
taken apart by the selector functions. FP1.5 forbids this.

References

[1] Backus, J., “Programming Language Semantics and Closed Applicative Language,”
Proceedings of the ACM Symposium on Principles of Programming Languages, Octo-
ber 1973, 71-86.

[2] Backus, J., “Can Programming Be Liberated from the von Newmann Style? A Func-
tional Style and Its Algebra of Programs,” Communications of the ACM 21, 8(Au-
gust 1978), 613-641.

[3] Burge, W. H., Recursive Programming Techniques, Addison-Wesley Publishing Co.,
Reading, Massachusetts, 1975.

[4] Scott, D. 8., “Data Types as Lattices,” SIAM Journal of Computing 8, 3(Septem-
ber 1976), 522-587.

[5] Turner, D. A., “The Semantic Elegance of Applicative Languages,” Proceedings of the
1981 Conference on Functional Programming Languages and Computer Architecture,
October 1081, 85-92.

10

